Astrophysik II: Galaxien und Kosmologie WS17/18 Übungsblatt 6

06.12.2017

Aufgabe 1. Active Galactic Nuclei

- (a) What different observational classes of AGN exist. Sketch the structure of an AGN, explaining the different components and how they relate to the observed classes.
- (b) For some source of mass M, radiating with luminosity L, the radiant flux is (assuming spherical symmetry);

$$S = \frac{L}{4\pi r^2} \left[\frac{erg}{cm^2 s} \right] \tag{1}$$

Assuming a gas of ionized hydrogen, with Thompson scattering dominating. find an expression for the maximum radiative luminosity possible while still maintaining hydrostatic equilibrium. hint: radiation pressure vs. gravity

- (c) Assuming a $10^8 M_{\odot}$ blackhole is accreting at this limit (the Eddington limit), converting 10% of the rest mass of the in-falling material into radiation. What is the maximum luminosity generated. The maximum accretion rate?
- (d) The variability of AGN can used to place limits on the physical size of the emission region. An astronomer has estimated an emission region no larger than $d=10^{-3}pc$. How many type O stars (assuming a typical mass $M_*=50M_{\odot}$) would be needed to produce the same luminosity determined above? What would their density be?
- (e) a bright supernova might have $L = 10^{10} L_{\odot}$, how many supernova would need to be going off constantly to produced the luminosity from above? What are some reasons that make such a scenario implausible?

Aufgabe 2. Gravitational Lensing

The angular deviation of photon passing at a distance ξ from a point mass M is given by;

$$\hat{\alpha} = \frac{4GM}{\xi c^2} \tag{2}$$

Abbildung 1: The photon is emitted by a source S and deflected on its way to the observer O, such that the observed image appears to be located at I. All angles involved are small, at just fractions of a degree.

(a) Show that the angle θ between the lensing mass and the image of the source must satisfy;

$$\theta^2 - \beta\theta - \frac{4GM}{c^2} \left(\frac{D_s - D_d}{D_s D_d} \right) = 0 \tag{3}$$

What observational implications of an equation of this form?

- (b) What occurs in the special case where $\beta = 0$?
- (c) A multiply imaged quasar is observed at $\theta_1 = 5.35$ " and $\theta_2 = -0.8$ " relative to galaxy acting as a gravitational lens. The quasar is observed at a redshift $z_s = 1.41$ and the lensing galaxy is observed at redshift $z_d = 0.36$. Approximate the mass of the lensing galaxy.
- (d) This problem is a crude approximation, what must be considered in a more physical example. What are some other observational implications (qualitatively)?