Interstellar ice

diffuse cloud

dust grain silicate / graphite T_d = 10 K n > 10⁴ cm⁻²

dense cloud

 $T_d = 10-30 \text{ K}$ n = 100 cm⁻²

> ice mantle frozen molecules

The picture we perhaps know

What a Dark Cloud is made of?

water : enough to fill the ocean 200,000 times

Otherwise no complex organic molecules in the ISM.

Role of Interstellar ice

Vehicle to transport evaporative material across the cloud

Basic surface process

Basic surface process

Basic surface process

accretion deposition adsorption depletion

layers island formation droplet

transformation

phase transition crystalline ice amorphous ice

porosity

porous amorphous ice compact amorphous ice dangling bond

desorption energy diffusion energy

diffusion

3D diffusion

segregation

trapping

thermal diffusion

tunneling diffusion

polar / a polar ice

hop

3 reaction formation

hydrogenation deuteration tunneling reaction direct reaction (ER) OH-R stabilization

> reaction barrier reaction energy branching ratio

desorption ejection evaporation

thermal desorption photo desorption chemical desorption reactive desorption

co-desorption surface dependent desorption

destruction

chemical reaction photolysis photodissociation cosmic rays particle bombardment shuttering / sputtering grain grain?

Desorption thermal photo chemical (reactive)

Desorption depends on Surface material

φ
φ
φ
δ+

Water surface
1.5 D (debye)

CO surface 0.12 D (debye)

best for large atoms

~30-40 K {

too cold

~10K

starless cores are

to hop is not trivial

hopping = tiny desorption

best for large atoms

~30-40 K {

too cold

0

~10K

starless cores are

C

too cold

Spectral profile / depth affected by

surrounded by water ice water - rich environment

not surrounded by water ice water - poor environment

vibration restricted broad + redshift Palumbo & Strazzulla 1993, A&A 269, 568

> CO CO₂

apolar sharp + blue

How do we know that?

Annu. Rev. Astron. Astrophys. 53:541–81

What happens when a bare grain enters a dark cloud

Boogert ACA, et al. 2015. Annu. Rev. Astron. Astrophys. 53:541–81 why water ice forms before CO ice does?

Dust is cold in Diffuse cloud $T_k \sim 80 ext{ K}$ $T_d \sim 10-15 ext{ K}$

CO is more stable than H₂O C=O 90000 K O-H 55000 K

- H₂O 3.1 mag
- **CO**₂ **4.3 mag**

6.7 mag

- **CO₂ forms with H₂O**
 - ... and main path requires CO on surface

Explanations available

1 CO₂ formation without CO on the surface irradiation Mennella et al. Palumbo et al.

2 CO accretion takes time $t_{acc} \propto n^{-1} \rightarrow slow$ in diffuse cloud

3 all CO on surface converted to CO₂

4 or all the way to CH₃OH

Explanations available

1 CO₂ formation without CO on the surface irradiation Mennella et al. Palumbo et al.

bombardment

taken apart

frozen again

whatever CO landed on grain, are converted to CO₂

$CO + OH \rightarrow CO_2 + H$

this stops, because

OH not available as it is locked in H₂O

Vasyunin & Herbst 2013

CO does not hop any more to meet OH (OH immobile) Garrod & Pauly 2011

Methanol forests

Bergin et al. HEXOS HIFI Orion KL

Wang et al. 2011

image: Bally et al.

What happens

when a bare grain enters a dark cloud

