Why it is worthwhile taking time for spherical harmonics?

1) it is a wave function

2 rotational energy
3 angular momentum
4 symmetry
5 statistic degeneracy
$g_{J}=2 J+1$
6 selection rule
expansion $\Delta J=0, \pm 1,0 \leftrightarrow 0$

Plan today

1 correction of last lecture $m^{2}!=K^{2}$
2 perturbation theory what is transition?
3 group theory $C_{2 v}$ only
$4 \mathrm{H}_{2}$
what is ortho and para H_{2} ?
5 Why ortho \leftrightarrow para?
6 selection rule

$$
\Delta J=0, \pm 1,0 \leftrightarrow 0
$$

m : laboratory axis

wavefunction
tilt in lab

how much angular momentum is along molecular \mathbf{Z} axis
which direction \mathbf{J} is looking does not seem to change the shape of wavefunction
it does

along

laboratory axis which direction J is looking in lab

associated Legendre
$\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d v}{e x}+\left[J(J+1)-\frac{m^{2}}{1-x^{2}}\right] v=0\right.$
as long as there is no field
no electric / magnetic field m does not show up in energy

$$
2 J+1
$$

$E=B J(J+1) \quad m$ did not show up here

$$
-J,-J+1, \ldots, J-1, ~ J
$$

J_{z} : molecular axis

$K=J$

$\checkmark=0$
\mathbf{K} does
$E=B J(J+1)+(A-B) K^{2}$
associated Legendre
$\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d v}{e x}+\left[J(J+1)-\frac{m^{2}}{1-x^{2}}\right] v=0\right.$

as long as there is no field
no electric / magnetic field m does not show up in energy
$E=B J(J+1) \quad m$ did not show up here

Why it is worthwhile taking time for spherical harmonics?

1) it is a wave function
but, of what ?
2 rotational energy
$E=B h J(J+1)$
(3) angular momentum

J, K, Ka, Kc
4 symmetry
5 statistic degeneracy
$g_{J}=2 J+1$
6 selection rule
$\Delta J=0, \pm 1,0 \leftrightarrow 0$
(1) statistic degeneracy

$$
g_{J}=2 J+1
$$

$$
\frac{N_{J}}{g_{J}}=N_{0} \exp \left(-\frac{E_{J}}{k T}\right)
$$

(1) statistic degeneracy
(2) selection rule

- notation
- quantum numbers
J, K, Ka, Kc

(3) notation
(4) nuclear spin
(2) selection rule

$$
\Delta J=0, \pm 1,0 \leftrightarrow 0
$$

ϕ_{r} wave function

spherical harmonics

- projection operator
- nuclear spin degeneracy
(2) selection rule
why transition probability given in this form?

(2) selection rule

why transition probability given in this form?
remember Thomson scattering 1 perturbation theory 2

$$
\Delta J=0, \pm 1,0 \leftrightarrow 0
$$

is decomposed to

spherical harmonios orthogonal 4 - spherical harmonics is a full rotation group9

3 H- 2 : simple example of vanishing integral

- decomposition of symmetry of product of wavefunctions
calculate coefficients of linear combination of representation
(5) $\mathrm{H}_{2} \mathrm{O}: \mathrm{c}_{2 v}$ example of symmetry group

Thomson scattering

Max Planck

J. J. Thomson

David Hilbert

Dipole approximation
1 E is proportional to \dot{u}
$2 E$ is proportional to q
3 radiates perpendicular to \dot{u}

Power

$$
\frac{d P}{d \Omega}=\frac{\ddot{\mathrm{d}}^{2}}{4 \pi c^{3}} \sin ^{2} \theta
$$

Thomson cross section

$$
\begin{aligned}
P= & \langle S\rangle \sigma_{T} \\
\sigma_{T} & =\frac{P}{\langle S\rangle} \\
& =\frac{8 \pi}{3} \frac{e^{4}}{\mathrm{~m}^{2} \mathrm{c}^{4}}
\end{aligned}
$$

NO.

$\stackrel{\text { incoming }}{c} \mathrm{C}^{\mathrm{C}} \mathrm{E}_{0}^{2}$
Poynting vector

Thomson scattering
1 Scattering is a re-emission
2 Frequency independent
3 Polarized as in the incident light
4. Forward scattering

Perturbation theory

$H \Psi_{0}=E \Psi_{0}$
energy
steady state

here comes perturbation
= electric field
how much?
charge displaced
= energy shift

$$
\mu_{e}=q r
$$

E field

$$
\mu_{e}=q r
$$

Eield

$$
\stackrel{\text { field }}{E}=\frac{\mathbf{V}}{\mathbf{r}}
$$

energy

$$
\begin{aligned}
\Delta E & =q \frac{V}{2} \cdot 2 \\
& =q V=q r E \\
& =u_{e} \\
& \text { perturbation }
\end{aligned}
$$

$$
\Psi=\phi e^{-i \frac{E}{\hbar} t}
$$

$$
H \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

$$
\begin{array}{r}
\frac{\partial \Psi}{\partial t}=-i \frac{E}{\hbar} \Psi \\
H \Psi=E \Psi
\end{array}
$$

time-dependent

2

Perturbation

" MO

What is Transition?
time-independent

$$
H \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

$$
\begin{array}{r}
\Psi=\phi e^{-i \frac{E}{\hbar} t} \\
\frac{\partial \Psi}{\partial t}=-i \frac{E}{\hbar} \Psi \\
H \Psi=E \Psi
\end{array}
$$

E_{2}
time-dependent Perturbation
" ${ }^{\prime \prime}$
$\mathrm{C}_{2} \quad \Psi_{2}(\mathrm{t})$ $H \Psi_{2}=E_{2} \Psi_{2}$

$$
\begin{aligned}
& \mathrm{c}_{1} \Psi_{1}(\mathrm{t}) \\
& \mathrm{H} \Psi_{1}=\mathrm{E}_{1} \Psi_{1}
\end{aligned}
$$

What is Transition?

$$
H \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

time-dependent

 Perturbation
V (t)

2

$$
\mathrm{H} \Psi=\mathrm{E} \Psi
$$

E_{2}

$$
\psi=\phi \mathrm{e}^{-i \frac{\mathrm{E}}{\hbar} \mathrm{t}}
$$

$$
\frac{\partial \Psi}{\partial t}=-i \frac{E}{\hbar} \psi
$$

$$
\mathrm{H} \Psi_{2}=\mathrm{E}_{2} \Psi_{2}
$$

$$
\Psi=\mathrm{c}_{1}(\mathrm{t}) \Psi_{1}+\mathrm{c}_{2}(\mathrm{t}) \Psi_{2}
$$

$$
\mathrm{c}_{1}(\mathrm{t}=0)=1
$$

$$
c_{2}(t=0)=0
$$

1

$$
\Psi=c_{1} \Psi_{1}+c_{2} \Psi_{2}
$$

$$
\mathrm{c}_{2}(\mathrm{t})=?
$$

$$
(\mathrm{H}+\mathrm{V}) \Psi=-\frac{\hbar}{\mathrm{i}} \frac{\partial \Psi}{\partial \mathrm{t}} \quad \begin{aligned}
& \mathrm{c}_{1} \Psi_{1}(\mathrm{t}) \\
& H \Psi_{1}=\mathrm{E}_{1} \Psi_{1}
\end{aligned}
$$

$$
\psi=\phi \mathrm{e}^{-i \frac{E}{n} t}
$$

$$
\frac{\partial \Psi}{\partial t}=-i \frac{E}{h} \psi
$$

$$
H \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

time-dependent

 Perturbation
V (t)

$$
P(t)=\left|c_{2}\right|^{2}
$$

2

$$
\mathrm{H} \Psi=\mathrm{E} \Psi
$$

$$
\mathrm{H} \Psi_{2}=\mathrm{E}_{2} \Psi_{2}
$$

$$
\psi=\phi \mathrm{e}^{-i \frac{E}{n} t}
$$

$$
\frac{\partial \Psi}{\partial t}=-i \frac{E}{h} \psi
$$

$$
H \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}
$$

$$
\mathrm{H} \Psi=\mathrm{E} \Psi
$$

time-dependent Perturbation
$\bigcirc E_{2}$

" ${ }^{2}$

$$
P(t)=\left|c_{2}\right|^{2}
$$

$\mathrm{C}_{2} \quad \Psi_{2}(\mathrm{t})$ $H \Psi_{2}=E_{2} \Psi_{2}$

how likely we will find
in 2 at \mathbf{t}

$$
(H+V) \Psi=-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t} \quad \begin{aligned}
& c_{1} \Psi_{1}(t) \\
& H \Psi_{1}=E_{1} \Psi_{1}
\end{aligned}
$$

Transition probability

$$
\begin{aligned}
(\mathrm{H}+\mathrm{V}) \Psi & =-\frac{\hbar}{\mathrm{i}} \frac{\partial \Psi}{\partial \mathrm{t}} \\
\Psi & =\mathrm{c}_{1} \Psi_{1}+\mathrm{c}_{2} \Psi_{2} \\
\Psi_{1} & =\phi_{1} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}}
\end{aligned}
$$

$2 \longrightarrow \mathrm{E}_{2} \Psi_{2}(\mathrm{t})=\phi_{2} e^{-\frac{\mathrm{E}_{2}}{\hbar} t}$
time-independent

$C_{1} \psi_{1}(t)=\phi_{1} e^{-i \frac{E_{1}}{h} t}$

1. $(\mathrm{H}+\mathrm{V}) \Psi=(\mathrm{H}+\mathrm{V})\left(\mathrm{c}_{1} \Psi_{1}+\mathrm{C}_{2} \Psi_{2}\right)$

$$
\begin{aligned}
& =c_{1} H \Psi_{1}+c_{1} V \Psi_{1}+c_{2} H \Psi_{2}+c_{2} V \Psi_{2} \\
& =c_{1} E_{1} \Psi_{1}+c_{1} V \Psi_{1}+c_{2} E_{2} \Psi_{2}+c_{2} V \Psi_{2}
\end{aligned}
$$

$$
\mathrm{H} \Psi_{1}=\mathrm{E}_{1} \Psi_{1}
$$

$2 \frac{\partial \Psi}{\partial t}=\frac{\partial}{\partial t}\left[\mathrm{c}_{1} \Psi_{1}+\mathrm{c}_{2} \Psi_{2}\right]$

$$
\begin{aligned}
& =\frac{\partial}{\partial t}\left[c_{1} \phi_{1} e^{-i \frac{E_{1}}{h} t}+c_{2} \phi_{2} e^{-i \frac{E_{2}}{n} t}\right] \\
& =\dot{c}_{1} \phi_{1} e^{-i \frac{E_{1}}{h}}-i \frac{E_{1}}{\hbar} c_{1} \phi_{1} e^{-i \frac{\varepsilon_{1}}{h} t}+\dot{c}_{2} \phi_{2} e^{-i \frac{E_{2}}{n}}-i \frac{E_{2}}{\hbar} c_{2} \phi_{2} e^{-i \frac{E_{2}}{h} t}
\end{aligned}
$$

I $(\mathrm{H}+\mathrm{V}) \Psi=\mathrm{c}_{1} \mathrm{E}_{1} \Psi_{1}+\mathrm{c}_{1} V \Psi_{1}+\mathrm{C}_{2} \mathrm{E}_{2} \Psi_{2}+\mathrm{c}_{2} \mathrm{~V} \Psi_{2}$

$2 c_{2} \Psi_{2}(t)=\phi_{2} e^{-\frac{E_{2}}{E_{t} t}}$ $\hbar \underline{\omega}$ time-independent
$1=2$

$$
\begin{aligned}
& \mathrm{c}_{1} V \Psi_{1}+\mathrm{c}_{2} V \Psi_{2}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{1} \Psi_{1}+\frac{\hbar}{\mathrm{i}} \dot{c}_{2} \Psi_{2} \\
& \mathrm{c}_{1} V \phi_{1} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}}+\mathrm{c}_{2} V \phi_{2} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{h} \mathrm{t}}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{1} \phi_{1} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}}+\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{2} \phi_{2} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{\hbar} \mathrm{t}}
\end{aligned}
$$

from left multiply $\phi_{1}^{*} \quad$ note $\left\langle\phi_{1}^{*} \mid \phi_{1}\right\rangle=1 \quad\left\langle\phi_{1}^{*} \mid \phi_{2}\right\rangle=0$

$$
\begin{aligned}
& c_{1}<\phi_{1}|V| \phi_{1}>e^{-i \frac{E_{1}}{h} t}+c_{2}<\phi_{1}|V| \phi_{2}>e^{-i \frac{E_{2}}{\hbar} t}=\frac{\hbar}{i} \dot{c}_{1} e^{-i \frac{E_{1}}{h} t} \quad V_{11}=\left\langle\phi_{1}\right| V\left|\phi_{1}\right\rangle \\
& \mathrm{c}_{1} \mathrm{~V}_{11} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{h} \mathrm{t}}+\mathrm{c}_{2} \mathrm{~V}_{12} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{\hbar} \mathrm{t}}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{1} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}} \\
& V_{12}=\left\langle\phi_{1}\right| V\left|\phi_{2}\right\rangle \\
& \begin{aligned}
& c_{1} V_{11}+c_{2} V_{12} e^{-i \frac{E_{2}-E_{1}}{h} t}=\frac{\hbar}{i} \dot{c}_{1} \\
& \frac{\hbar}{i} \dot{c}_{1}=c_{1} V_{11}+c_{2} V_{12} e^{-i \underline{\omega} t} \chi e^{i \frac{E_{1}}{\hbar} t} \\
& V_{11}=0 \\
& V_{22}=0
\end{aligned}
\end{aligned}
$$

$1(\mathrm{H}+\mathrm{V}) \Psi=\mathrm{c}_{1} \mathrm{E}_{1} \Psi_{1}+\mathrm{c}_{1} V \Psi_{1}+\mathrm{C}_{2} \mathrm{E}_{2} \Psi_{2}+\mathrm{c}_{2} \mathrm{~V} \Psi_{2}$

$2 c_{2} \Psi_{2}(t)=\phi_{2} e^{-\frac{E_{2}}{E_{t} t}}$ $\hbar \underline{\omega}$ time-independent
$1=2$

$$
\begin{aligned}
& \mathrm{c}_{1} V \Psi_{1}+\mathrm{c}_{2} V \Psi_{2}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{1} \Psi_{1}+\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{2} \Psi_{2} \\
& \mathrm{c}_{1} V \phi_{1} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}}+\mathrm{c}_{2} \mathrm{~V} \phi_{2} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{\hbar} t}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{1} \phi_{1} \mathrm{e}^{-i \frac{\mathrm{E}_{1}}{\hbar} \mathrm{t}}+\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{2} \phi_{2} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{\hbar} t}
\end{aligned}
$$

from left multiply $\phi_{2}^{*} \quad$ note $\left\langle\phi_{1}^{*} \mid \phi_{1}\right\rangle=1 \quad<\phi_{1}^{*}\left|\phi_{2}\right\rangle=0$

$$
\begin{aligned}
& c_{1}<\phi_{2}|V| \phi_{1}>e^{-i \frac{E_{1}}{\hbar} t}+c_{2}<\phi_{2}|V| \phi_{2}>e^{-i \frac{E_{2}}{\hbar} t}=\frac{\hbar}{i} \dot{c}_{2} e^{-i \frac{E_{2}}{\hbar} t} \quad V_{11}=\left\langle\phi_{1}\right| V\left|\phi_{1}\right\rangle \\
& \mathrm{c}_{1} \mathrm{~V}_{21} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{1}}{h} \mathrm{t}}+\mathrm{c}_{2} \mathrm{~V}_{22} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{h} \mathrm{t}}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{2} \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}_{2}}{h} \mathrm{t}} \\
& \mathrm{C}_{1} \mathrm{~V}_{21} \mathrm{e}^{\frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{h} \mathrm{t}}+\mathrm{c}_{2} \mathrm{~V}_{22}=\frac{\hbar}{\mathrm{i}} \dot{\mathrm{C}}_{2} \\
& X e^{\frac{E_{2}}{h} t} \\
& V_{12}=\left\langle\phi_{1}\right| V\left|\phi_{2}\right\rangle \\
& \frac{\hbar}{i} \dot{\mathrm{c}}_{2}=\mathrm{c}_{1} \mathrm{~V}_{21} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \\
& \hbar \underline{\omega}=\mathrm{E}_{2}-\mathrm{E}_{1} \\
& V_{11}=0 \\
& V_{22}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\hbar}{i} \dot{c}_{2}=c_{1} V_{21} e^{i \omega t} \\
& V_{21}=\left\langle\phi_{2} \mid V_{1} \phi_{1}\right\rangle \\
& V=\Delta E \text { Na } \\
& V_{21} \propto \mu_{e} E=\mu_{e} E e^{-i \omega t} \\
& \frac{\hbar}{\mathrm{i}} \dot{\mathrm{c}}_{2}=\mathrm{c}_{1} \mathrm{~V}_{21} \mathrm{e}^{\mathrm{i} \omega \mathrm{t}} \\
& c_{2}(t)=\int \mu_{e} E e^{-i \omega t} e^{i \omega t} d t \\
& =\mu_{\mathrm{e}} \mathrm{E} \int \mathrm{e}^{-\mathrm{i}(\omega-\underline{\omega}) \mathrm{t}} \mathrm{dt} \\
& =\mu_{\mathrm{e}} \mathrm{E}\left[\frac{\mathrm{e}^{-\mathrm{i}(\omega-\underline{\omega}) \mathrm{t}}}{\mathrm{i}(\omega-\underline{\omega}}\right]_{0}^{\mathrm{t}} \\
& =\mu_{e} E \frac{e^{-i(\omega-\underline{\omega}) t}-1}{i(\omega-\underline{\omega})}=-\mu_{e} E \frac{\sin \frac{i(\omega-\underline{\omega}) t}{2}}{\frac{i(\omega-\underline{\omega})}{2}}=-\mu_{e} E t
\end{aligned}
$$

Transition probability

$P(t)=\left|c_{2}\right|^{2}$
how likely we
will find
in 2 at t
$\left|\mathrm{C}_{2}(\mathrm{t})\right|=\mu_{\mathrm{e}} \mathrm{Et}$
for unit time $\mathbf{t}=1$
$\left|C_{2}(t=1)\right|=\left|\mu_{e} E\right|$

$$
\begin{aligned}
& \qquad P(t=1)=\left|\mathrm{c}_{2}\right|^{2}=\left|\mu_{\mathrm{e}} \mathrm{E}\right|^{2} \\
& \text { Einstein A coefficient }
\end{aligned}
$$

Group theory torastrocomemist

group element $=\{$ A B C D E $\}$

(1) you apply multiply \mathbf{A} on \mathbf{B}
(2) get C
(3) whatever you multiply, result is one of group elements
a group is 1 closed
2 has 1 identity
3 inverse inverse element A^{-1}
4 associative $A(B C)=(A B) C$
(4) once it is recognized as a group
we can use its mathematical property for free

example

element can be number, operation, function
rotate π

group element = \{

(1) you apply multiply A on :
(2) get C

3 whatever you multiply, result is one of elements

1 closed
2 has E identity
3 inverse \quad for \boldsymbol{A}
: for :
4 associative $A(B C)=(A B) C$
(4) once it is recognized as a group
we can use its mathematical property for free

Group theory

(1) add \mathbf{A} and \mathbf{B} and take $\bmod 4$

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3		1
3	3		1	2

(3) rotate by \mathbf{A} and then by \mathbf{B}

	0	$\pi / 2$	π	$3 \pi / 2$
0	0	$\pi / 2$	π	$3 \pi / 2$
$\pi / 2$	$\pi / 2$	π	$3 \pi / 2$	0
π	π	$3 \pi / 2$	0	$\pi / 2$
$3 \pi / 2$	$3 \pi / 2$	0	$\pi / 2$	π

B
(2) multiply \mathbf{A} and \mathbf{B} and take last digit

	1	3	9	7
1	1	3	9	7
3	3	9	7	1
9	9	7	1	3
7	7	1	3	9
\mathbf{B}				

Group theory
 for astrochemist

(1) add \mathbf{A} and \mathbf{B} and take $\bmod 4$
(2) multiply \mathbf{A} and \mathbf{B} and take last digit

	0	1	2	3
0	0	1	2	3
1	1	2	3	
2	2	3		1
3	3	0	1	2

(3) rotate by \mathbf{A} and then by \mathbf{B}

	0	$\pi / 2$	π	$3 \pi / 2$
0	0	$\pi / 2$	π	$3 \pi / 2$
$\pi / 2$	$\pi / 2$	π	$3 \pi / 2$	0
π	π	$3 \pi / 2$	0	$\pi / 2$
$3 \pi / 2$	$3 \pi / 2$	0	$\pi / 2$	π

B

why group theory?

Why molecular
symmetry?

Why group theory?

we want to know shape of wavefunction
 but without actually calculating it

why group theory?

tells shape of wavefunction.

from relations between

Why molecular
symmetry?

what kind of operations are relevant here?

if wavefunction changes randomly useless to tell shape of wavefunction something that does not change shapes....

what kind of operation is relevant here?

 something that does not change shapes....
like
1 rotation by π
2 reflection about xz plane 3 reflection about yz plane
4 identity (as it is)

Character table

now we jump to

Character table

E identity operator (do nothing) "Einheit"

\mathbf{C}_{2} rotation of $2 \pi / 2$ about \mathbf{z} axis $\sigma_{\mathbf{v}}(\mathbf{x z})$ reflection about $\mathbf{x z}$ plane

Character table

E identity operator (do nothing) "Einheit"
$\mathbf{C}_{\mathbf{2}}$ rotation of $\pi / \mathbf{2}$ about \mathbf{z} axis
$\sigma_{v}(\mathbf{x z})$ reflection about $\mathbf{x z}$ plane

order of group :
number of symmetry elements

Symmetry
operations
$\begin{aligned} & \text { symmetry } \\ & \text { labell } \\ & \text { (representative) }\end{aligned}$

representation
lis
(set of representatives)
Symmetry
operations
$\begin{aligned} & \text { symmetry } \\ & \text { labell } \\ & \text { (representative) }\end{aligned}$

representation
lis
(set of representatives)
Character
cross term base functions

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { label } \end{aligned}$		E	C_{2}	$\sigma_{v}(x z) \sigma^{\prime}{ }^{\prime}(y z)$		$\mathrm{h}=4$	x^{2}, y^{2}, z^{2}
	A_{1}	1	1	1	1	z	
	\mathbf{A}_{2}	1	1	-1	-1	$\mathbf{R}_{\mathbf{z}}$	$x y$
	B_{1}	1	-1	-1	1	$\mathbf{x}, \mathrm{R}_{\mathbf{y}}$	$x z$
	\mathbf{B}_{2}	1	-1	1	-1	$\mathrm{y}_{\mathbf{\prime}} \mathrm{R}_{\mathrm{x}}$	yz

\mathbf{z} is the function $f(x, y, z)=z$
it does not change itself by the operations

$E \quad C_{2} \quad \sigma_{v}(x z) \sigma^{\prime}{ }_{v}(y z)$

function \mathbf{z} has $\mathbf{A}_{\mathbf{1}}$ symmetry

symmetry label tells the shape of functions

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { labell } \end{aligned}$		E	C_{2}	$\sigma_{v}(x z) \sigma^{\prime}{ }^{\prime}(y z)$		$\mathrm{h}=4$	x^{2}, y^{2}, z^{2}
	A_{1}	1	1	1	1	z	
	\mathbf{A}_{2}	1	1	-1	-1	$\mathbf{R}_{\mathbf{z}}$	$x y$
	B_{1}	1	-1	-1	1	$\mathbf{x}, \mathbf{R}_{\mathbf{y}}$	xz
	\mathbf{B}_{2}	1	-1	1	-1	$y_{\text {, }} \mathbf{R}_{\mathbf{x}}$	$y z$

$\mathbf{x}^{\mathbf{2}}$ is the function $f\left(x_{r}, y_{r} z\right)=x^{2}$

symmetry label tells the shape of functions

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { labell } \end{aligned}$		E	C_{2}	$\sigma_{v}(x z$	v(y	$h=4$	
	A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
	A_{2}	1	1	-1	-1	$\mathbf{R}_{\mathbf{z}}$	xy
	B_{1}	1	-1	-1	1	$x_{1}, \mathrm{R}_{\mathbf{y}}$	xz
	B_{2}	1	-1	1	-1	$y_{\text {, }} \mathbf{R x}^{\text {l }}$	yz

\mathbf{x} is the function $f(x, y, z)=x$
remains same by
E $\quad \sigma^{\prime} v(y z)$
changes the sign by
$C_{2} \quad \sigma_{v}(x z)$

E	$\mathbf{C}_{\mathbf{2}}$	$\boldsymbol{\sigma}_{\mathbf{v}}(\mathrm{xz})$	$\boldsymbol{\sigma}^{\prime}{ }_{v}(\mathbf{y z})$
1	-1	-1	1

function \mathbf{x} has $\mathbf{B}_{\mathbf{1}}$ symmetry

symmetry label tells the shape of functions

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { label } \end{aligned}$		E	C_{2}	$\sigma_{v}(x z$	v(y	$\mathrm{h}=4$	
	A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
	A_{2}	1	1	-1	-1	$\mathbf{R z}_{\mathbf{z}}$	xy
	B_{1}	1	-1	-1	1	$\mathrm{x}_{1}, \mathrm{R}_{\mathbf{y}}$	xz
	\mathbf{B}_{2}	1	-1	1	-1	$y_{\text {, }} \mathbf{R x}^{\text {x }}$	yz

$\mathbf{R}_{\mathbf{z}}$ is the function that rotates around z
remains same by
changes the sign by

E $\quad C_{2}$
$\sigma_{v}(x z) \sigma^{\prime} v(y z)$

$=$ direction of rotation

\mathbf{E}	$\mathbf{C}_{\mathbf{2}}$	$\boldsymbol{\sigma}_{\mathbf{v}}(\mathbf{x z})$	$\boldsymbol{\sigma}^{\prime}{ }_{\mathrm{v}}(\mathbf{y z})$
1	1	-1	-1

function $\mathbf{R}_{\mathbf{z}}$ has $\mathbf{A}_{\mathbf{2}}$ symmetry
symmetry label tells the shape of functions

What group theory gives us for free

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { labell } \end{aligned}$		E	C_{2}	$\sigma_{v}(\mathbf{x z})$	$v(y z)$	$h=4$	
	A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{\mathbf{2}}$
	\mathbf{A}_{2}	1	1	-1	-1	$\mathbf{R z}_{\mathbf{z}}$	xy
	B_{1}	1	-1	-1	1	$\mathrm{X}_{1}, \mathrm{R}_{\mathbf{y}}$	xz
	\mathbf{B}_{2}	1	-1	1	-1	$y_{\text {, }} \mathrm{R}_{\mathbf{x}}$	yz

1 as long as functions are basis of symmetry representation

$$
\begin{array}{lccc}
f \mathrm{~A} 1 \times \mathrm{fA} 2 & 1 \times 1,1 \times 1,1 \times-1,1 \times-1 \\
& 1 & 1 & -1 \\
& -1 \\
f \mathrm{~A} 2 \times \mathrm{fB} 1 & 1 \times 1,1 \times-1,-1 \times-1,-1 \times 1 \\
& 1 & -1 & 1
\end{array}=\mathrm{fA} 2
$$

What group theory gives us for free

$\begin{aligned} & \text { symmetry } \longrightarrow \\ & \text { labell } \end{aligned}$		E	C_{2}	$\sigma_{v}(x z) \sigma^{\prime}{ }^{\prime}(y z)$		$h=4$	
	A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, z^{2}$
	\mathbf{A}_{2}	1	1	-1	-1	$\mathbf{R z}_{\mathbf{z}}$	xy
	B_{1}	1	-1	-1	1	$\mathbf{x}, \mathrm{R}_{\mathbf{y}}$	xz
	B_{2}	1	-1	1	-1	$y_{\text {, }} \mathrm{R}_{\mathrm{x}}$	yz

1 as long as functions are basis of symmetry representation

$$
\begin{array}{lcccc}
f \mathrm{~A} 1 \times \mathrm{fA} 2 & 1 \times 1,1 \times 1,1 \times-1,1 \times-1 \\
& 1 & 1 & -1 & -1 \\
& \mathrm{fA} 2 \times \mathrm{fB} 1 & 1 \times 1,1 \times-1,-1 \times-1,-1 \times 1 \\
& 1 & -1 & 1 & -1 \\
& =f \mathrm{~A} 2 \\
& =f B 2
\end{array}
$$

this is why we spent so much time for group theory

2 when we integrate whole space, only fA1 has non-zero value
H_{2}
para H_{2}

ortho H_{2}

is the simplest molecule

but the strangest as well

H_{2}
para H_{2}
$m I=0$
$g I=1$

$$
I=1 / 2-1 / 2=0
$$

ortho H_{2}

$$
m I=1,0,-1
$$

$$
g I=3
$$

1 nuclear spin modification

para $\mathbf{H}_{2} \quad \mathrm{~J}=0,2,4, \ldots \quad$ couples with ortho $\mathbf{H}_{2} \quad \mathrm{~J}=1,3,5, \ldots \quad$ rotational levels

2 para $\mathrm{H}_{2} \leftrightarrow H$ ortho H_{2}
3 quadrupole transitions only

$$
\begin{array}{cc}
\text { para } \mathrm{H}_{2} & \begin{array}{c}
m I=0 \\
g I=1
\end{array} \\
I=1 / 2-1 / 2=0
\end{array}
$$

group theory does not care what the elements are

E identity operator (do nothing) "Einheit"

\mathbf{C}_{2} rotation of $2 \pi / \mathbf{2}$ about \mathbf{z} axis
 point group

 $\sigma_{\mathbf{v}}(\mathbf{x z})$ reflection about $\mathbf{x z}$ planegeometrical

$$
\begin{array}{cc}
\text { para } \mathrm{H}_{2} & \begin{array}{r}
m I=0 \\
g I=1
\end{array} \\
I=1 / 2-1 / 2=0
\end{array}
$$

group theory does not care what the elements are

C2v | E identity operator (do nothing) "Einheit" | |
| ---: | :--- |
| $\mathbf{C}_{\mathbf{2}}$ | rotation of $2 \pi / \mathbf{2}$ about \mathbf{z} axis |\quad point group

E identity operator (do nothing)
(12) permutation of 1 and 2 CNPI group

E* inversion complete nuclear permutation inversion

permutation inversion group

! protons exchange all attributions coordinate + spin
\Rightarrow equivalent to changing labels
! nuclear permutation does not move electrons

(1) protons take all attributions with them
spins as well
! electrons invert positions as well
H_{2}
para H_{2}
$m I=0$
$g I=1$

$$
I=1 / 2-1 / 2=0
$$

ortho H_{2}

$$
m I=1,0,-1
$$

$$
g I=3
$$

$$
I=1 / 2+1 / 2=1
$$

CNPI group does not deal with shape of wavefunction

 but formula of it(12) re-labeling

E* invertsign

formula of \mathbf{H}
if Hamiltonian does not change
wavefunction cannot change
H_{2}
para H_{2}

ortho H_{2}

$$
m I=1,0,-1
$$

$$
g I=3
$$

$$
I=1 / 2+1 / 2=1
$$

CNPI group does not deal with formula of \mathbf{H} Hamiltonian

(12) re-labeling

E* invert sign
$H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}$
$p_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x} \quad \frac{\partial^{2}}{\partial x^{2}}$ does not change by E *

What kind of $\mathbf{S h a p e}$ is your wavefunction?

character table

Σ_{g}^{+}	\boldsymbol{A}_{1}	1	1	1	1
Σ_{u}^{-}	$\boldsymbol{A}_{\mathbf{2}}$	1	1	-1	-1
Σ_{g}^{-}	$\boldsymbol{B}_{\mathbf{1}}$	1	-1	-1	1
Σ_{u}^{+}	$\boldsymbol{B}_{\mathbf{2}}$	1	-1	1	-1

1 : operation leaves sign same - 1 : operation flips sign
inversion
permutation
(12)

E*
(12)*
permutation
\times inversion
$E^{*} \boldsymbol{\phi}=\boldsymbol{\phi}$
(12) $\boldsymbol{\phi}=-\boldsymbol{\phi}$

exchange of fermions must change the sign of total wavefunction

Paulli'S exclusion principle

$$
(12) \Psi=-\Psi
$$

effectively, changing labels

The solution with symmetrical eigenfunctions, on the other hand, allows any number of electrons to be in the same orbit, so that this solution cannot be the correct one for the problem of electrons in an atom \dagger

Dirac (1926) Proc. R. Soc. Lond. A 112, 661
\dagger Prof. Born has informed me that
Heisenberg has independently obtained results equivalent to these. (Added in proof)-see Heisenberg, 'Zeit. fur Phys.,' vol. 38, p. 411

Diese Funktion φ hat die besondere Eigenschaft, daß sie bei Vertauschung der Quantenzahlen zweier Teilsysteme das Vorzeichen wechselt.

Heisenberg (1926), Zeitschrift für Physik, 38, 411

Why this is Paull exclusion principle?

if there are two electrons

 in equivalent orbits, wavefunction would not change signEs kann niemals zwei oder mehrereaquivalente Elektronen im Atom geben, für welche in starken Feldern die Werte aller Quantenzahlen n, k_{1}, k_{2}, m_{1} (oder, was dasselbe ist, n, k_{1}, m_{1}, m_{9}) übereinstimmen.

LMU alumnus 1958-1970 MPA/LMU

LMU alumnus

total
 Ψ
 ϕ_{e}
 vibrational rotational
 $\phi_{v} \phi_{r}$

electronic

no node:
totally symmetric
Σ_{g}^{+}
(12) $\phi_{e}=\phi_{e}$

Born-Oppenheimer approximation

vibrational

function of $\left|\boldsymbol{r}_{\mathbf{1}} \boldsymbol{-} \boldsymbol{\Gamma}_{\mathbf{2}}\right|$

no change by totally permutation or symmetric inversion

totally | to |
| :--- |
| symmetric |
| sym |
| at permutation |

$$
\begin{aligned}
& (12) \phi_{r}\left(\theta_{\|}, \phi\right)=\phi_{r}\left(\pi=\theta_{\|}, \phi+\pi\right) \\
& \text { spherical harmonics } Y_{J m}\left(\theta_{/} \phi\right) \\
& \phi_{r}\left(\pi=\theta_{\|}, \phi+\pi\right)=(-1)^{J} \phi_{r}\left(\theta_{,} \phi\right) \\
& z=\cos \theta \\
& =z=\cos (=\theta) \\
& Y_{J m} \sim z^{J} \\
& J=1,3,5, \ldots \\
& J=0,2,4, \ldots
\end{aligned}
$$

(12)

$$
\boldsymbol{\beta}_{r}=-\boldsymbol{B}_{r}
$$

$$
(12)
$$

$$
\phi_{r}=\phi_{r}
$$

nuclear spin

	$\begin{aligned} & \|\uparrow \uparrow\rangle \\ & \|\uparrow \downarrow\rangle+\|\downarrow \uparrow\rangle \\ & \|\downarrow \downarrow\rangle \end{aligned}$	$\text { (12) } \phi_{\mathrm{ns}}=\phi_{\mathrm{ns}}$ ortho
$T_{t=1 / 2+1 / 2}$		(12) $\phi_{\mathrm{ns}}=-\phi_{\mathrm{ns}}$
P-1 $\underset{\substack{m \in 0 \\ g=1}}{\substack{0}}$	$\|\uparrow \downarrow\rangle=\|\downarrow \uparrow\rangle$	para

total electronic vibrational rotational nuclear spin $\Psi=\phi_{\mathrm{e}} \phi_{\mathrm{v}} \phi_{\mathrm{r}} \phi_{\mathrm{ns}}$
 (12) $\Psi=-\Psi$

coupling must be

$$
\begin{aligned}
& J=0,2,4,(12) \phi_{\mathrm{r}}=\phi_{\mathrm{r}} \bullet 4 \\
& J=1,3,5,(12) \phi_{\mathrm{r}}=-\phi_{\mathrm{r}} \bullet
\end{aligned}
$$

$v=1$

2 Why para $\mathrm{H}_{2} \leftrightarrow$ ortho H_{2}

What kind of $\mathbf{S h a p e}$ is your wavefunction?

permutation
inversion

E*

1	1
-1	-1
-1	1
1	-1

1 : operation leaves sign same

$$
=1: \text { operation flips sign }
$$

$$
\begin{aligned}
E^{*} \boldsymbol{\phi} & =\boldsymbol{\phi} \\
(12) \boldsymbol{\phi} & =-\boldsymbol{\phi}
\end{aligned}
$$

		E	(12)	E^{*}
Σ_{g}^{+}	A_{1}	1	1	1
Σ_{u}^{-}	A_{2}	1	1	-1
Σ_{g}^{-}	B_{1}	$\mathbb{1}$	-1	-1
Σ_{u}^{+}	B_{2}	$\mathbb{1}$	-1	1

$$
\begin{aligned}
(12) \phi_{r}(\theta, \phi) & =\phi_{r}(\pi-\theta, \phi+\pi) \\
E^{*} \phi_{r}(\theta, \phi) & =\phi_{r}(\pi-\theta, \phi)^{J} \phi_{r}(\theta, \phi)
\end{aligned}
$$

rotational
ϕ_{r}

$$
\begin{array}{ll}
J=0,2,4, \ldots & \boldsymbol{A}_{\boldsymbol{1}} \\
J=1,3,5, \ldots & \boldsymbol{B}_{\boldsymbol{1}}
\end{array}
$$

		E	(12)	E^{*}	$(12)^{*}$
Σ_{g}^{+}	A_{1}	1	1	1	1
Σ_{u}^{-}	\mathbf{A}_{2}	1	1	-1	-1
Σ_{g}^{-}	B_{1}	1	-1	-1	1
Σ_{u}^{+}	B_{2}	1	-1	1	-1

nuclear spin

$$
\left.\begin{array}{l}
|\uparrow \uparrow\rangle \\
|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle \\
|\downarrow \downarrow\rangle
\end{array}\right\}
$$

$$
\begin{gathered}
(12)^{*} \\
1 \\
-1 \\
1 \\
-1 \\
E^{*} \phi_{\mathrm{ns}}=\phi_{\mathrm{ns}} \\
(12) \phi_{\mathrm{ns}}=\phi_{\mathrm{ns}} \\
\boldsymbol{A}_{\mathbf{1}} \\
\text { ortho } \\
E^{*} \phi_{\mathrm{ns}}=\phi_{\mathrm{ns}} \\
(12) \phi_{\mathrm{ns}}=-\phi_{\mathrm{ns}} \\
\boldsymbol{B}_{\mathbf{2}}
\end{gathered}
$$

electric dipole moment?

μ_{e}

1 permutation does not change $\boldsymbol{\mu}_{\mathbf{e}}$
only labeling changed
2 inversion does
because $\boldsymbol{\Gamma} \Rightarrow \boldsymbol{- r}$

	\mathbf{E}	(12)	\mathbf{E}^{*}	(12)
\boldsymbol{A}_{1}	1	1	1	1
\boldsymbol{A}_{2}	1	1	-1	-1
$\boldsymbol{B}_{\mathbf{1}}$	1	-1	-1	1
$\boldsymbol{B}_{\mathbf{2}}$	1	-1	1	-1

What group theory gives us for free

	E	(12)	E^{*}	$(12)^{*}$
\boldsymbol{A}_{1}	1	1	1	1
\boldsymbol{A}_{2}	1	1	-1	-1
$\boldsymbol{B}_{\mathbf{1}}$	1	-1	-1	1
$\boldsymbol{B}_{\mathbf{2}}$	1	-1	1	-1

1 as long as functions are basis of symmetry representation

fA1 \times f ${ }^{\text {2 }}$	$1 \times 1,1 \times 1,1 \times-1,1 \times-1$				
	1	1	-1	-1	$=\mathrm{fA} 2$
$\mathrm{fA}^{2} \mathbf{x} \mathrm{ff}^{\text {1 }}$	1×1, 1x-1, $-1 \times-1,-1 \times 1$				
	1	-1	1	-1	$=\mathrm{fB} 2$

this is why we spent so much time for group theory

2 when we integrate whole space, only fA1 has non-zero value

$$
\begin{aligned}
(12) \phi_{r}(\theta, \phi) & =(-1)^{J} \phi_{r}(\boldsymbol{\theta}, \phi) \\
E^{*} \phi_{r}(\theta, \phi) & =(-1)^{J} \phi_{r}(\boldsymbol{\theta}, \phi) \\
J & =0,2,4, \ldots \quad \boldsymbol{A}_{\mathbf{1}} \\
J & =1,3,5, \ldots \quad \boldsymbol{B}_{\mathbf{1}}
\end{aligned}
$$

electric quadrupole moment?

$\mu_{4}: \mathbb{A}_{1}$
$\phi_{r}: A_{1}$
$A_{1} A_{1} X=A_{1} \Rightarrow \quad X=A_{1}$
$\phi_{r}: B_{1}$
$B_{1} A_{1} X=A_{1} \Rightarrow X=B_{1}$

