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ABSTRACT

Weak-lensing searches for galaxy clusters are plagued by low completeness and purity,
severely limiting their usefulness for constraining cosmological parameters with the
cluster mass function. A significant fraction of ‘false positives’ are due to projection
of large-scale structure and as such carry information about the matter distribution.
We demonstrate that by constructing a “peak function”, in analogy to the cluster
mass function, cosmological parameters can be constrained. To this end we carried
out a large number of cosmological N -body simulations in the Ωm-σ8 plane to study
the variation of this peak function. We demonstrate that the peak statistics is able
to provide constraints competitive with those obtained from cosmic-shear tomography
from the same data set. By taking the full cross-covariance between the peak statistics
and cosmic shear into account, we show that the combination of both methods leads
to tighter constraints than either method alone can provide.

Key words: cosmological parameters – large-scale structure of Universe – gravita-
tional lensing

1 INTRODUCTION

The number density of clusters of galaxies is a sensitive
probe for the total matter density of the Universe Ωm, the
normalisation of the power spectrum σ8, and the evolution
of the equation of state of the Dark Energy w (e.g., Wang &
Steinhardt 1998; Haiman et al. 2001; Weller et al. 2002). For
some time it was thought that weak gravitational lensing,
which by its nature is sensitive to dark and baryonic matter
alike and independent of the dynamical or evolutionary state
of the cluster, could be used to construct clean, purely mass
selected cluster samples. However, ray-tracing simulations
through cosmological N-body simulation made it clear that
weak-lensing selected clusters are not at all mass selected but
selected by the shear of the projected mass along the line
of sight (e.g., Hamana et al. 2004; Hennawi & Spergel 2005;
Dietrich et al. 2007). As a result, blind searches for galaxy
clusters using weak lensing have both low purity and com-
pleteness (e.g., Schirmer et al. 2007; Dietrich et al. 2007).

Gravitational lensing is, due to the large intrinsic el-
lipticity scatter of background galaxies, an inherently noisy
technique. This shape noise is the dominant noise source at
the low signal-to-noise ratio (SNR) end of the weak-lensing
selection function, while projections of large-scale structure
(LSS) along the line-of-sight (LOS) dominate the noise bud-
get of highly significantly detected peaks (Dietrich et al.
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2007). Both sources of noise affect purity and complete-
ness. Galaxy clusters aligned with underdense regions are
not visible as significant overdensities, while the projection
of uncorrelated overdensities can mimic the shear signal of
galaxy clusters. While these effects can be taken into account
(Marian & Bernstein 2006), they degrade the constraints on
cosmological parameters one can obtain using weak-lensing
selected galaxy clusters.

Of course such projected peaks are noise or false pos-
itives only in the sense of galaxy cluster searches. They
are caused by real structures along the line-of-sight and as
such carry information about the matter power spectrum.
Whereas analytical models exist for the halo mass function
(Press & Schechter 1974; Sheth & Tormen 2002), no such
model exists for the number density of peaks in weak lens-
ing surveys. Probably no such prediction can be made an-
alytically because the abundance of peaks depends on pro-
jections of uncollapsed yet highly non-linear structures like
filaments of the cosmic web. As an additional complication
the observed number of peaks depends on observational pa-
rameters like limiting magnitude, redshift distribution, and
intrinsic ellipticity dispersion.

In the absence of an analytic framework, ray-tracing
through N-body simulations can be used to numerically
compute the “peak function” (in analogy to the mass func-
tion) for a survey and study its variation with cosmological
parameters. Here we present a large set of such simulations
aimed at demonstrating the usefulness of the shear-peak
statistics for constraining cosmological parameters. We con-
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sider this work to be a pilot study and limit ourselves to the
variation of the peak function with Ωm and σ8 and its ability
to break the degeneracy between these two parameters en-
countered in the 2-point cosmic-shear correlation-function.
Unlike Marian et al. (2009) who showed that the projected
mass function, which is difficult to measure, scales with cos-
mology essentially in the same way as the halo mass func-
tion, we study the cosmological dependence of the directly
observable aperture mass statistics.

2 METHODS

2.1 N-body simulations

We carried out N-body simulations for 158 different flat
ΛCDM cosmologies with varying Ωm, ΩΛ, and σ8. Figure 1
shows the distribution of these simulations in the Ωm-σ8

plane. All simulations had 2563 dark matter particles in a
box with 200 h−1

70 Mpc side length. These choices reflect a
compromise we had to make between computing a large
number of simulations to sample our parameter space on
the one hand and to have a fair representation of very mas-
sive galaxy clusters dominating the cosmological sensitivity
of the halo mass function on the other hand. These sim-
ulation parameters were chosen such that we can expect
the presence of 1015 h−1

70 M⊙ mass halos at redshift z = 0
in the simulation box in our choice of fiducial cosmology
π0 = (Ωm0 = 0.27, ΩΛ = 0.73, Ωb = 0.04, σ80 = 0.78, ns =
1.0, Γ = 0.21, h70 = 1).

We computed 35 N-body simulations for this fiducial
cosmology to estimate the covariance of our observables. The
total number of N-body simulations is thus 192. Particle
masses depend on the cosmology and range from mp = 9.3×
109 M⊙ for Ωm = 0.07 to mp = 8.2×1010 M⊙ for Ωm = 0.62.
The particle mass at our fiducial cosmology is mp = 3.6 ×
1010 M⊙.

The N-body simulations were carried out with the pub-
licly available TreePM code GADGET-2 (Springel 2005).
The initial conditions were generated using the Eisenstein &
Hu (1998) transfer function. We started the simulations at
z = 50 and saved snapshots in ∆z intervals corresponding to
integer multiples of the box size, such that we have a suitable
snapshot for each lens plane of the ray-tracing algorithm.
The Plummer-equivalent force softening length was set to
25 h−1

70 kpc comoving. We checked the accuracy of our N-
body simulations by comparing their matter power spectra
with the fitting formula of Smith et al. (2003). Additionally,
we also detected halos using a friend-of-friend halo finder
and compared their mass function to that of Jenkins et al.
(2001). All tests were done for a number of different cosmolo-
gies and redshifts to ensure that the simulations match our
expectations over the parameter and redshift range under
investigation here.

2.2 Ray-tracing

We used the multiple lens-plane algorithm (e.g. Blandford &
Narayan 1986; Schneider et al. 1992; Seitz et al. 1994; Jain
et al. 2000; Hilbert et al. 2009) to simulate the propagation
of light rays through the matter distribution provided by
the N-body simulations: for a given N-body simulation, we

Figure 1. Location of the 158 different cosmologies in the Ωm-
σ8 plane for which N-body simulations were computed. The red
diamond marks the fiducial cosmology at (ΩM, σ8) = (0.27, 0.78).

constructed the matter distribution along the line of sight
by tiling snapshots of increasing redshift. The matter dis-
tribution of each snapshot was projected onto a lens plane
located at the snapshot redshift.

Note that the boxes are just small enough for the cosmic
evolution during the light travel time through a box to be
negligible. This ensures that the matter distribution does
not change significantly in the volume that is represented
by a particular lens plane, and that the scale factor and the
comoving angular diameter distances to the structure pro-
jected onto this plane are essentially the same. If the latter
were not the case, this would lead to an erroneous conver-
sion of physical scales on the lens plane to angular scales on
the sky. Our allowed us to project a complete snapshot onto
one lens plane instead of creating several smaller redshift
slices as was done in Hilbert et al. (2009), which reduces the
complexity of the ray-tracing considerably.

Since the snapshots basically contain the same matter
distribution at slightly different stages of evolution, mea-
sures have to be taken to avoid the repetition of structures
along the line of sight. Making use of the periodic bound-
ary conditions of the simulation volume, we applied random
rotations, translations, and parity flips to the matter distri-
bution of each snapshot prior to the projection. For the ray-
tracing, we assumed that light rays are only deflected at the
lens planes and propagate freely in between. We compute
the Fourier transform of the deflection potential on each
plane from the projected mass density by solving the Poisson
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equation in Fourier space using FFT, again exploiting the
periodic boundary conditions. From this, the Fourier trans-
forms of the deflection angles and their derivatives can be
obtained using simple multiplications. Finally, these quan-
tities are transformed to real space using an inverse FFT.
More details on the formalism can be found, e.g., in Jain
et al. (2000). With this, a set of light rays (forming a grid
in the image plane) can be propagated from the observer
through the array of lens planes using a recursion formula
(see Hilbert et al. 2009). Similarly, the Jacobian matrix of
the lens mapping from the observer to each of the lens planes
can be obtained.

We then sampled the image plane uniformly with galax-
ies, the redshift of which was drawn from a distribution of
the form

p(z) ∝
„

z

z0

«α

exp

"
−

„
z

z0

«β
#

. (1)

The Jacobian matrices were interpolated from the grid onto
the galaxies (in the plane of the sky as well as in redshift) and
the reduced shear was computed. We simulated a CFHTLS-
Wide like survey for which we created five 6 × 6 sq. deg.
patches from every N-body simulation. The parameters of
the redshift distribution (1) were set to α = 0.836, β =
3.425, and z0 = 1.171, as determined for the CFHTLS-Wide
(Benjamin et al. 2007). We set the galaxy number-density
to ng = 25 arcmin−2 and the intrinsic ellipticity dispersion
to σε = 0.38. Because very few galaxies are present at high
redshifts, the redshift distribution was cut off at z = 3.0 to
save computing time.

2.3 Peak detection

2.3.1 Aperture mass in 2-d

The tidal gravitational field of matter along the line-of-
sight causes the shear field γ(θ) to be tangentially aligned
around projected mass-density peaks. We can use this tan-
gential alignment directly to detect weak-lensing peaks, in-
stead of searching for convergence peaks on maps of recon-
structed surface mass-density as it has been done sometimes
in weak-lensing cluster searches (e.g., Gavazzi & Soucail
2007; Miyazaki et al. 2007). We define the aperture mass
(Schneider 1996) at position θ0 to be the weighted integral

Map(θ0) =

Z

supQ

d2θ Q(ϑ)γt(θ; θ0) (2)

over the shear component tangential to the line θ0 − θ,
γt(θ; θ0). Here Q(ϑ) = Q(|θ|) is a radially symmetric, finite
and continuous weighting function with limϑ→∞ Q(ϑ) = 0.
For later convenience we also require Q to be normalised to
unit area. If Q(ϑ) follows the expected shear profile of a mass
peak, the aperture mass becomes a matched filter technique
for detecting such mass peaks. On data the shear field is
sampled by galaxies with ellipticities εi. Then Map can be
estimated by the sum over Ng galaxies in the aperture,

M̂ap =
1

ng

NgX

i=1

Q(ϑi)εit , (3)

where εit is the tangential ellipticity component of the i-th
galaxy, defined in analogy to γt above.

The SNR of the aperture mass can be computed di-
rectly from the data, making use of the fact 〈Map〉 ≡ 0.
Then the RMS dispersion is σMap =

p
〈Map〉2, which can

be estimated by

σ̂Map =
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, (4)

where we have made use of the fact that

〈εiεj〉 =
σ2

ε

2
δij , (5)

with σε being the intrinsic ellipticity dispersion. The esti-
mator for the SNR of the aperture mass is then finally

Ŝ(θ0) =

√
2

P
i Q(ϑi)εitpP

i Q2(ϑi)ε2
i

. (6)

2.3.2 Tomographic aperture mass

The aperture mass statistics locates convergence peaks only
in projection on the sky. Using redshift information on the
background galaxies, e.g., from photometric redshifts, one
can generalise the 2-dimensional aperture mass to a tomo-
graphic measure that is able to deproject structures along
the line-of-sight and locate peaks in redshift space (Hennawi
& Spergel 2005). The likelihood that a peak at a position
θ0 is at a redshift zd is given by

lnL(θ0, zd) =
1

σ2
ε

ˆPnz

i Z(zi; zd)Map(θ0)
˜2

Pnz

i Z2(zi; zd)
, (7)

where Z(zi; zd) is the redshift weight for a background
galaxy in the ith redshift bin,

Z(z; zd) =
DdDds

Ds
H(z − zd) , (8)

with the Heaviside step function H. A peak is then located
at the 3-d position (θ0, zd) that maximises the likelihood
L. For the purpose of this work 10 equally spaced redshift
steps zd = 0.1 . . . 1.0 were used. The background galaxies
were put into redshift bins with width ∆z = 0.01 assuming
perfect knowledge of their redshifts.

As in Dietrich et al. (2007) we used the weight function
proposed by Schirmer et al. (2007)

QNFW(x; xc) ∝ 1

1 + e6−150x + e−47+50x

tanh(x/xc)

x/xc
, (9)

where x = ϑ/ϑmax and xc is a free parameter, which was
fixed to the value of xc = 0.15 determined to be ideal for the
detection of galaxy clusters by Hetterscheidt et al. (2005).
QNFW follows the shear profile of an NFW halo with expo-
nential cut-offs as x → 0 or x → ∞.

The absolute scale ϑmax determines the halo radius or
mass to which the filter function is tuned. The filter scale
chosen for our simulations is 5.′6 on the sky, corresponding to
a radius of 2h−1

70 Mpc at a redshift of z = 0.3. At this redshift
the lensing efficiency of our survey is maximal and the chosen
radius is adjusted to cluster sizes easily detectable with weak
lensing while smoothing over smaller halos. This smoothing
also ensures that shot noise from unresolved structures in
the N-body simulations does not play a role.

Peaks were detected by connected-component labelling
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of pixels above a detection threshold. We used the 8 connec-
tivity in 2-d and the 26 connectivity in 3-d, i.e., we consider
all pixels that are connected via the sides, edges, or cor-
ners of a square or a cube as one structure. Additionally, for
tomographic peaks the condition was imposed that peaks
must be detected in at least three adjacent redshift bins.
This additional requirement is used to filter out detections
at very high or low redshifts whose true redshift is outside
the tomography cube. Such peaks would pile up in the lowest
and highest redshift bin and lead to high additional noise in
them. At the same time this filter criterion suppresses the
inclusion of peaks caused by increasing shot noise at high
redshifts caused by the sharply decreasing number density
of background galaxies. Such peaks occur typically in only
one or two redshift slices.

2.4 Analysis

For every cosmological model the peak function gives a p-
dimensional data vector ζ of observables. We will explore
several choices of observables below. The choice of cosmo-
logical parameters is denoted by π and the model prediction
is m(π). The posterior probability distribution is

p(π|ζ) =
p(ζ|π)

p(ζ)
p(π) , (10)

where p(π) is the prior probability distribution, p(ζ|π) is the
likelihood, and p(ζ) is the evidence. We used a flat prior with
cutoffs, i.e., p(π) = 1 if Ωm ∈ [0.1 : 0.5] and σ8 ∈ [0.4 : 1.1]
and p(π) = 0 otherwise. The evidence in our case simply is
a normalisation of the posterior obtained by integrating the
likelihood over the support of the prior.

Assuming that ζ has a Gaussian distribution, the like-
lihood is

p(ζ|π) =
1

(2π)d/2
p

detΣ(π)

× exp


−1

2
[ζ − m(π)]t Σ

−1(π) [ζ − m(π)]

ff
,

(11)

where Σ(π) is the covariance matrix of the d-dimensional
vector ζ. Since our parameter space is covered only by dis-
crete points we will compute ζ by fitting smooth functions
to our data vectors or by interpolating across our parameter
space. Details will be given in Sect. 3.

We obtained estimates Ĉ of the covariance matrices
for the shear tomography and the peak statistics, as well
as their cross-covariance, from the field-to-field variation
in the 175 ray-tracing simulations for the fiducial cosmol-
ogy. As indicated in Eq. (11), the covariance in principle
depends on cosmology. Since we do not have a sufficient
number of simulations for other cosmological parameters,
we set Σ(π) = Σ(π0). Although this is an approximation
commonly made, neglecting the cosmology dependence of Σ

can have a non-negligible impact on the shape of the poste-
rior likelihood, as has been investigated in Eifler et al. (2008)
for the case of cosmic shear. Furthermore, we note that the
assumption of a Gaussian likelihood is not necessarily justi-
fied (Hartlap et al. 2009; Schneider & Hartlap 2009). These
studies suggest that both approximations lead to an over-
estimation of the errors on the cosmological parameters, so
that our confidence regions are most likely very conservative.

A further issue to keep in mind when estimating a co-
variance matrix from the data or from simulations is that,
although the covariance Ĉ estimated from the data is an un-
biased estimator of the true covariance Σ, the inverse Ĉ

−1 is
not an unbiased estimator of Σ

−1. For n independent sim-
ulations an unbiased estimator of the inverse covariance is
(Hartlap et al. 2007)

dC−1 =
n − d − 2

n − 1
Ĉ
−1 , (12)

which is what we used when computing Eq. (11). However,
the estimated covariance matrix becomes singular if d >
n − 1, which means that the limited number of ray-tracing
simulations available to us constrains the number of bins
that can be used for the analysis.

3 RESULTS

In analogy to the mass function N(M, z|π), the peak func-
tion measures the abundance of peaks as a function of con-
vergence and redshift N(κ, z|π), where for single structures
along the line-of-sight the variation of the conversion from κ
to M with redshift is given by the kernel (8). Because we de-
tected peaks not in convergence maps but in aperture-mass
maps or cubes, the SNR of peaks was used as a proxy for
mass.

3.1 Constraints from aperture mass maps

As a first step we show that constraints on π = (Ωm, σ8)
t

can be obtained from the peak statistics in the absence of
redshift information. A similar study was recently presented
by Wang et al. (2009), who demonstrated that parameters of
the Dark Energy equation of state can be constrained from
high convergence regions. We detected peaks in aperture-
mass SNR maps as described in Sect. 2.4 with a detection
threshold of 3.25σ.

Binning the peaks by SNR is not an ideal way to use in-
formation about their projected mass since either high SNR
bins in cosmologies with low clustering remain empty, or
very massive peaks are beyond the SNR of the maximum
bin. Instead we used the cumulative SNR distribution of
peaks. The function S(Ωm, σ8) : R

2 → R
nbin gives the SNR

at which the cumulative distribution exceeds the fth per-
centile for nbin values of f ranging from fmin to fmax. Fig-
ure 2 illustrates how S is constructed.

We measured S(Ωm, σ8) for nbin = 5 logarithmically
spaced values from fmin = 0.50 to fmax = 0.98. At the
fiducial cosmology these percentiles corresponds to SNR val-
ues of 3.5σ and 5.7σ, respectively. Typically several hundred
peaks per 36 sq. deg. field were detected so that the 98%ile
could be reliably measured.

We used bilinear smoothing splines (Dierckx 1993) to
interpolate S(Ωm, σ8) on the grid covered by our N-body
simulations. In this section splines are a sufficient descrip-
tion of the variation of S over our parameter space because
we only seek to qualitatively demonstrate the ability of the
peak statistics to constrain cosmological parameters and to
illustrate some of its properties. We will use a more quanti-
tative approach in the following sections.

Figure 3 shows the confidence contours derived from
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Figure 2. Construction of the function S. The solid black line is
the cumulative SNR distribution of peaks detected in one of our
35 realizations of the fiducial cosmology. The horizontal dashed
lines are the logarithmically spaced percentiles from fmin = 0.5
to fmax = 0.98 at which the cumulative SNR distribution is
sampled. The corresponding SNR values denoted by the vertical
dashed lines are the values in our data vector.

this statistics in the Ωm-σ8 plane. They have a shape simi-
lar to that seen in constraints derived from cluster cosmol-
ogy (e.g., Henry et al. 2009) and cosmic shear (Fu et al.
2008, e.g.,) for a CFHTLS like 180 sq. deg. surey. In order to
achieve this, we scaled the covariance, which we computed
for the individual 36 sq. deg. fields back to the full survey.
The similarity of the constraints is of course no surprise since
the peak statistics measures the same density fluctuations
as clusters of galaxies and cosmic shear.

Although the spline interpolation is mostly illustrative,
we defined a figure of merit (FoM), in analogy to the FoM
of the Dark Energy Task Force (Albrecht et al. 2006), as
the inverse of the area inside the 95% confidence contour.
We used this FoM to characterize how the peak statistics
changes when parameters entering the function S are mod-
ified. Here in particular we examined the dependence of the
cosmological constrains on the minimum significance of a
detection.

The detection threshold employed in the production of
Fig. 3 is very low and a sizable fraction of the peaks detected
in this way are simply due to shape noise (Dietrich et al.
2007) and do not carry cosmological information. However,
at such a low detection threshold most peaks not caused
by noise fluctuations are also not due to a single massive
halo but caused by the alignment of LSS along the LOS.
We demonstrate that these low significance peaks indeed
carry cosmological information by comparing the FoM of
the statistics in Fig. 3 to the FoM resulting from the same
function S with a detection threshold of 4.5σ. While the
constraints in Fig. 3 correspond to a FoM of 40, the higher
detection threshold results in a FoM of only 20. We note
that the 95% confidence interval is not fully contained in
the support of our flat prior. For the low SNR detection,
the 95% confidence interval is cut off by the prior only at
the high Ωm/low σ8 end. The prior terminates the banana
shaped confidence region at both ends for the high SNR

Figure 3. Confidence contours of the aperture mass peak statis-
tics. Shown are the 1-, 2-, and 3σ confidence contours of the S

statistics. The white cross denotes the fiducial cosmology.

detection constraints. Consequently, the true figures of merit
for these statistics are smaller than presented here but more
so for the higher detection threshold, making the importance
of low SNR peaks even more evident. However, because we
used a very simple interpolation scheme, these numbers can
only be rough guidelines and we will present a more detailed
assessment of the S function in the next section.

We emphasize that, although there is no reason to be-
lieve that the true values of Ωm or σ8 are outside the support
of our prior, the prior is used only to avoid extrapolating
beyond the parameter range covered by the N-body simu-
lations. Since the aim of this study is to examine how well
the peak statistics can constrain cosmological parameters,
we did not regard the prior as information that should be
included in the calculation of the FoM.

3.2 Constraints from peak tomography

In this section we make use of the redshift information in
our shear catalogues. We employed the tomographic aper-
ture mass outlined in Sect. 2.3.2 to locate high convergence
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Figure 4. Confidence contours of the peak statistics. Green and
blue contours are 1- and 2σ contours for the M and S statistics,
respectively. Limited by black contour lines are the joint 1-, 2-,
and 3σ confidence intervals.

regions not only in projection on the sky but also along the
redshift axis. With 175 independent ray-tracing simulations
we could not compute the covariance of the full peak func-
tion N (S, z) for meaningful number of bins in SNR and red-
shift. Instead, we constructed two separate peak functions
from the tomographic data cubes.

The first function measures the abundance of peaks in
every redshift bin as a function of cosmology only. We de-
tected peaks as described in Sect. 2.3.2 with a minimum
detection threshold of σmin = 3.2 and assigned them to a
redshift bin based on the redshift zd that maximises the like-
lihood (7). With 10 redshift bins, the vector-valued function
M (Ωm, σ8) : R

2 → R
10 counts the number of peaks in each

redshift bin as a function of cosmological parameters. The
second function S uses the SNR information of the detected
peaks as defined in the previous section. We used the same
values for fmin, fmax, and nbin.

To interpolate M (Ωm, σ8) and S(Ωm, σ8) between
points covered by our N-body simulations, we determined
fitting functions. These are given in Appendix A and are
typically accurate to ≈ 10%. Figure 4 shows confidence con-

Table 1. Figures of Merit of different parameters of the S func-
tion.

fmin fmax nbin σmin FoM

0.50 0.98 5 3.2 48
0.50 0.98 5 4.0 7
0.08 0.98 10 3.2 48
0.08 0.50 5 3.2 34

tours in the Ωm-σ8 plane obtained using these fitting func-
tions individually and for the combination of both peak func-
tions, ζp = (M , S)t. As one would expect from cosmic shear
and the cluster mass function, there is a significant degen-
eracy between Ωm and σ8. The interesting result in Fig. 4
is that M and S contain complementary information such
that their degeneracies are partly broken. Although the ker-
nel (8) is very broad and the determination of a peak’s red-
shift consequently noisy (see also Hennawi & Spergel 2005)
the information on the growth of structure with redshift can
be statistically recovered with peak tomography. This then
provides information not contained in S, which is equivalent
to a projected mass function. It is important to emphasise
that we utilised the full cross-covariance between M and S

when we computed the joint confidence contours.
We now revisited the issue of how the various parame-

ters of the S function change the information content of the
peak statistics. In the previous section we showed that the
detection threshold is an important parameter and that the
number of projected low SNR peaks helps to constrain pa-
rameters. The same is true for the tomographic peak statis-
tics. The FoM of the S-function in Fig. 4 is 48. Increasing
the detection threshold to 4σ and keeping all other parame-
ters unchanged decreases the FoM to only 7. Like in the case
of the aperture-mass peak statistics, the confidence region is
terminated by the prior and the true difference between the
different detection thresholds is even larger than suggested
by the FoM.

We note that the FoM of the S function for peak cata-
logues generated from tomography cubes is not much higher
than the rough estimate of the FoM in Sect. 3.1 of the pro-
jected peak statistics. The 95% confidence interval in the
tomographic case is not fully contained in the parameter
space explored by our simulations, whereas, with the spline
approximation from the previous section, the low Ωm/high
σ8 end of the confidence contours is within our parameter
range. In any case, the substantial gain of the tomographic
peak statistics does not come from the deprojection of struc-
tures along the LOS but from localising peaks along the
redshift axis, i.e., from the combination of the S and M

statistics.
We also tested several choices of fmin and fmax and the

number of bins; Table 1 gives an overview of various settings.
Extending fmin to lower values adds almost no information,
even if the number of bins is increased to preserve the in-
formation in the high SNR bins. For example, decreasing
fmin = 0.08 and setting nbin = 10 does not improve the
FoM. The information content of the S function is slightly
higher with these settings, as is evidenced by a 3% decrease
of the area inside the 68% confidence interval. However, the
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95% confidence contours within the support of our prior are
not tightened.

Despite of this, most of the information is contained in
the low SNR regime, as can be seen from the last two rows of
Table 1. This information, however, can be recovered with
only one or two bins: Figure 2 shows that the low SNR
end of the cumulative distribution function has an almost
constant slope. This slope is completely determined by the
SNR sampled at fmin and the point (σmin, 0), and explains
why adding more points at the low end does not increase
the FoM. Further information comes only from the shape of
the curve in the intermediate SNR range. At the high SNR
end the cumulative distribution again has a constant slope
and is fully characterized by the last two sample points.

3.3 Combination with cosmic shear

Up to now cosmological information has generally been ex-
tracted from lensing surveys via the cosmic-shear two-point
correlation functions (2PCF) (e.g., Schneider 2006),

ξ̂±(θ) = 〈ǫt(θ)ǫt(θ + ϑ)〉 ± 〈ǫ×(θ)ǫ×(θ + ϑ)〉 , (13)

which are related to the convergence power spectrum Pκ via
(e.g., Kaiser 1992)

ξ+(θ) =

Z ∞

0

dl

2π
J0(lθ)Pκ(l) (14)

ξ−(θ) =

Z ∞

0

dl

2π
J4(lθ)Pκ(l) (15)

Here ǫ× is the cross-component of the ellipticity and the
Jn(x) are the n-th Bessel functions of the first kind. Surveys
using this method have led to increasingly tight constraints
in the Ωm-σ8 plane (e.g., Jarvis et al. 2006; Semboloni et al.
2006; Hoekstra et al. 2006; Hetterscheidt et al. 2007; Ben-
jamin et al. 2007; Fu et al. 2008). However, the cosmic shear
2PCF describes the underlying density fluctuations only
completely if they are purely Gaussian. Cosmic shear can
access information about the non-Gaussianity of the matter
distribution only through higher-order correlation functions
(see e.g., Takada & Jain 2003, for constraints using the
three-point correlation function). The peak statistics on the
other hand is most sensitive to extreme overdensities along
the LOS, i.e., to those structures that contain most informa-
tion about non-Gaussianity. It is thus reasonable to assume
that both statistics are not completely degenerate and that
combining the two does not simply amount to using the
same information twice. This expectation is supported by a
number of studies looking at the constraints one can place
on the Dark Energy equation of state by combining the clus-
ter mass function with other cosmological probes, including
weak gravitational lensing (Fang & Haiman 2007; Takada
& Bridle 2007; Cunha et al. 2009). Takada & Bridle (2007)
in particular examined the full cross-covariance between the
cosmic shear 2PCF and cluster counts of shear-selected ha-
los and found that the combination of both methods leads
to tighter constraints than either method alone can provide.

Cosmic shear, like the peak statistics, can greatly ben-
efit from the inclusion of redshift information by following
the evolution of structure with time (Hu 1999; Bacon et al.
2005). This is done by dividing the galaxy sample into red-
shift bins and computing their auto- and cross-correlation

Figure 5. Comparison of the cosmic-shear tomography confi-
dence intervals (orange/red) with the full peak information mak-
ing use of the combined M and S statistics (blue). Shown in
green with black outlines is the combination of cosmic-shear and
peak statistics. Again, 1- and 2σ intervals are shown in all cases.

functions,

ξ̂
(ij)
± (θ) = 〈ǫ(i)t (θ)ǫ

(j)
t (θ + ϑ)〉 ± 〈ǫ(i)× (θ)ǫ

(j)
× (θ + ϑ)〉 . (16)

We used this tomographic 2PCF to compare and combine
the constraints obtained from cosmic shear to those from
the peak statistics in the same survey.

We split the galaxy catalogue into two redshift bins, sep-
arated at redshift z = 0.6 and estimated the tomographic
cosmic shear 2PCF ξ

(ij)
± in our simulation of the fiducial

cosmology for 60 logarithmically spaced intervals from 30′′

to 6◦. From this we constructed data vectors by averaging
the values of 6 consecutive bins into one entry in the data
vector, so that we have a 60-dimensional cosmic shear data
vector ζcs = (ξ̂

(11)
+ , ξ̂

(11)
−

, ξ̂
(12)
+ , ξ̂

(12)
−

, ξ̂
(22)
+ , ξ̂

(22)
−

)t. Using
these vectors we computed the covariance of our cosmic
shear measurements at the fiducial cosmology. The choice
of redshift and spatial bins was motivated by the limited
number of independent realisations of our fiducial cosmol-
ogy, which limits the dimensionality of the data vector.

We predicted the cosmic shear signal on a grid in our
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Table 2. Cosmological constraints using different statistics.

Type Ωm σ8 FoM

Cosmic shear 0.291+0.117
−0.091 0.756+0.155

−0.160 71

Peak statistics 0.273+0.063
−0.053 0.776+0.107

−0.096 123

Combined 0.275+0.057
−0.051 0.774+0.095

−0.087 173

parameter space using the transfer function of Eisenstein &
Hu (1998) and the non-linear power spectrum of Peacock &
Dodds (1996). Figure 5 shows a comparison of constraints
obtained using the cosmic shear 2PCF and the he M and
S peak statistics. The confidence region of the full peak
statistics ζp is well aligned with the confidence region of
cosmic shear tomography. However, as Table 2 shows, the

combined statistics ζ = (ζp
t, ξ̂cs

t
)t still gives significantly

improved constraints; it has a FoM that is about 40% larger
than that of cosmic shear tomography alone.

3.4 Stability of the constraints

As mentioned in Sect. 2.4, the estimated inverse covariance
becomes singular if d > n−1, and the length of the data vec-
tors is consequentially limited by the number of ray-tracing
simulations at the fiducial cosmology. The combined statis-
tics vector ζ is 75-dimensional, which is comparable to the
number of simulations n = 175. Even though we can obtain
an unbiased estimate of the inverse covariance, this estimate
is potentially very noisy.

We estimate the effect of noise due to the finite num-
ber simulations on the constraints derived in the previous
section by we creating 1000 bootstrap-like samples from our
set of simulations for the fiducial cosmology. Each sample is
constructed by randomly drawing n = 175 ray-tracing re-
alisations with replacement. The covariance matrix is esti-
mated for each of the samples. In doing so we kept track how
many independent simulations n entered the estimation of
the inverse covariance matrix in Eq. (12). At the same time
we ensured that we had enough independent simulations to
estimate C

−1. Finally, we computed the corresponding con-
fidence regions as described before. While not statistically
rigorous, this scheme nevertheless illustrates that the confi-
dence intervals are stable with respect to the set of simula-
tions used. Figure 6 shows the variation of the area inside
this confidence interval and illustrates that the dependence
on the simulations entering the computation of the covari-
ance matrix is small compared to the size of the confidence
region.

We have also compared the confidence regions obtained
using the fitting functions of Appendix A for the function
M with the constraints computed using the interpolation
method described in Section 3.1. While interpolating be-
tween simulations for different cosmologies is noisy, the re-
sults using the fitting function might be affected by accuracy
and choice of the fitting functions. However, we do not find
significant differences between the two methods.

Figure 6. Variation of the constraints when bootstrapping the
covariance matrix. The white contour line shows the 95% con-
fidence interval of the combined peak and cosmic shear statis-
tics from Fig. 5. Shaded areas mark the regions inside the boot-
strapped 95% confidence interval for x percent of the resamplings,
where x is 100 (black), 99 (red), cyan(95), and blue (68).

4 SUMMARY AND DISCUSSION

We showed in this paper that the number and properties
of peaks found in a weak lensing survey can constrain cos-
mological parameters. This allowed us to turn an important
limitation of weak-lensing cluster searches, namely their low
purity and completeness, into a source of cosmological infor-
mation. We note that a similar idea was recently presented
by Wang et al. (2009). The most important differences be-
tween their and our works are our purely numeric ansatz, the
inclusion of tomographic information, and the combination
with cosmic shear tomography.

In the pilot study presented here we demonstrated that
the peak statistics is able to provide constraints on Ωm and
σ8, which are competitive with those obtained from cosmic
shear tomography on the same data set. By comparing the
constraints obtained from peaks found in maps of aperture
mass and tomography cubes we concluded that the tomo-
graphic redshift leads to much tighter constraints than work-
ing with a 2-dimensional Map- or convergence map alone.
Even though the lensing efficiency varies only slowly with
lens redshift and the best estimate of a single peak’s red-
shift has a large scatter around the true redshift (Hennawi &
Spergel 2005), the peak redshift distribution contains valu-
able information.

By looking at the SNR distribution function we showed
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that the SNR of peaks, acting as a proxy for mass, also pro-
vides information beyond the simple counting of peaks above
a detection or mass threshold as it was done by Takada &
Bridle (2007) and Fang & Haiman (2007). We showed that
peaks with a low SNR, most of which cannot be associated
with a single massive halo, contribute significantly to the
information content of the peak statistics.

Finally, we investigated how the peak statistics com-
pares with the standard cosmic-shear tomography method
and whether a combination of both statistics is useful. We
found that the peak statistics gives constraints on Ωm and
σ8 that are competitive with those expected from a cosmic-
shear study on the same survey fields. Taking at face value,
our FoM suggests that the peak statistics is indeed the su-
perior method. The comparison, however, is not entirely fair
because we used only two redshift bins for the 2PCF tomog-
raphy while the peak statistics made use of almost perfect
redshift information, when we discretized the exact redshifts
of the background galaxies into bins of widths ∆z = 0.01. On
the other hand, Hennawi & Spergel (2005) found that even
with very few redshift bins, the tomographic peak finder
is able to locate peaks along the z-axis reasonably well and
significantly outperforms a simple Map peak finder. We thus
conclude that the peak statistics gives constraints that are at
least comparable to those obtainable from more traditional
weak lensing methods.

We combined the peak statistics with the cosmic-shear
2PCF tomography, including the cross-covariance of both
statistics measured at our fiducial cosmology. Although both
methods have a very similar degeneracy, their combina-
tion improves our FoM by about 40%. We surmised that
this is due to the inclusion of information about the non-
Gaussianity of the matter density field in the peak statis-
tics, which is not contained in the 2PCF. This result is not
unexpected. Takada & Bridle (2007) already found that the
combination of cluster counts and shear tomography, includ-
ing the full covariance, improves cosmological constraints.
The new information we add here is that the gain in in-
formation continues to be present when cluster counts are
replaced with peak counts. The peak statistics, not discrim-
inating between massive halos and chance projections, acts
as a “very high-order” cosmic shear method.

Eventually, the much more ambitious question one
wants to answer is: What is the ideal way to extract (lens-
ing) information from present and future cosmological sur-
veys? We made no attempt to tackle this general problem
but showed that a specific higher-order statistics, the peak
statistics we introduced in this paper, provides information
that can be combined with existing two-point statistics to
improve constraints.

A great advantage of our numeric approach to the peak
statistics is that observational effects can be included by the
simulator to an almost arbitrary degree of precision, given of
course these are known and understood. An obvious example
would be the inclusion of the holes and gaps in survey fields
caused in real data by bright stars, diffraction spikes, ghost
images, satellite tracks, and so on.

The disadvantage of this numeric method is its enor-
mous computational cost. The generation of initial condi-
tions, the N-body simulation, ray-tracing, and the tomo-
graphic peak finder need about 150 CPUh per simulation on
a cluster of Itanium Montecito 1.6 Ghz CPUs. Most of this

time is used for the N-body simulation. Since the aperture
mass smoothes the convergence field with a kernel of typi-
cally 2Mpc radius high spatial resolution is not required. In
this case the computing time can be significantly reduced by
replacing the TreePM code with a simple particle-mesh al-
gorithm. But even then, and in the case of massive paralleli-
sation, the wallclock time required to simulate one point in
parameter space would prohibit running a standard Markov
Chain Monte Carlo method. Population Monte Carlo (PMC,
Wraith et al. 2009) allows to investigate sample points in-
dependently and thus facilitates the parallelisation beyond
the limits of effective interprocess communications of a sin-
gle simulation.

Another approach to reduce the computation time of
Monte Carlo simulations with N-body simulations is the
framework proposed by Habib et al. (2007). They developed
a mechanism by which the parameter space of interest is
optimally sampled with relatively few high-precision simu-
lations. Predictions for untried positions are made from em-
ulations rather than full simulations. An important feature
of this method is that the error bounds of the emulations
are constrained and that the uncertainties of the emulator
output are taken into account in the parameter estimation.
Either method, or the combination of PMC with emulators
with controlled error, bounds should make the application of
the peak statistics to current and future surveys feasible with
current high-performance computing hardware. Finally, we
point out that the growth of computing power expected from
Moore’s Law is faster than the growth in etendue of envi-
sioned survey facilities.
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APPENDIX A: FITTING FUNCTIONS FOR

TOMOGRAPHIC PEAKS

We find that each component of M (Ωm, σ8) is well described
by the function

Mz(Ωm, σ8) =Ag(z)
ˆ
1 + (1 + z)3

˜
Ωβ

mσα
8 P (z,Ωm, σ8)

+ p3(Ωm, σ8)

(A1)

where g(z) is the distance ratio Dds/Ds averaged over the
source redshift distribution (Schneider et al. 1998). The
functions P and p3 are polynomials, where

p1 = p10 + p11∆Ωm + p12∆σ8

p2 = p20 + p21∆Ωm + p22∆σ8

p3 = p30 + p31∆Ωm + p32∆σ8

P = 1 + z(p1 + zp2) ,

(A2)

with ∆Ωm = Ωm − Ωm0 , ∆σ8 = σ8 − σ80 . The constant A,
the polynomial coefficients pmn, and the exponents α and
β are the free parameters of the fitting function, which are
fitted simultaneously for all redshift bins and cosmological
parameters. The values of the fit parameters depend on the
choice of the signal-to-noise-cut, the ellipticity dispersion,
the redshift distribution of the galaxies, the filter function
and radius and the galaxy number density. Quoting the best-
fit values for our specific choices of these parameters would
therefore be of very limited use.

The SNR probability distribution p(S; Ωm, σ8) is well
described by a log-normal distribution for x = log(S2/10)

p(x; Ωm, σ8) =
1√

2πxSσ(Ωm, σ8)
×

exp


− [log(x) − µ(Ωm, σ8)]

2

2σ2(Ωm, σ8)

ff
,

(A3)

where the cosmological dependence of µ and σ are described
by (double) power laws

µ(Ωm, σ8) =A1Ω
a1
m σb1

8 + Ωc1
m σd1

8

σ(Ωm, σ8) =A2Ω
a2
m σb2

8 .
(A4)

The cosmology dependent number count of peaks is given
by

N(Ωm, σ8) = A3Ω
a3
m σb3

8 + Ωc3
m σd3

8 . (A5)
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Note that we do not fit the probability density function (A3)
to the data, but the cumulative distribution function which
we compute numerically.
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