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ABSTRACT

The available probes of the large scale structure in the Universe have distinct proper-
ties: galaxies are a high resolution but biased tracer of mass, while weak lensing avoids
such biases but, due to low signal-to-noise ratio, has poor resolution. We investigate
reconstructing the projected density field using the complementarity of weak lensing
and galaxy positions. We propose a maximum-probability reconstruction of the 2D
lensing convergence with a likelihood term for shear data and a prior on the Fourier
phases constructed from the galaxy positions. By considering only the phases of the
galaxy field, we evade the unknown value of the bias and allow it to be calibrated by
lensing on a mode-by-mode basis. By applying this method to a realistic simulated
galaxy shear catalogue, we find that a weak prior on phases provides a good quality
reconstruction down to scales beyond l = 1000, far into the noise domain of the lensing
signal alone.

Key words: cosmology – large-scale structure of the Universe – gravitational lensing:
weak – methods: data analysis.

1 INTRODUCTION

Weak lensing is a promising cosmological probe, allowing the
mass distribution in the Universe to be investigated without
assumptions about the dynamics of the baryonic component.

In the pioneering work of Kaiser & Squires (1993) it has
been shown that weak lensing can be used to map the distri-
bution of dark matter in galaxy clusters. Following this, sev-
eral methods for making so-called mass maps have been de-
veloped, with much attention given to reconstruction meth-
ods such as maximum-likelihood approaches (Bartelmann
et al. 1996). However, there is a substantial level of noise
in the resulting maps, due to the effect of galaxies having
intrinsic ellipticities in addition to the sought-after gravita-
tional shear. Therefore it was immediately realised that the
reconstruction methods require smoothing or regularisation
(Squires & Kaiser 1996). A significant proposal in this re-
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gard is the Maximum-Entropy method known from image
reconstruction studies (Bridle et al. 1998; Seitz et al. 1998;
Marshall et al. 2002).

These methods work well when applied to clusters, but
the lensing ellipticity measurements of galaxies are still suf-
ficiently noisy that reconstruction of the low contrast large-
scale structure is not possible with significant signal-to-
noise. In this study we develop a methodology attempting
to make maps of the projected density with higher signal-
to-noise, by utilising a maximum-probability reconstruction
with a physically motivated prior probability term: we will
examine the usefulness of using Fourier phase information
from the distribution of galaxies in the lensing map area.
This is related to other recent methods that use galaxy po-
sitions to improve density reconstruction (Simon 2012) or
combine weak lensing and galaxy positions to measure bias
(Amara et al. 2012); in our case, we do not need to assume
an amplitude for the bias, or that it is linear or deterministic.

The paper is organised as follows. In Section 2 we review
the relevant theoretical background, including weak grav-
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2 R. Szepietowski et al.

itational lensing quantities and the Fourier description of
fields. We also emphasise the importance of Fourier phases
in mapping cosmological fields. In Section 3 we introduce the
maximum-probability method. We define the likelihood and
the prior term for our reconstruction method and describe
the phase prior in detail. Section 4 describes the simulated
dataset used in the analysis. The practical implementation
of our method is described in Section 5. Results of apply-
ing the reconstruction method are presented in Section 6.
Finally, we discuss the implications of our work in Section
7.

2 THEORY

2.1 Lensing quantities

Here we briefly discuss the necessary lensing theory; full de-
tails can be found in e.g. Bartelmann & Schneider (2001)
and Munshi et al. (2008).

The flat perturbed Friedman-Robertson-Walker metric
of the standard cosmological model is

ds2 = (1 + 2Φ/c2)dt2 − a2(t)(1− 2Φ/c2)
[

dr2 + r2dΩ2
]

, (1)

where Φ is the usual Newtonian gravitational potential and
a is the scale factor. The potential is related to the matter
density field by Poisson’s equation

∇2
comΦ = 4πG ¯̺δa2 =

3

2
H2

0Ωm
δ

a
, (2)

where δ = ̺/ ¯̺− 1 describes the perturbation around the
mean density of matter in the Universe.

In this spacetime a lensing potential can be defined as

φ(θ, r) ≡ 2

c2

∫ r

0

dr′
r − r′

rr′
Φ(θ, r′), (3)

where r is the comoving distance of the source and the inte-
gration is along the line of sight. This can be understood as a
2-dimensional projection of the gravitational potential. The
way in which an image of a source is distorted when passing
through a gravitational field depends on a combination of
the second order derivatives of the lensing potential

κ =
1

2
(∂2

1 + ∂2
2)φ, (4)

γ1 =
1

2
(∂2

1 − ∂2
2)φ, (5)

γ2 = ∂1∂2φ, (6)

where κ is called the convergence and γ1 and γ2 are the two
components of the shear γ. These quantities are found in
the Jacobian matrix

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

, (7)

which maps the source plane coordinates βi to the image
plane coordinates θj

Aij =
∂βi

∂θj
. (8)

The convergence κ describes the projection of the overden-
sity field on the sky

κeff(θ, r) =
3H2

0Ωm

2c2

∫ r

0

dr′
r′(r − r′)

r

δ(θ, r′)

a(r′)
, (9)

and this projected density is the quantity which we seek to
reconstruct as a map.

2.2 Fourier description of fields

In our reconstruction method, we will use a prior term which
involves the phase of lensing fields, so here we define the
required quantities for this term. A real space field such as
κ can be expanded in a Fourier superposition of plane waves:

κ(θ) =
∑

κ̃(l) exp(il · θ). (10)

The Fourier transform κ̃ of such a field is complex and is
described by an amplitude |κ̃(l)| and phase αl where

κ̃(l) = |κ̃(l)| exp(iαl). (11)

A Gaussian random field will have phases distributed inde-
pendently and uniformly on the interval [−π, π). The sta-
tistical properties of the field are then fully specified by its
power spectrum P (l) = 〈|κ̃(l)|2〉l.

However, the phase information contained in the κ field
is interesting for two reasons:

• Morphology : in cases where one is interested in a
specific realisation of a density field, the phases describe
features of its spatial pattern (Chiang 2001). For instance,
one might be examining a region of the Universe where one
wants to know the spatial distribution of matter, to under-
stand the relationship between density and astrophysical
properties (e.g. star-formation).

• Non-gaussianity : due to primordial physics (e.g. Ko-
matsu et al. 2009) and non-linear evolution on scales probed
by weak lensing, the κ field will have non-zero higher or-
der statistics beyond the power spectrum. This higher order
information is encoded in a combination of phase and am-
plitude of the Fourier transformed field. If we can obtain
a full estimate of phase and amplitude, we will be able to
extract information about the growth of structure and the
early Universe (Watts & Coles 2003; Chiang et al. 2004).

3 METHOD

3.1 Maximum-Probability reconstruction

Our reconstruction method seeks to find a hypothesis field
which has the maximum probability of accounting for the
observed data. We suppose that we have a data vector d,
which contains estimates of shear from observed galaxy el-
lipticities. We parameterize the hypothesis field by the val-
ues p of projected density in a grid of pixels. The best fitting
set of parameters is then found by maximising the posterior
probability P (p|d,M) according to Bayes’ theorem

P (p|d,M) =
L(d|p,M)P (p|M)

P (d|M)
∝ L(d|p,M)P (p|M) (12)

where L(d|p,M) is the likelihood and P (p|M) is the prior
probability. The evidence P (d|M) is useful to compare var-
ious models M , whereas for a particular model M we can
simply deal with the proportional term on the right hand
side. If we have no knowledge of how the parameters of the
model should be distributed, we may assume that all values
are equaly likely a priori i.e. the prior distribution is flat.
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Density mapping with weak lensing and phase information 3

Then P (p|d,M) ∝ L(d|p,M) and the posterior distribution
is found by maximising the likelihood. This is the basis of
maximum-likelihood methods.

However, the maximum-likelihood method (Bartelmann
et al. 1996) will typically overfit the data by fitting the
noise. Due to contamination of the signal by galaxy elliptic-
ity noise, the reconstruction methods require smoothing or
regularisation (Squires & Kaiser 1996). We can consider two
classes of prior which try to achieve this: informative and un-

informative priors, differing in the assumptions which they
make about the signal. If the purpose of introducing extra
information is to regularise rather than inform an inference
we can speak of a weakly informative prior.

Over the past two decades different forms of regu-
larisation have been considered. An important example is
the Maximum-Entropy (MaxEnt) regularisation known from
image reconstruction (Seitz et al. 1998; Bridle et al. 1998;
Marshall et al. 2002) which, while being an uninformative
prior, benefitted from inferring information about the corre-
lations in the data (Marshall et al. 2002). In addition, meth-
ods have been studied with informative priors; these make
some assumptions about the nature of the signal, e.g. Wiener
filtering (Hu & Keeton 2002; Simon et al. 2009, 2012). Here
we will consider a maximum probability approach with a
weakly informative prior.

3.2 Likelihood

We would like to find a best fit hypothesized model for the
convergence, κ, given a set of shear observations γd. In the
flat sky approximation we can relate the convergence and
shear fields most easily in Fourier space (Kaiser & Squires
1993):

γ̃1(l) =
l21 − l22
l21 + l22

κ̃(l), (13)

γ̃2(l) =
2l1l2
l21 + l22

κ̃(l), (14)

As the field of observations will be limited, a simple ap-
plication of these transformations introduces edge effects,
which we will mitigate by making reconstructions over larger
patches than the data (see Section 3.4).

The data vector γd consists of estimates of the shear
in each pixel of a 2D grid. These are obtained by averaging
over galaxy ellipticities in each pixel, so that the error on
the mean shear in a pixel is

σγ ≈ σε/
√
n (15)

where σε is the intrinsic scatter of shear estimators for galax-
ies, and n the mean number of galaxies in a pixel. This error
is approximately Gaussian by the central limit theorem.

If our hypothesised convergence field has corresponding
shear pixel values γκ

i , and the data shear pixel values are γd
i ,

then the likelihood for our hypothesizedreconstruction is:

L(γd|κ) ∝
∏

i,j

exp

(

−
(γκ

i − γd
i )

T
C

−1
ij (γκ

j − γd
j )

2

)

(16)

where C
−1 is the noise covariance matrix. Assuming the

noise in each pixel is uncorrelated makes the covariance ma-
trix diagonal and simplifies the likelihood to

L(γd|κ) ∝
∏

i

exp

(

− (γκ
i − γd

i )
2

2σ2
γ

)

= exp

(

−χ2
γ

2

)

. (17)

This assumption is trivially true for shape noise, which dom-
inates on all scales considered.

We turn now to consider the prior term for our
maximum-probability reconstruction.

3.3 Phase prior

A prior term that accounts for the claim that galaxies trace
mass, even if very poorly, can be achieved by constructing a
prediction of the lensing convergence based on galaxy count
overdensities

δg(θ, z) =
nz(θ)

n̄z

− 1, (18)

where n̄z is the mean number density of galaxies at red-
shift z. We could suppose that the overall matter overdensity
δ ≃ b−1δg, where b is the galaxy bias. Then we can project
δ according to Equation 9 to find the count-estimated con-
vergence κg. It would then be possible to require that the
hypothesized final convergence field is close to this κg, within
some tolerance.

However, there is a problem with this approach: the
bias b is unknown, and the claim of linear bias introduces
another assumption into the reconstruction.

An easy way of avoiding this problem is to consider
only the information about the phases of the Fourier modes
of κg, neglecting their amplitudes. Figure 1 shows the re-
lation between the phases of the true convergence κ and
count convergence κg found in DES mock catalogue v4.02
(see Section 4.1).

As expected for a close-to-Gaussian field, the his-
tograms of phases for both κ and κg fields are close to uni-
form in the range [−π, π). However, the overlaid histogram
of the phase difference ∆α = ακ − αgal between the true κ
and κg is visibly spiked around ∆α = 0, indicating a strong
correlation between the phases of the two fields. We now
discuss how this phase difference is calculated in detail.

3.3.1 Phase difference distribution

As the phases are distributed on the interval [−π, π) their
differences will have values on the interval (−2π, 2π). How-
ever, since the phases are a cyclic quantity, absolute phase
difference |∆α| > π will correspond to a phase difference
smaller than π. This is easily accounted for: if ∆α is less
than −π, we add 2π to ∆α; if ∆α is greater than or equal
to π then we subtract 2π from ∆α.

We can construct the correlation matrix for the phase
difference between true convergence phase and galaxy-count
derived convergence phase. In our simulations (Section 4.1),
this is constructed from 36 different 2◦ × 2◦ areas including
κ and κg information, as for each area only one galaxy dis-
tribution realisation is available. By the ergodic principle,
this should give an estimate of how much the phases usually
differ between the density and galaxy fields in an area. We
find that the correlation matrix constructed for 2′×2′ pixels
is strongly diagonal with the median absolute value of the
correlation coefficient ≃ 0.06.
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4 R. Szepietowski et al.

Figure 1. Distribution of convergence Fourier phases and their
difference. Histogram of the phases α of the true convergence field
κ (solid line) and those obtained from the galaxy distribution κg

(dotted line). The distributions are close to uniform, as expected
for fields which have a distribution close to that of a Gaussian ran-
dom field. Overlaid (peaked curves), the histogram of the phase
difference ∆α between the true convergence κ and the approxi-
mation κg (solid line). The distribution is well approximated by
a wrapped Cauchy distribution (dashed line). We see a strong

correlation between the phases of the two fields.

The histogram of ∆α (Figure 1) is well fitted by a
wrapped Cauchy probability distribution function:

Pprior(κ|αgal) ∝
∏

i

1− ρ2

1 + ρ2 − 2ρ cos(∆αi)
. (19)

We note that the distribution is symmetric around zero. The
parameter describing the width of the distribution is ρ =
e−σα , where σα is the half-width of an unwrapped Cauchy
distribution. For small values, σα can be estimated using the
median absolute deviation

σα ≈ 1.1 ·MAD∆α. (20)

We provide further details on this distribution in Ap-
pendix A. However, we want to use the phase information
as a weakly informative prior, so we are free to relax this
width; we will allow more tolerance in phase difference be-
tween our reconstructed κ and the κg field by choosing
σα = 2.2 · MAD∆α. Using σα = 1.1 · MAD∆α would take
us in the direction of a joint reconstruction of the density
field from shear and galaxy position data, which is also of
interest; some of our runs in Section 4.2 explore this possi-
bility.

It is to be expected that σα will be a function of l, with
the phase differences between galaxies and dark matter for
large scale modes being more constrained than for small
scale ones. We indeed find this to be the case in our simula-
tions, as shown in Figure 2. The phase difference distribution
for each l also follows a wrapped Cauchy distribution. This

Figure 2. Median absolute deviation (MAD) of the phase differ-
ence ∆α between the true convergence κ and the approximation
obtained from the galaxy distribution κg as a function of l. The
solid line shows the mean MAD(∆α) of the phase difference ob-
tained in shells of radius l from the origin with error bars showing
the standard deviation, across the 36 simulated fields.

distribution is naturally generated when the difference be-
tween κ and κg comes from a white noise contribution, that
may be linked to the stochasticity of the bias relation (Dekel
& Lahav 1999; Manera & Gaztañaga 2011). Hence, the low
l modes have smaller phase differences, as this stochastic
noise offset is smaller as a proportion of the signal on these
scales.

3.4 Practical implementation

We are now ready to discuss our approach to finding a recon-
structed convergence field. Rather than estimating the pos-
terior distribution of our convergence hypotheses, we will
seek a maximum a posteriori (MAP) solution. The recon-
struction is performed by seeking a κ̃trial that maximises
the posterior probability. The posterior pdf will be gener-
ally strongly peaked so it is convenient to work with its
logarithm

− lnP (κ̃|γd, αgal) ∝ − lnL− lnP prior
α ,

which varies more slowly with the change in κ̃.
As the shape of the posterior pdf is generally unknown,

we use a simple heuristic optimiser. We use the idea of Sim-
ulated Annealing (Kirkpatrick et al. 1983), but replace the
usual Metropolis-Hastings sampler (Metropolis et al. 1953;
Hastings 1970) with a Multi Try Metropolis (Liu et al. 2000)
one. In addition to a cooling schedule for the acceptance
rate, we have added a similar schedule to decrease the step
size in the sampling algorithm (Elson et al. 2007).

Operations on the fields, such as calculating the shears
from the convergence, are performed in Fourier space, hence
edge effects such as periodic boundaries of the reconstruction

c© 2012 RAS, MNRAS 000, 1–1



Density mapping with weak lensing and phase information 5

will be present. This would mean that the largest scales
would not be recovered accurately. This is partially solved
by introducing a larger reconstruction grid as suggested in
Bridle et al. (1998) and here we use a grid 4 times bigger
than the reconstruction area.

To aid the optimisation process we choose a starting
position for our hypothesis which is expected to be close to
the MAP solution. The initial guess for the reconstruction,
κ̃initial, is a field fully consistent with the prior; that is, we
choose phases from the galaxy convergence map. We also
apply a power spectrum filter to the κ̃g field

κ̃initial(l) = κ̃g(l)

√

P(l)

Pg(l)
, (21)

which gives the κg field the required amplitude of power
spectrum and suppresses the high-l noise. As this is only a
starting guess, any P(l) with a very approximately correct
shape and amplitude should suffice. Here, we choose the true
average κ power spectrum from simulations. By choosing
this starting point, the optimizer evolves the reconstruction
from the prior to the posterior under the influence of lensing.

However, to check for possible local maxima in the pos-
terior, we also try running the code from a noisy position
such as κg without applying any filters.

4 APPLICATION TO SIMULATED DATA

4.1 Simulated galaxy catalogue

For this study we have used the mock galaxy catalogues
created for the Dark Energy Survey based on the algorithm
Adding Density Determined GAlaxies to Lightcone Simu-
lations (ADDGALS; Wechsler et al 2013, in preparation;
Busha et al 2013, in preparation). This algorithm attaches
synthetic galaxies, including multiband photometry, to dark
matter particles in a lightcone output from a dark matter N-
body simulation and is designed to match the luminosities,
colors, and clustering properties of galaxies. The catalogue
used here was based on a single “Carmen” simulation run
as part of the LasDamas of simulations (McBride et al, in
preparation)1. This simulation modeled a flat ΛCDM uni-
verse with Ωm = 0.25 and σ8 = 0.8 in a 1 Gpc/h box with
11203 particles. A 220 sq deg light cone extending out to
z = 1.33 was created by pasting together 40 snapshot out-
puts.

The galaxy distribution for this mock catalogue was cre-
ated by first using an input luminosity function to generate
a list of galaxies, and then adding the galaxies to the dark
matter simulation using an empirically measured relation-
ship between a galaxy’s magnitude, redshift, and local dark
matter density, P (δdm|Mr , z) – the probability that a galaxy
with magnitude Mr and redshift z resides in a region with
local density δdm. This relation was tuned using a high res-
olution simulation combined with the SubHalo Abundance
Matching technique that has been shown to reproduce the
observed galaxy 2-point function to high accuracy (Kravtsov
et al. 2004; Conroy et al. 2006; Reddick et al. 2012).

1 Further details regarding the simulations can be found at
http://lss.phy.vanderbilt.edu/lasdamas/simulations.html

Table 1. List of the reconstructions carried out, with different
combinations of priors, phase distribution parameters and initial
reconstruction hypothesis.

Posterior Phases tolerance κinitial

L(γd|κ) − Filt.

L(γd|κ)P (κ|αgal) σα = 2.2 ·MAD∆α Filt.

L(γd|κ)P (κ|αgal) σα = 1.1 ·MAD∆α Noisy

L(γd|κ)P (κ|αgal) σα = 2.2 ·MAD∆α Noisy

L(γd|κ)P (κ|αgal) σα = 3.3 ·MAD∆α Noisy

For the galaxy assignment algorithm, we choose a lu-
minosity function that is similar to the SDSS luminosity
function as measured in Blanton et al. (2003), but evolves
in such a way as to reproduce the higher redshift observa-
tions (e.g., SDSS-Stripe 82, AGES, GAMA, NDWFS and
DEEP2). In particular, φ∗ and M are varied as a function
of redshift in accordance with the recent results from GAMA
(Loveday et al. 2012).

Once the galaxy positions have been assigned, photo-
metric properties are added. Here, we use a training set
of spectroscopic galaxies taken from SDSS DR5. For each
galaxy in both the training set and simulation we measure
∆5, the distance to the 5th nearest galaxy on the sky in a
redshift bin. Each simulated galaxy is then assigned an SED
based on drawing a random training-set galaxy with the ap-
propriate magnitude and local density, k-correcting to the
appropriate redshift, and projecting onto the desired filters.
When doing the color assignment, the likelihood of assign-
ing a red or a blue galaxy is smoothly varied as a function
of redshift in order simultaneously reproduce the observed
red fraction at low and high redshifts as observed in SDSS
and DEEP2.

For the simulation of gravitational lensing, weak lens-
ing shear at each galaxy position was computed using the
multiple plane ray tracing code CALCLENS (Becker 2012).
Then an intrinsic ellipticity is assigned to each galaxy. The
intrinsic shape distribution and dispersion σε in these sim-
ulations are magnitude dependent and are modeled after
those found in deep SuprimeCam i′-band data with excellent
seeing (0.′′6), with fainter galaxies having a higher intrinsic
ellipticity dispersion. Averaged over all galaxies σε = 0.4.

4.2 Results

From the simulated catalogue described in Section 4.1, we
select a large square square patch of 12◦×12◦. To study the
behaviour of the reconstructions, 100 areas (with replace-
ment) of 2◦ × 2◦ were randomly selected from this patch.
These were divided into pixels of 2′ × 2′ containing ≃ 120
galaxies.

The reconstruction code was run for 30,000 trial steps
for each sub-field, with 300 trial fields generated in each
optimization step. The reconstructed maps span 4◦ × 4◦,
containing 14,400 pixels of 2′×2′; i.e. we reconstruct a larger
patch than the 2◦ × 2◦ data patch in each case.

The reconstructions were performed for each of the 100

c© 2012 RAS, MNRAS 000, 1–1



6 R. Szepietowski et al.

(a) True convergence in the simulation. (b) Maximum-likelihood reconstruction.

(c) Maximum-probability, including phase information. (d) Convergence estimate from galaxy positions.

Figure 3. Resulting reconstructed maps of the convergence field. The maps are showing an example of a 2◦ × 2◦ reconstruction field
with 2′ × 2′ pixels. The maps were zero-padded in Fourier space to have a smoother apperance. The true convergence is shown along
with reconstructions obtained using the maximum-likelihood method and the maximum-probability method with the phase prior. The
galaxy convergence κg from which the prior was computed is also shown for comparison.

fields using different phase distribution parameters and ini-
tial guesses that are summarised in Table 1. Using 100 dif-
ferent fields allowed us to examine the noise properties of
the reconstruction method.

Reconstructions were performed using a maximum-

likelihood (ML) method (i.e. no prior terms) and the
maximum-probability approach with the phase prior. In
this set of runs, the phase prior included a phase tolerance
σα = 2.2 · MAD∆α in order to provide a weakly informa-

c© 2012 RAS, MNRAS 000, 1–1



Density mapping with weak lensing and phase information 7

Figure 4. Power spectra (dashed) and error power spectra (dot-
ted) for the reconstructions. The true convergence power spec-
trum (black solid line) is plotted for comparison. Red: maximum-
likelihood approach. Blue: maximum-probability reconstruction
including the phase prior. The reconstructions including the phase
prior have S/N > 1 even beyond l = 1000, far into the domain
where the shear data is noise-dominated.

tive prior. To obtain a reasonable starting point, κ̃initial was
filtered according to equation (21).

Figure 3 shows examples of maps obtained using both
methods of reconstruction (b and c) with the true simulated
convergence map (a) and the convergence estimated from
galaxy positions (d) shown for comparison. The ML method
reconstructs only the most prominent peaks, with a high
level of contamination by spurious peaks. The inclusion of
the phases prior appears to improve the map considerably,
while still underestimating the signal for the largest peaks.

To quantify the quality of the reconstruction, we con-
struct a power spectrum of the error per mode in the recon-
struction,

Perr(l) = 〈|κ̃rec
l − κ̃true

l |2〉l.

A faithful reconstruction will have small Perr(l), preferably
smaller than the true power in order to achieve good S/N
(i.e. the errors in the reconstruction are preferably smaller
than the signal of the reconstructed structures for a given
scale).

Figure 4 shows the error power spectra of the recon-
struction averaged over 100 fields. The maximum-likelihood
reconstruction (red dotted) is dominated by noise on most
scales. Including the phase prior (blue dashed) leads to a re-
construction that has higher S/N than the ML reconstruc-
tion on all scales, and has S/N > 1 even beyond l = 1000,
far into the domain where the initial shear data is noise-
dominated. On a pixel by pixel basis the phase prior im-
proves the correlation between the true convergence and the
reconstruction as shown in Figure 5.

To assess the errors on curves in Figure 4, an addi-

Figure 5. The contours for a 2D histogram of pixels in the re-
construction vs. pixels in the true convergence. Contours are for
10,101.5,102,102.5 values, and the histogram shows a concatena-
tion of reconstructions for 100 different fields. Results are shown
with phase prior (blue solid) and maximum-likelihood approaches
(red dotted). The best fit line to the phase reconstruction con-
tours (black dashed) has a gradient of 0.67 and offset of 0.002.

Figure 6. Dependence on the starting position. The true con-
vergence power spectrum (black solid line) is plotted for compar-
ison. We show the error power for a reconstruction starting from
a κinitial filtered according to Equation 21 (blue dashed) and an
unfiltered one (green dotted).

c© 2012 RAS, MNRAS 000, 1–1



8 R. Szepietowski et al.

Figure 7. Dependence on the phase tolerance. The true conver-
gence power spectrum (black solid line) is plotted for comparison.
The lines show errors for reconstructions with phase tolerance of
σα = 1.1·MAD∆α (red dotted), σα = 2.2·MAD∆α (green dashed)
and σα = 3.3 ·MAD∆α (blue dot-dashed).

tional 100 runs different starting points were performed on
a single 2◦ × 2◦ field, to see the variation in reconstruc-
tions permitted by the optimiser. The different κinitial

i fields
were generated by multiplying each mode in κ̃g by a com-
plex random number with each component drawn from a
standard normal distribution N (0, 1). The error bars on dif-
ferent power spectra in Figures 4, 6 and 7 show the stan-
dard deviation in error powers of this set of runs. We see
that these errors are substantially smaller than the variation
between the maximum-likelihood and maximum-probability
runs (Figure 4) and also between maximum-probability runs
with different values of the σα parameter (Figure 7).

To check the dependence of the reconstruction on the
initial guess κinitial, further reconstructions with the phase
prior were performed. The phase tolerance was again set
to σα = 2.2 · MAD∆α but κinitial was left unfiltered. Fig-
ure 6 shows the errors on these reconstruction compared to
the analogous filtered one. The reconstruction with an unfil-
tered starting guess (green dotted) deviates from the recon-
struction with a filtered one (blue dashed) on small scales,
l & 1000 suggesting that the posterior probability surface is
very flat in some directions (or multimodal). However, the
difference is substantial only on these small scales where the
noise is strongly dominating over the signal. Even here, the
reconstruction is a substantial improvement over the maxi-
mum likelihood reconstruction in Figure 4.

The tolerance we permit on the phases has a moderate
impact on the reconstruction, as shown in Figure 7. The lines
show error power spectra for reconstruction with phase tol-
erance of σα = 1.1 ·MAD∆α (red dotted), σα = 2.2 ·MAD∆α

(green dashed) and σα = 3.3 · MAD∆α (blue dot-dashed),
and the error power grows by a factor of two on intermediate
scales between the tightest and weakest of these tolerances.

Figure 8. Median absolute deviation (MAD) as an estimator of
σα. Assuming σα can be estimated as 1.1 · MAD∆α (solid line)
is justified for values of σα . 1 (see Figure 2). For larger values,
MAD∆α will tend to a constant (here π/2).

However, independent of the phase tolerance the reconstruc-
tions are similar on small scales where the reconstruction is
noise dominated, and on the largest scales where the likeli-
hood term is large.

5 CONCLUSIONS

In this paper, we have proposed a maximum-probability re-
construction method for the lensing convergence, and have
studied the impact of a physically motivated prior term.

To put a weakly informative prior on the Fourier phases
of the modes, we made a prediction of the convergence from
the galaxy number overdensity, and used this to inform the
preferred phases of the reconstructed convergence field. In
this way, by using only the phases of this field, we avoid the
use of the unknown amplitude of galaxy bias. We also do not
require a deterministic bias, as we allow a phase deviation
between the galaxy distribution and the underlying matter
density.

By implementing and testing this method with a real-
istic simulated galaxy shear catalogue, we have found that
a weak prior on phases provides a good quality 2-D density
reconstruction with signal-to-noise S/N > 1 on scales up to
and beyond l = 1000 (Figure 4).

The sensitivity of the phase prior reconstruction to ini-
tial conditions (Figure 6) shows that the probability sur-
face is flat in directions associated with small-scale modes.
However, an approximate knowledge of the power spectrum
can help to select a solution with modest signal-to-noise
even on the smallest scales. The phase difference tolerance
can be made more or less strict, depending on whether one
wishes to make a joint reconstruction using weak lensing
and phases, or instead to make a reconstruction from weak
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lensing weakly informed by phases. In either case, the re-
construction is found to be an improvement over maximum
likelihood reconstruction (contrast figures 7 and 4).

Although, most of the phase information is coming from
the galaxy field, the amplitude of the modes is fully de-
termined by lensing. It is important to emphasise that in
Figure 3(d) the amplitude is an assumption, whereas in Fig-
ure 3(c) it is derived purely from lensing data.

In summary, using the phase information from the
galaxy distribution to inform weak lensing density recon-
struction, appears to be a very powerful addition to the tools
we can use for mass mapping.
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APPENDIX A: WRAPPED CAUCHY

DISTRIBUTION

The Cauchy pdf is given by

fC(x;x0, σ) =
1

π
· σ

σ2 + (x− x0)2
, x ⊂ (−∞,∞). (A1)

The Wrapped Cauchy pdf is defined as

fWC(β;β0, γ) =

∞
∑

n=−∞

σ

π(σ2 + (x− x0 + 2πn)2)
, (A2)

which gives

fWC(β;β0, γ) =
1

2π
· 1− γ2

1 + γ2 + 2γ cos(β − β0)
, (A3)

where γ = e−σ and β ⊂ [−π, π).
A Cauchy distributed random number x can be gen-

erated from two independent normally distributed random
numbers y1, y2 ∼ N (0, 1) as

x = x0 + σ
y1
y2

. (A4)

Then a Wrapped Cauchy distributed random number is ob-
tained by taking

β = x mod 2π, (A5)

and applying a procedure similar to the one in Section 3.3.1,
i.e., if β is less than −π, we add 2π to β; if β is greater than
or equal to π then we subtract 2π from β.

For a distribution with β0 = 0 the parameter σα can be
approximated (for small values) as 1.1 ·MAD∆α (Figure 8).
For high values of σα this approximation breaks down; as
σα → ∞ the Wrapped Cauchy tends to a uniform distri-
bution, and MAD∆α goes to a constant equal to the stan-
dard deviation of the uniform distribution, here π/2 (see
Figure 8).

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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