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ABSTRACT

The distribution of young stars found in the Chandra Carina Complex Project

(CCCP) is examined for clustering structure. X-ray surveys are advantageous for

identifying young stellar populations compared to optical and infrared surveys in

suffering less contamination from nebular emission and Galactic field stars. The

analysis is based on smoothed maps of a spatially complete subsample of ∼ 3000

brighter X-ray sources classified as Carina members, and ∼ 10, 000 stars from

the full CCCP sample. The principal known clusters are recovered, and some
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additional smaller groups are identified. No rich embedded clusters are present,

although a number of sparse groups are found.

The CCCP reveals considerable complexity in clustering properties. The

Trumpler 14 and 15 clusters have rich stellar populations in unimodal, centrally

concentrated structures several parsecs across. Non-spherical internal structure

is seen, and large-scale low surface density distributions surround these rich clus-

ters. Trumpler 16, in contrast, is comprised of several smaller clusters within a

circular boundary. Collinder 228 is a third type of cluster which extends over

tens of parsecs with many sparse compact groups likely arising from triggered

star formation processes. A widely dispersed, but highly populous, distribution

of X-ray stars across the ∼ 50 pc CCCP mosaic supports a model of past gen-

erations of star formation in the region. Collinder 234, a group of massive stars

without an associated cluster of pre-main sequence stars, may be part of this

dispersed population.

Subject headings: ISM: individual (Carina Nebula) - open clusters and asso-

ciations: individual (Trumpler 14, Trumpler 15, Trumpler 16, Collinder 228,

Collinder 232, Collinder 234, Bochum 11) - stars: formation - stars: pre-main

sequence - X-Rays: stars

1. Introduction

The Carina Nebula (NGC 3372) is perhaps the richest and most violent star forming

complex in the Galaxy within several kiloparsecs of the Sun. Its prominence arises because it

has produced, and is now illuminated and excited by, a string of rich OB clusters, a ‘cluster of

clusters’. It is thus the nearest analog to extragalactic HII regions and starburst phenomena.

Most studies of its stellar population have concentrated on its massive stars: main sequence

OB stars, supergiant O and Wolf-Rayet stars, and the eruptive luminous blue variable η

Car. However, it is also important to study its lower mass population as both early cluster

formation mechanisms and later dynamical evolution can cause spatial segregation by stellar

mass. The Initial Mass Function is also important as a tracer of star formation processes.

The present study describes new findings on the spatial clustering of young stars in

the Carina Nebula as derived from the new Chandra Carina Complex Project (CCCP),

a 1.42 deg2 mosaic obtained in the X-ray band with NASA’s Chandra X-ray Observatory

(Townsley et al. 2011a). Chandra X-ray surveys are remarkably efficient at identifying large

populations of both OB and lower mass pre-main sequence (PMS) stars in the rich young

clusters lying 1-3 kpc distant (see review by Feigelson et al. 2007). X-ray surveys suffer only
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mild contamination by older Galactic field stars (Getman et al. 2011) due to the rapid decline

in magnetic flare activity after stars reach the main sequence. X-ray selected populations

nicely complement optical and infrared selected populations which, due to heavy contami-

nation by field stars, are often restricted to lightly obscured and disk-bearing stars. In the

Carina region, the CCCP has located 14,368 X-ray sources of which 10,728 are classified as

probable stellar members of the region (Broos et al. 2011a,b).

Due to complex spatial distributions of both cloud obscuration and nebular emission,

the clustering structure of the Carina Nebula has not been clearly delineated. The historical

clusters were defined by Trumpler and Collinder in the 1930s from photographic plates.

In the 1970s, different conclusions were reached using photometrically selected OB stars:

Thé & Vleeming (1971) find that Trumpler 14, Trumpler 15, and Trumpler 16 are distinct

clusters with Trumpler 15 lying in front of the nebula; Feinstein et al. (1973) find that

Trumpler 14, Trumpler 16, and Collinder 232 are a contiguous large cluster. Walborn (1973,

1995) infers that three clusters are present: Trumpler 16 and Collinder 228 are a single

cluster divided by a dust lane, Trumpler 14 and Collinder 232 form a single cluster at a

somewhat greater distance, and Trumpler 15 is a minor background cluster. Photometric

studies found that Bochum 10, Bochum 11, and Collinder 228 are distinct sparse open

clusters (Patat & Carraro 2001; Carraro & Patat 2001). CCD photometry led Tapia et al.

(2003) to conclude that Collinder 232 is not a distinct cluster, while Carraro et al. (2004)

concluded that Collinder 232 is a physical aggregate. In a recent review, Smith & Brooks

(2008) infer that Collinder 228 is a part of Trumpler 16. A compact, semi-embedded cluster

known as the Treasure Chest produces a bright mid-infrared source south of Trumpler 16,

and a number of other fainter embedded star formation regions are known (Smith et al. 2005;

Smith & Brooks 2008). Part of the difficulty in delineating physical structures in Carina is

that a Galaxy spiral arm is seen in projection along the line of sight.

The lack of consensus on the cluster structure in the Carina Nebula is due to sev-

eral types of confusion that optical and near-infrared surveys must treat: foreground and

background star distributions (including OB stars unrelated to Carina along the line of

sight), spatially varying dust obscuration and emission line nebulosity, and possibly spa-

tially varying dust extinction laws within the Nebula. X-ray surveys are mostly free from

these problems, although they encounter other limitations. Once contaminant sources are

removed (Getman et al. 2011), an X-ray survey performed with sufficiently high resolution

optics will detect most OB stars and a large population of PMS stars down to a mass limit

that is roughly dependent on the X-ray flux sensitivity limit (see Telleschi et al. 2007, for

the statistical relation between X-ray luminosity and PMS mass). X-ray emission is strong

at all stages of PMS evolution from Class I protostars through arrival onto the main se-

quence (Preibisch & Feigelson 2005), although luminosities decrease somewhat in systems
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with high accretion rates and sensitivities are reduced in regions of high obscuration. Over-

all, X-ray surveys can be very effective in establishing the spatial structure of complex

clustered environments such as the Carina Nebula. Studies of this type have been carried

out for the NGC 2024, NGC 2264, M 17, Rosette Nebula, W 3, NGC 6334, and other rich

star forming complexes (e.g., Skinner et al. 2003; Flaccomio et al. 2006; Broos et al. 2007;

Feigelson & Townsley 2008; Feigelson et al. 2009; Wang et al. 2009).

After a brief description of the CCCP dataset (§ 2) and analysis methods, this paper

presents an unbiased map and list of major young stellar clusters in the Carina Nebula region

(§ 3.1). A less-complete list of small star groups (§ 3.2), some embedded in molecular clouds,

and large-scale star density enhancements (§ 3.3) is then developed. We conclude with a

list of star members in the clustered structures (§ 4) and a clarification of the historical

controversies outlined above (§ 5).

2. Observations and Methods

The CCCP observations and their analysis are described in detail by Townsley et al.

(2011a) and Broos et al. (2011a). Twenty-two overlapping pointings with the Advanced

CCD Imaging Spectrometer (ACIS), each subtending 17′ × 17′, were observed. They cover

a 1.4 square degree region roughly defined by 10h40m < α < 10h50m and −59◦00′ < δ <

−60◦30′. Typical exposures are 60 ks in duration, but the exposure map shows considerable

spatial variation.

Data analysis followed procedures described by Broos et al. (2011a). After data clean-

ing, several procedures are used to scan the images for faint source candidates. The final

source list is iteratively selected based on a Poisson probability criterion with respect to the

local background level. The X-ray data are aligned to the 2MASS/Hipparcos frame and,

in most cases, source positions have accuracies better than 0.5′′. Infrared counterparts are

found by positional coincidences with 2MASS, VLT HAWK-I (Preibisch et al. 2011), and

other published catalogs. Three classes of contamination — foreground stars, background

stars, and extragalactic sources — are present (Getman et al. 2011); Broos et al. (2011b)

assign class probabilities to individual CCCP sources.

The result of this analysis procedure is the identification of 14,368 X-ray sources, most

very faint. CCCP sources are designated CXOGNC for ‘Chandra X-ray Observatory Great

Nebula in Carina’. The present study is restricted to the 10,728 sources classified as ‘probable

Carina members’, which we call the ‘full sample’ . However, due to telescope effects (off-axis

mirror vignetting and degradation of the point spread function) and survey construction
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(overlapping fields with different exposures), factors of . 6 spatial variations in sensitivity

are present in the sample (Broos et al. 2011a, § 6.1). The result is an artificial clustering

of sources towards the centers of each ACIS field. To avoid confusing this instrumental

clustering and intrinsic star clustering in the Carina region, we construct a subsample of

3,220 sources within the full sample defined by a threshold on observed X-ray photon flux,

logFt,photon > −5.9 photon s−1 cm−2 in the ‘total’ (0.5 − 8 keV) Chandra band 1. The

entire survey area has been observed to this sensitivity level, and we call this subsample the

‘spatially complete sample’.

Our science goals here are to define star groupings in the spatial distribution of Chan-

dra Carina members. The statistical problem of unsupervised clustering of an inhomoge-

neous and multiscale spatial point process has no definitive solution. (‘Unsupervised’ means

that no prior knowledge of cluster number or location is utilized.) A variety of estimation

methods can be used including agglomerative hierarchical clustering (e.g., the ‘friends-of-

friends’ algorithm), k-means partitioning, and data mining classification (Duda et al. 2000;

Kaufman & Rousseeuw 2005). Due to the hierarchical complexity of the X-ray source dis-

tribution in the Carina Nebula, we found that traditional methods do not readily provide

reliable results; for example, there is no single level at which the agglomerative clustering

dendrogram can be cut that reveals all of the clearly evident clusters. Density-dependent

clustering algorithms such as DBSCAN may treat this problem (Ester et al. 1996; Pei et al.

2009), but we opt here for a simpler alternative approach of smoothing using kernel den-

sity estimation with normal (Gaussian) kernels (Silverman 1992). We examined whether

results would be different if the density estimation were performed in three dimensions—

right ascension, declination, and median X-ray event energy representing absorption—but

we found that few structures cover a wide range of absorption and no overlap between lightly

and heavily obscured clusters was present. Therefore, a two-dimensional treatment seems

adequate.

Kernel density estimation is a well-established technique to smooth individual data

point locations into a continuous spatial distribution; that is, we convert the individual

source (α, δ) locations to a continuous map of source surface density. Two parameters must

be provided: the bandwidth of the kernel, and an appropriate density threshold that sepa-

rates clusters from unclustered sources. In the analysis below, we choose these parameters

subjectively. Therefore, the cluster lists and memberships provided here cannot be consid-

ered to be unique or validated to some statistical level of significance. There is no assurance

that these clusters are physically real or fully represent the spatial structure of the Carina

1 This photon flux is defined by Broos et al. (2010, §7.4) using three measured total-band quantities as

Ft,photon = NetCounts t/ExposureT imeNominal/MeanEffectiveArea t.
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X-ray source population. However, the method does have several advantages: no prior as-

sumptions were made on the number, locations, or shapes of clusters; the entire dataset

is treated in a uniform fashion; and the astronomical results can be clearly visualized and

tabulated. Schmeja (2011) has compared several methods for finding simulated star clusters

under realistic conditions and reports that binned star counts (a simple method similar to

kernel density estimation) performs comparably or better than nearest neighbor, Voronoi tes-

sellation, and pruned minimal spanning tree methods. We note that a mathematical result

known as the ‘No Free Lunch Theorem’ states that there is no general way to establish that

one clustering solution is better than another in a multivariate unsupervised classification

problem (Wolpert & Macready 1997).

The kernel density estimation was performed with the program bkde2D (2-dimensional

binned kernel density estimator) in the KernSmooth package of the R statistical program-

ming environment. R is the largest public-domain statistical computing package2; see, for

example, Crawley (2007) regarding its use. The data were transformed from astronomical

(α, δ) coordinates to projected angular distances prior to smoothing to avoid a ∼ 3% distor-

tion in the metric due to the spherical geometry across the CCCP mosaic. The smoothed

maps were then transformed back to right ascension and declination units for conve nient

display. Other analyses and displays were made using Interactive Data Language3 and ds94.

3. Clustered Structures in Carina

3.1. Principal X-ray Selected Star Clusters

As outlined in the previous section, we cannot consider the full CCCP sample of 14,368

X-ray sources in the Carina region for two reasons: a fraction of the sources are foreground

or background contaminants, and the survey has inhomogeneous sensitivity due to charac-

teristics of the Chandra telescope and the survey design. Both of these effects are greatly

reduced in the spatially complete sample of 3,220 probable Carina members above a photon

flux limit described above.

Figure 1 shows the distribution of this spatially complete Carina member sample. Panel

(a) shows the individual star positions, while panel (b) shows the smoothed source surface

2http://r-project.org

3http://www.ittvis.com/idl

4hea-www.harvard.edu/RD/ds9/

http://r-project.org
http://www.ittvis.com/idl
hea-www.harvard.edu/RD/ds9/
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density using a normal kernel with standard deviation σ = 30′′. Assuming a distance of

2.3 kpc to the Carina Nebula, this corresponds to a Gaussian kernel with σ ≃ 0.3 pc or

full-width-half-maximum FWHM = 0.8 pc. We select the density threshold for cluster

identification to be the third contour (0.003 in the normalized convolution of the kernel with

the data) in this surface density map. The 20 surface density peaks above this threshold

are labeled in the figure and listed in Table 1 as the principal X-ray selected clusters in

the region. We adopt the nomenclature ‘CCCP-Cl’ for ‘Chandra Carina Complex Project

Cluster’ to identify these clusters (column 1). The cluster positions (columns 2−3) represent

the surface density peaks; due to nonspherical distributions, these may not correspond to

mean or median positions of the member stars. When a larger σ = 40′′ kernel is used, the

Tr 16 substructure becomes less distinct, and when a smaller σ = 20′′ is used, some of the

small groups (§ 3.2) begin to emerge.

While the spatially complete sample (3,220 bright probable Carina members) allows

a spatially unbiased identification of rich clusters, we use the full sample (10,728 probable

Carina members) to estimate properties of each cluster because the CCCP survey sensitiv-

ity variations are generally small on intra-cluster scales. Figure 2 shows the distribution

of the full sample superposed on the contours of clusters found from Figure 1. The figure

also outlines the individual ACIS fields; they give a clear warning that the spatial variations

in the full sample can be due to instrumental effects (off-axis sensitivity degradation and

overlapping exposures) as well as to intrinsic star clustering in the Carina complex. f Our

use of a σ = 30′′ (0.3 pc) Gaussian kernel and omission of fainter X-ray sources also blurs

substructure within the rich Tr 14, 15 and 16 clusters. More complete analyses of the struc-

ture of these clusters are given by Ascenso et al. (2007), Wang et al. (2011), and Wolk et al.

(2011), respectively.

To estimate the star population N of each cluster, we give the number of sources in the

spatially complete sample within some boundary around the cluster peak locations to be

cluster members. The contours, counted from the lowest contour in Figure 1b, are listed in

column 4 and N is given in column 5 of Table 1. For example, contour “2m” represents the

second lowest contour where “m” is appended when the contour was modified to produce

a closed boundary. Observed cluster populations range from N ≃ 10 to over 1000 X-ray

selected stars.

In PMS populations, useful estimates of line-of-sight interstellar gas column densities,

NH , can be obtained from the observed median X-ray event energy statistic (Feigelson et al.

2005; Getman et al. 2010). Table 1 reports the average and standard deviation of this

statistic, 〈MedE〉 (column 7), for the NME (column 6) cluster members for which median

event energy is available (sources with >4 net counts extracted). Visual absorption, AV , can
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be estimated from the gas column densities, NH , inferred from 〈MedE〉 assuming standard

gas-to-dust ratios (Vuong et al. 2003). These AV estimates, ranging from AV ≃ 2 to 10

magnitudes, are reported with low precision in column 8.

Correspondences to previously known optical and near-infrared star clusters (column

9) are established visually from maps given by Feinstein (1995) and by Smith & Brooks

(2008). Note that Trumpler 16 is divided into seven clusters in our analysis. Associations

with mid-infrared clusters in the South Pillars region are based on the Spitzer IRAC study

of Smith et al. (2010). A ⋆ symbol indicates whether an X-ray cluster lies in the region

occupied by the South Pillars and the large Collinder 228 star cluster discussed in § 5.2. The

final column of Table 1 lists the dominant massive stars within or near each cluster with

spectral types obtained from Gagné et al. (2011) or SIMBAD. These are labelled a, b, . . .,

y to identify them in Figure 2 where they are plotted as triangles. These are far from a

complete list of OB stars, but give a general indication of the cluster richness in the region.

The X-ray OB population in the CCCP, including their multiplicity and X-ray properties,

is discussed in detail by Gagné et al. and Povich et al. (2011a).

3.2. Small Groups of X-ray Stars

While the smoothed map of Figure 1 is effective in finding clusters with scales around

0.5′ − 5′ (0.3 − 3 pc) in a spatially unbiased fashion, it misses some small groups that are

evident in visual examination of the full sample. We therefore constructed a smoothed

density map of the full sample with a 10′′ Gaussian kernel, and made a list of structures

above a subjectively chosen density threshold. This new list of small groups is restricted to

regions lying outside the boundaries of the principal clusters defined in column (4) of Table

1. Note that, due to instrumental spatial sensitivity variations across the field using the full

sample (§ 2), the search for sparse groups cannot be considered complete to some fixed flux

limit. The group list also depends on the choice of smoothing kernel; a larger 15′′ kernel

merges some of the closer groups into larger structures.

The resulting list of 31 small X-ray selected groups of probable Carina members is

presented in Table 2; columns 4-7 have the definitions as in Table 1. The group member

tallies, N , are measured in 40′′ diameter circular regions centered on the local peaks of

the smoothed map. These groups are designated ‘CCCP-Gp’ to distinguish them from the

larger and richer CCCP-Cl clusters. The groups are both compact and sparse, exhibiting

only 5 < N < 12 X-ray members. Typical member surface densities are 50 − 100 stars

pc−2. Most lie in the southern portion of the mosaic, and many have counterparts among

the mid-infrared clusters identified by Smith et al. (2010) from Spitzer IRAC images of the
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South Pillars region. The early-type stars in this region are often considered to be members

of an extended open cluster Collinder 228 (Feinstein et al. 1976), so one might choose to

associate these small X-ray groups with Collinder 228 (§ 5.2).

3.3. Large-Scale Regions with Young Stars

The clusters and groups defined in Tables 1 and 2 contain ∼ 3, 000 and ∼ 300 stars in

the full sample, respectively. But more than twice as many stars lie outside these cluster and

group boundaries in large regions with enhanced stellar surface densities. We have divided

these unclustered stars into three spatial regions shown in Figure 1b: Region A around

and between Trumpler 14 and 15; Region B within and south of the Trumpler 16 complex;

and Region C over the Collinder 228 (South Pillars) area. Region D represents all other

widely distributed stars in the full sample; this group has > 5000 probable Carina members.

All 14,368 CCCP sources lie in one of these four Regions; for example, Region A includes

members of Trumpler 14 and 15 as well as members in the surrounding area. The observed

group member tallies and average absorptions of these regions are listed at the end of Table

1.

4. Cluster Memberships

To document the clustering results reported here, and to assist further study of indi-

vidual clusters and groups, Table 3 lists the cluster, group, and region membership for all

14,368 sources in the CCCP catalog. Columns (1)−(8) reproduce useful source properties

from Broos et al. (2011a, Table 1): CCCP sequence number, label and IAU-designated name;

right ascension and declination; net extracted counts; the Ft,photon nonparametric measure

of photon flux in the 0.5− 8 keV band (§ 2); and background-corrected median energy. Col-

umn (9) reproduces from Broos et al. (2011b) the likely classification of each source, based

on X-ray, infrared, and positional properties: class H1 is a probable foreground star; H2 is a

probable Carina member; H3 is a probable background star; H4 is a probable extragalactic

contaminant; and H0 is an unclassified source. Columns (10) and (11) report the cluster

memberships obtained here. Designations “C1”, “C2”, . . ., “C20” refer to the clusters in

Table 1. Designations “G1”, “G2”, . . ., “G31” refer to the groups in Table 2. Designations

A, B, C, and D refer to the large-scale regions discussed in § 3.3.

Recall that the samples studied here were restricted to the H2-class sources (§ 2) and the

classification procedure is unreliable in many cases. Particularly in the large-scale Regions
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A-D, it is quite possible that some CCCP sources classified as probable Carina members

(class H2) are in fact foreground (class H1) or background (class H3) Galactic field stars.

Validation of the classifier using HAWK-I color-magnitude diagrams (Preibisch et al. 2011)

suggests that we probably overestimate the population of Carina members and underesti-

mated the population of field star contaminants by a few percent (Broos et al. 2011b, § 5).

Conversely, some individual H1 and H3 stars are likely true Carina members, as are many of

the unclassified sources (class H0). We thus caution that the individual source classifications

given in Table 3 represent our best knowledge, but will have a considerable number of errors.

5. Results and Discussion

The map of spatially complete probable Carina members from the CCCP survey in

Figure 1 and the associated list of clusters in Table 1 are the principal empirical results of

this study. They give a much clearer view of the stellar concentrations than available from

historical optical studies which are confused by complicated distributions of dust absorption

and nebular emission.

5.1. The historic Trumpler clusters

The three principal clusters — Trumpler 14, 15, and 16 — are distinct from each other,

with strong peaks in stellar surface density separated by substantial dips. The Chandra data

do not support the suggestion that Trumpler 14 and 16 are contiguous, separated only by

a dust lane (Feinstein et al. 1973). A broad bridge of stars is seen between Trumpler 14

(CCCP-Cl 1) and Trumpler 15 (CCCP-Cl 8), which is part of the Region A large-scale

density enhancement. This bridge strongly indicates that Trumpler 15 is part of the Carina

complex rather than the chance superposition of a more distant cluster as suggested by

several authors (e.g. Walborn 1995). CCCP results on Trumpler 15 and its relation to the

Carina complex are discussed in detail by Wang et al. (2011).

Each of these three rich clusters have internal structure which cannot be readily summa-

rized by simple terms such as a circular or elliptical shape. In both Trumpler 14 and 15, the

peak in stellar surface density is offset from the center of outer density contours by 0.5−1 pc,

and the distribution of lower mass members is not symmetrically distributed around the

dominant O stars. The internal structure of Trumpler 15 is discussed by Wang et al. (2011).

The stellar structures may be related to nearby molecular cloud cores #10 and #11 stud-

ied by Yonekura et al. (2005). Spherically symmetric models (for example, as discussed
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by Ascenso et al. (2007) for Trumpler 14) will not capture the full complexity of the star

distribution.

The internal structure of Trumpler 16 is qualitatively different from Trumpler 14 and

15, as it does not have a single surface density peak. Although our analysis divides it into

seven clusters (CCCP-Cl 3, 4, 6, 9, 10, 11, and 12), this number of subclusters identified

depends strongly on the smoothing kernel. The structure seen in Figure 1 can be described

as hierarchically clustered. For example, one could choose to define a single cluster centered

at (10h44m50s,−59◦43′) with diameter 11′ (7.3 pc) containing several subclusters, none of

which lies at the cluster ‘center’. The curved southern boundary of the cluster may, in part,

be caused by absorption in the V-shaped dust lane that crosses the middle of the Carina

field. See Figure 1 of Albacete-Colombo et al. (2008) for the spatial relationship between

the dust lane and the X-ray population. Evans et al. (2003) and Albacete-Colombo et al.

(2008) give detailed Chandra studies of the X-ray properties of Trumpler 16 stars. CCCP

results on Trumpler 16 are discussed in detail by Wolk et al. (2011).

5.2. The historic Collinder and Bochum clusters

The Figure 1 map clarifies the long-standing confusion regarding the status of less rich

clusters in the Carina complex (§1). We find that Collinder 232 east of Trumpler 14 is a

distinct, compact cluster (CCCP-Cl 5), confirming the conclusion of Carraro et al. (2004).

It is clear that Collinder 232 is not just part of the halo of Trumpler 14. Note that, as

in the richer Trumpler clusters, its lower mass stars are not centered on its dominant O

stars. Infrared studies show that Collinder 232 stars have a wide range of absorptions and a

considerable population of very young protostars (Preibisch et al. 2011; Povich et al. 2011b).

Several researchers have commented that Collinder 228 in the South Pillars region

is not a distinct cluster, but may be an extension of Trumpler 16 (e.g. Walborn 1995;

Smith & Brooks 2008). The X-ray source distribution in Figure 1 does not support this

interpretation, as the stellar surface density of Trumpler 16 shows a distinct near-circular

boundary with diameter around 11′.

Instead, the X-ray source distribution in the southern part of the Carina complex sup-

ports the idea that Collinder 228 is a loose association of young stars and sparse groups

distributed over a very large (> 20′ diameter) region centered around QZ Car at (10h44.4m−

60◦00′), as described by Feinstein et al. (1976). Collinder 228 might be considered to be the

stars associated with the dusty South Pillars cloud structures (Smith et al. 2000, 2010). Our

Region C of enhanced X-ray star densith would then trace the lower mass stars in the inner
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10′ of the cluster5. Examination of Figure 2 shows the low mass star distribution attributable

to Collinder 228 is not uniform but exhibits distinct clumping. The most prominent group-

ing is around (10h45.6m,−59◦58′) which includes CCCP-Cl 13, 17 (the Treasure Chest), 18,

and CCCP-Gp 21, 22, 23, 24, 25, 26, and 27. Another concentration is a ∼ 8′ diameter

region around (10h44.0m,−60◦00′) where we find CCCP-Gp 8, 9, 10, 11, 12, 13, 14, 16, and

CCCP-Cl 2. Group 14 is centered on the well-studied multiple supergiant system QZ Car

(O9.7 I + O8 III, V=6.3) studied by Parkin et al. (2011). Other groups are distributed up

to ∼ 20′ south of the Treasure Chest including CCCP-Cl 16, 19, 15, and CCCP-Gp 18.

These stellar groupings are also independently found in the Spitzer mid-infrared study of

Smith et al. (2010). We caution that the Collinder 228 region considered here covers several

ACIS fields, so the X-ray sensitivity is not uniform. In particular, sparse groups of lower

mass stars that happen to fall far off-axis in the ACIS observations may be missed.

Collinder 234 is a poorly studied cluster lying ∼ 3′ southeast of CCCP-Cl 12, the highest

surface density spot of X-ray stars in the Trumpler 16 complex. It is reportedly as a concen-

tration of & 10 stars with diameter 4′ in the 2MASS survey centered at (10h45.2m,−59◦45′)

(Dutra et al. 2003). A cluster at the Collinder 234 location is not confirmed in the X-ray

sample of PMS stars. The CCCP sample does include several optically bright late-O stars

(Gagné et al. 2011, and SIMBAD): LS 1870 (V=10.0, O9 III); MJ #484 (V=10.0, O9 III);

MJ #496 (V=11.0, O8.5 V); HD 93343 (V=9.6, O8 V + O 7-8.5 V); MJ #516 (V=9.3, O8

V + O9.5 V); MJ #517 (V=9.3, O7 V + O8 V + O9 V); and MJ #535 (V=9.3, O5.5-O6

V(n)((fc)) + B2 V-III). Except for a sparse subcluster of a few lower mass stars within a

few arcseconds of MJ #496, there are no X-ray emitting PMS stars in the vicinity of these

massive stars. This is quite extraordinarily different from other young clusters. The Orion

Nebula Cluster has a similar distribution of late-O stars and would have ∼ 360 PMS stars

detected in the CCCP were it to lie in the Carina Nebula (Townsley et al. 2011a).

Bochum 11 to the southeast is confirmed in the X-ray cluster list (CCCP-Cl 20) as a

sparse cluster with low stellar surface density. Examination of Figure 2 suggests that it

consists of two star groupings in a ∼ 6′ (4 pc) diameter region: one containing CCCP-Cl 20

5Neither the X-ray sources nor the historical optical photometric samples show a concentration of

young stars at the nominal location of Collinder 228 listed in open cluster catalogs: (10h43.8m,−60◦05′)

(Kharchenko et al. 2005, and the SIMBAD database), (10h42.1m,−59◦55′) (the WEBDA database on

open clusters, http://www.univie.ac.at/webda), or (10h43.2m,−60◦00′) (the 2MASS location given by

Dutra et al. 2003). These locations are several arcminutes west of our stellar groups in Region C, and

we do not see any enhancement in young star densities at these locations. We suggest that the optical

and near-infrared surveys are not detecting a physical young stellar cluster at their stated locations, but

rather are concentrating on local groups of massive stars within the more extended distribution described

by Feinstein et al. (1976) and seen as Region C of the X-ray selected population.

http://www.univie.ac.at/webda
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and CCCP-Gp 31 around (10h14m16s,−60◦07′); and the other containing CCCP-Gp 28, 29,

and 30 around (10h46m52s,−60◦05′). Group 28 lies ∼30′′ northwest of the spectroscopic

binary HD 93576 (V=9.7, O9 IV) and appears associated with the mid-infrared source

MSX6C G287.9816-00.8724. Group 30 is centered on HD 93576 and appears associated with

MSX6C G287.9475-00.8846.

5.3. Obscured and embedded clusters

Highly luminous and extended mid-infrared sources, such as IRAS sources with bolo-

metric luminosities in the L ∼ 104 − 106 L⊙ range, and compact radio H II regions are

relatively rare in the Carina complex compared to other active high-mass star forming re-

gions. This demonstrates that few embedded clusters with luminous OB stars. However, two

infrared sources associated with current star formation appear as X-ray selected clusters.

First, CCCP-Cl 17 is the Treasure Chest, a compact cluster with bright mid-infrared

emission dominated by an O9.5 star producing the compact HII region MSX G287.84-0.82

(Hägele et al. 2004; Smith et al. 2005). About 100 members are in the full X-ray sample.

Their average X-ray median energy is 1.8 keV, only slightly higher than the rich lightly

obscured clusters; this is surprising considering the AV ∼ 10 − 50 found from infrared

studies of some Treasure Chest members. This suggests that Treasure Chest stars have a

wide range of absorptions.

Second, a sparse grouping of CCCP sources can be seen on the eastern side of the Trea-

sure Chest cluster near the compact mid-infrared source IRAS 10439-5941 =MSX6C G287.84-

0.82, a very bright illuminated pillar in mid-infrared images of the Carina Nebula (Smith et al.

2000; Rathborne et al. 2004). It is a faint radio continuum compact HII region and is associ-

ated with a molecular globule with column density NH2
≃ 9× 1021 cm−2 and mass 30− 200

M⊙. The infrared source has a very high bolometric luminosity 3.7× 106 L⊙ and likely rep-

resents the collective emission of an embedded OB cluster. The CCCP survey has detected

a few of these stars.

Third, Group 20 just south of Trumpler 16 is centered 30′′ west of IRAS 10430-5931,

an embedded protostar with bolometric luminosity ∼ 1×104 L⊙ accompanied by a compact

group of lower-mass stars near the edge of the bright-rimmed molecular globule MSX6C G287.63-

0.72. This small star forming region is discussed in detail by Megeath et al. (1996). The

strongest X-ray source here is a high-Lx PMS star presented by Evans et al. (2003).

Other sparse groups of X-ray sources that did not satisfy our criteria for producing the

lists in Tables 1 and 2 may be present. For example, a few sources appear to be associated
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with the mid-infrared source IRAS 10441-5949 = MSX6C G287.8893-00.9316, which is mod-

eled as a dusty proto B0 star with bolometric luminosity ≃ 3 × 104 L⊙ by Rathborne et al.

(2004).

The inferred fraction of embedded X-ray stars is relatively low compared to other large-

scale star formation regions studied with Chandra. For example, the M 17, Rosette, and

NGC 6634 complexes each have hundreds of embedded X-ray stars, a significant fraction

of the population in the associated revealed central clusters (Broos et al. 2007; Wang et al.

2009; Feigelson et al. 2009). The comparison with the Rosette Molecular Cloud is partic-

ularly valuable, as the CCCP ACIS exposures have sensitivities similar to the RMC maps

presented by Wang et al. where a number of obscured clusters, each with dozens of X-ray

stars, were readily detected. Were a similar ratio of obscured-to-revealed stars present in

the Carina complex, thousands of heavily absorbed stars would have been detected with

cluster/group 〈MedE〉 values in the range 2−4 keV. Nonetheless, a moderate population of

nascent stars is present: ∼ 1400 infrared-excess young stellar objects is found from Spitzer

IRAC maps, most of which are not detected in X-rays (Povich et al. 2011b).

5.4. New star groups

1. CCCP-Cl 14 lies southeast of Trumpler 16, centered on the eclipsing binary O5.5V

star V662 Car (Figure 2c). Sanchawala et al. (2007) first reported an X-ray selected

cluster here, identifying 10 of the 41 CCCP sources we assign to the cluster. Lying 2′

northeast of the C18O cloud core #12, its CCCP members have a somewhat higher

absorption (AV ≃ 10 mag; Table 1) than that reported by Sanchawala et al. (2007) for

the other principal clusters in the Carina complex.

2. CCCP-Gp 18, lying at the southern tip of the mosaic, has only five faint X-ray source

members, but is extraordinary in two ways (Townsley et al. 2011a). Three of the

sources lie within ∼ 1′′ of each other, and the group’s median energy, 〈MedE〉 > 5 keV,

is equivalent to AV ∼ 125 mag. Chandra observations of star forming regions have,

on rare occasions, detected sources with median energies around 5− 6 keV. Examples

include several stars near the Becklin-Neugebauer hot core in Orion (Grosso et al.

2005), several stars in NGC 6334 I(N) and nearby embedded clusters (Feigelson et al.

2009), and two Class 0/I protostars in nearby star forming cores (Hamaguchi et al.

2005; Getman et al. 2007). However, there have been no reports of a molecular cloud,

diffuse or compact infrared emission, or other indicator of current star formation at

the location of Group 18 (10h44m51.9s,−60◦25′09′′).

3. CCCP-Gp 4 and 7 can be seen as low contours ∼ 10′ northwest of Trumpler 14 in
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Figure 1. Group 4 is associated with the faint mid-infrared source MSX6C G287.2238-

00.5339 and the C18O cloud core #9 with estimated molecular gas mass 1400 − 2200

M⊙ and column density logNH2
≃ 21.9 cm−2 (Yonekura et al. 2005). Three prominent

2MASS stars are also present, two of which are young stars with infrared-bright disks

(Mottram et al. 2007). Group 4 members have a high 〈MedE〉 equivalent to AV ∼

11, consistent with being embedded in this cloud. These groups are discussed in

Povich et al. (2011b).

5.5. Large-scale and Unclustered Star Distributions

The origin of the dispersed distribution of young stars discussed in § 3.3 is not obvious,

and several causes may be present. The stars in Regions A and B may be associated with

the Trumpler 14, 15, and 16 clusters, either as primordial low density halos or as members

ejected by dynamical interactions. Evidence for a stellar halo around Trumpler 14 also

emerged from the near-infrared study of the inner 3′ by Ascenso et al. (2007). The star

distribution in Region C was discussed in § 5.2. A few groups are associated with current

star formation in the Southern Pillars, and we suspect that other members were formed in

similar molecular structures that have now dissipated. Further discussion of this possibility

appears in a recent Spitzer study of stars in the Southern Pillars (Smith et al. 2010) and in

Chandra studies of star formation around nearby HII regions (e.g. Getman et al. 2007).

The widely distributed stars (Region D) do not exhibit any concentrations or association

with prominent young clusters. Their distribution is likely to extend beyond the ∼ 50 pc

CCCP mosaic. These most likely represent an older population of pre-main sequence stars,

much as the Orion Nebula region (Ori OB1d) is surrounded by older, more dispersed clusters

(Orion OB 1a-c in Bally 2008). A widely distributed population of massive stars was also

found in a Chandra study of the NGC 6334 complex (Feigelson et al. 2009). The idea of a pre-

vious generation of star formation whose most massive members have produced supernovae

in Carina is strongly indicated by the strong diffuse X-ray emission (Townsley et al. 2011b),

the presence of a young neutron star in Region D east of Trumpler 16 (Hamaguchi et al.

2009), and the absence of early-O stars in Tr 15 (Wang et al. 2011).

We can quantify the size of the populations in the four large-scale Regions by construct-

ing X-ray luminosity functions (XLFx) of CCCP sources classified as Carina members. These

are shown in Figure 3 for each Region, where a small number of highly luminous sources

associated with known OB stars (Skiff 2009) are removed to facilitate comparisons among

lower-mass populations. Approximate observed X-ray luminosities for individual sources

are obtained by multiplying the photon flux Ft,photon (§ 2) times the median energy and
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the factor 4πd2 where d = 2.3 kpc. We then apply an absorption correction based on the

median energy value, as described by Getman et al. (2010). This correction is not large

in most cases, but is not available for the faintest sources. The Carina Region XLFs are

compared to the XLF of 839 lightly-obscured low-mass members of the Orion Nebula Clus-

ter (ONC) obtained in the Chandra Orion Ultradeep Project (COUP, Getman et al. 2005;

Feigelson et al. 2005). The membership and Initial Mass Function of the ONC is accurately

measured (e.g. Muench et al. 2002), so it can serve as a calibrator for more distant clusters.

We assume the ONC population above the brown dwarf limit (M > 0.08 M⊙) is 2,800 stars

(Hillenbrand & Hartmann 1998).

The CCCP XLFs have a similar shape to the COUP XLF above logLx ≃ 30.5 erg s−1;

the XLFs in this luminosity regime are roughly a powerlaw dN/d(logLx) ∝ −1.0 to −0.9)×

logLx. We then examine the vertical offsets between the fitted powerlaws in Figure 3 to

estimate the total populations of young stars in each region. The membership and Initial

Mass Function of the ONC is measured (e.g. Muench et al. 2002), so it can serve as a

calibrator for more distant clusters. We assume that the ONC population is 2800 stars,

obtained by Hillenbrand & Hartmann (1998) within a radius of 2.06 pc. The total population,

including brown dwarfs and outer regions of the cluster, may be substantially larger.

The CCCP XLFs have a similar shape to the COUP XLF above logLx ≃ 30.5 erg s−1;

the XLFs in this luminosity regime are roughly a powerlaw dN/d(logLx) ∝ −1.0 to −

0.9)× logLx. We then examine the vertical offsets between the fitted powerlaws in Figure 3

to estimate the total populations of young stars in each region. The results are Region A

has 10 ONCs (28,000 stars); Region B has 6 ONCs (17,000 stars); Region C has 5 ONCs

(14,000 stars); and the outlying areas in Region D have 16 ONCs (45,000 stars). The total

population in the CCCP field is then about 104,000 stars down to the brown dwarf limit.

Caution is needed in interpreting these estimates of total Carina member populations.

The XLFs will be significantly affected by the strong spatial variations of the survey sensi-

tivity on these scales which combine several ACIS pointings. We have further assumed that

the classification of individual CCCP sources into Carina members and contaminants has no

error, and that none of the ‘unclassified’ sources are members. Both of these assumptions are

not accurate (Broos et al. 2011b). CCCP sources with very few photons do not have esti-

mated X-ray luminosity values and are missing from the lower end of the XLFs. The 104,000

star estimate undercounts heavily obscured populations that are not well-represented in the

CCCP survey (Povich et al. 2011b). Nonetheless, because these estimates of total young

stellar population are scaled to the ONC where the membership is well-established, they

represent the estimates of the full populations down to the brown dwarf limit, not just the

X-ray detected sample.
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6. Conclusions

The Chandra Carina Complex Project provides a new window on the clustering struc-

tures in the Carina Nebula, arguably the nearest laboratory for studying starburst phenom-

ena seen in other galaxies. The X-ray data, particularly the smoothed map of the spatially

complete sample in Figure 1, elucidate clustering structure that is difficult to visualize from

optical (where patchy dust absorption and nebular emission dominate) and infrared (where

dust emission and field star contamination dominate) images. While the detailed lists of

clusters, groups, and stellar memberships are not uniquely derived, the overall picture of the

Carina ‘cluster of clusters’ emerges.

The main result of astrophysical interest is that different types of clusters appear to

be present. First, Trumpler 14 and 15 might be called ‘classical’ young stellar clusters

which are likely to evolve into OB associations. They have rich stellar populations in a

unimodal, centrally concentrated structure several parsecs across. Further study is needed

to understand the non-spherical distributions and off-center massive stars. Trumpler 16

represents a second class of rich cluster with a multimodal structure. As the stellar crossing-

time is probably several million years, its clumpy structure may represent an unequilibrated

stage of cluster formation. Collinder 228 is a third type of cluster which extends over tens of

parsecs with many sparse compact groups without any rich concentration. We suspect that

these groups arose from triggered star formation processes over an extended time period in

illuminated cloud structures like the South Pillars as discussed in more detail by Smith et al.

(2010); Povich et al. (2011b).

The large-scale, low surface density distributions in Regions A and B may be a fourth

type of clustering structure. The O stars historically attributed to Collinder 234 that do

not have an associated concentrated population of PMS stars may be part of this dispersed

population. It is remarkable that the dispersed stars in Region A (∼ 2900 detected stars) are

more numerous than those inside our boundaries delineating Trumpler 14 and Trumpler 15

(∼ 1900 detected stars). The origin of these large-scale stellar structures is not obvious.

The widely dispersed population far from all young clusters (Region D) is estimated to

have 45,000 young stars. Some may have been dynamically ejected from dense cores of

concentrated rich clusters, and others may be evaporated from sparse groups. They may

have formed in a dispersed triggered fashion similar to the Collinder 228 stars in the South

Pillars today, in which case the triggered population may exceed the clustered population.

Or they may represent an early generation of star formation from cloud material that is

now dispersed, analogous to the older Orion clusters around the Orion Nebula Cluster.

Observational constraints on the ages of the dispersed population would be very helpful in

discriminating their origin.
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The X-ray luminosity functions of the large-scale regions of the Carina complex are

estimated and scaled to the Orion Nebula Cluster. Although only approximate, we estimate

that the entire CCCP field has ∼104,000 young stars of which only half lie in concentrated

clusters.

A final important result is that most CCCP X-ray sources exhibit only light absorption,

much of which is due to foreground line-of-sight material. X-ray clusters and groups are not

concentrated in the molecular clouds mapped in CO line emission (Yonekura et al. 2005),

and the CCCP finds fewer embedded stars and clusters than are reported in Chandra studies

of other giant molecular clouds. As a considerable population of infrared-excess protostars

are found by Povich et al. (2011b), this suggests that the CCCP is not sufficiently sensitive

to detect most of the younger, embedded protostars.

The CCCP thus reveals considerable complexity in clustering structures and processes.

These can be studied in more detail within Carina, and insights from Carina can be extended

to further our understanding of starburst phenomena in broader contexts.

Acknowledgements. We thank Cathie Clarke (Cambridge) and Nicolas Grosso (Stras-

bourg) for discussions, and the anonymous referee for useful suggestions. This work is

supported by Chandra X-ray Observatory grant GO8-9131X (PI: L. Townsley) and by the

ACIS Instrument Team contract SV4-74018 (PI: G. Garmire), issued by the Chandra X-ray

Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf

of NASA under contract NAS8-03060. K.G.S. is supported by NSF grant AST-0849736.

CXO (ACIS)

REFERENCES

Albacete-Colombo, J. F., Damiani, F., Micela, G., Sciortino, S., & Harnden, F. R., Jr. 2008,

A&A, 490, 1055

Ascenso, J., Alves, J., Vicente, S., & Lago, M. T. V. T. 2007, A&A, 476, 199

Bally, J. 2008, in Handbook of Star Forming Regions, (B. Reipurth, ed.), Volume I, 459

Broos, P. S., Feigelson, E. D., Townsley, L. K., Getman, K. V., Wang, J., Garmire, G. P.,

Jiang, Z., & Tsuboi, Y. 2007, ApJS, 169, 353

Broos, P. S., Getman, K. V., Povich, M. S., Townsley, L. K., Feigelson, E. D., & Garmire,



– 19 –

G. P. 2010, ApJS, 714, 1582

Broos, P. S., et al. 2011a, ApJS, (CCCP Catalog paper)

Broos, P. S., et al. 2011b, ApJS, (CCCP Classifier paper)

Carraro, G., & Patat, F. 2001, A&A, 379, 136

Carraro, G., Romaniello, M., Ventura, P., & Patat, F. 2004, A&A, 418, 525

Crawley, M. J. (2007) The R Book, Wiley

Delgado, A. J., Alfaro, E. J., & Yun, J. L. 2007, A&A, 467, 1397

Duda, R. O., Hart, P. E., & Stork, D. G. 2000, Pattern Classification, 2nd ed., Wiley-

Interscience

Dutra, C. M., Bica, E., Soares, J., & Barbuy, B. 2003, A&A, 400, 533

Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. (1996) in Proc. 2nd Intl. Conf. Knowledge

Discovery & Data Mining (KDD-96), AAAI Press, 226

Evans, N. R., Seward, F. D., Krauss, M. I., Isobe, T., Nichols, J., Schlegel, E. M., & Wolk,

S. J. 2003, ApJ, 589, 509

Feigelson, E. D., Broos, P., Gaffney, J. A., III, Garmire, G., Hillenbrand, L. A., Pravdo,

S. H., Townsley, L., & Tsuboi, Y. 2002, ApJ, 574, 258

Feigelson, E. D., et al. 2005, ApJS, 160, 379
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Fig. 1.— Spatially complete sample of 3,220 probable Carina members selected from the

CCCP X-ray survey. (a) X-ray source distribution. The CCCP field of view is outlined

by the polygon. The boundaries of the large-scale stellar enhancements A, B, C (§3.3) are

marked by the contours. The dashed rectangle demarcates the central 62′ × 65′ field shown

in panel b. (b) Contour map of the X-ray source surface density smoothed with a σ = 30′′

Gaussian. Twenty clusters above the third contour and three large-scale enhancements are

marked. The contours are in linear units of surface density from 1 to 8 units of surface

density.
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Fig. 2.— Stellar spatial distribution in three clustered regions of the Carina complex using

the full sample of 10,728 X-ray Carina members (small dots). Trumpler 14 and Trumpler 15

region (top left panel); Trumpler 16 region (top right panel); and the South Pillars region

(bottom panel). The gray-scale map with two contours (0.003 and 0.005) are reproduced

from Figure 1b using the spatially complete sample. Principal clusters from Table 1 are

labeled Cl 1-20, and small groups from Table 2 are located with circles and labeled Gp 1-31.

Dominant stars in major clusters are shown as filled triangles and labeled a− y as indicated

in Table 1. Overlapping rotated squares outline the Chandra ACIS fields. The extents of

the large-scale stellar enhancements in declination are indicated on the right sides, and the

2 pc scale bar assumes a distance of 2.3 kpc to the complex.
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Table 1. Principal clusters of X-ray stars in the Carina star forming complex (§ 3.1)

X-ray selected cluster absorption Optical counterpart

CCCP-Cl RA (J2000) Dec Cntr N NME 〈MedE〉 (sd) AV Opt/IR cluster Dominant stars

keV mag

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 10:43:57.0 -59:32:52 2m 1378 1138 1.56 ( 0.48) 3 Trumpler 14 HD 93128 (O3.5 V((fc)),a), HD 93129A (O2 If*,b)

2 10:44:01.1 -60:05:46 1 48 48 1.43 ( 0.53) 2 Spitzer A ⋆ WR 24 (WN6,c), HD 93146 (O7 V((f)),d)

3 10:44:16.0 -59:43:37 3m 32 32 1.55 ( 0.43) 3 Trumpler 16 HD 93162 (WN,e), Tr16-244 (O3/4 If)

4 10:44:28.5 -59 41:38 3 10 10 1.47 ( 0.12) 2 Trumpler 16 CPD-59◦2574 (B IVn,g)

5 10:44:31.3 -59:33:44 3m 70 70 1.55 ( 0.50) 3 Collinder 232 HD 93250 (O4 III(fc),h), HD 303311 (O5 V,i)

6 10:44:36.5 -59:44:10 3m 109 98 1.39 ( 0.34) 2 Trumpler 16 HD 93205 (O3 V + O8 V,j), HD 93204 (O5.5 V((fc)),k)

7 10:44:39.2 -59:26:02 2m 44 41 1.43 ( 0.27) 2 · · · RT Car (M2 Iab,l)

8 10:44:43.8 -59:21:42 2 481 331 1.43 ( 0.52) 2 Trumpler 15 HD 93249 (O9 III,m), CD-58◦3536B (O9 III,n)

9 10:44:51.6 -59:45:26 4m 55 47 1.73 ( 0.71) 5 Trumpler 16 Tr16-104 (O7V((f)) + O9.5 + B0.2 IV,o), Tr16-23 (O9 III,p)

10 10:45:04.6 -59:45:44 4m 84 84 1.59 ( 0.53) 3 Trumpler 16 Tr16-23 (O9 III,p)

11 10:45:06.1 -59:40:27 4m 71 71 1.58 ( 0.44) 3 Trumpler 16 η Car (LBV,q), HD 303308 (O4 V((fc)),r)

12 10:45:10.4 -59:42:55 4m 169 159 1.65 ( 0.64) 4 Trumpler 16 CPD -59◦2627 (O9 III,s), CPD -59◦2634 (O 9.5V,t)

13 10:45:14.1 -59:57:53 2m 81 75 1.64 ( 0.37) 4 Spitzer F ⋆ HD 305533 (B0.5 Vnn (shell):,u)

14 10:45:34.0 -59:48:33 2 41 41 2.14 ( 0.78) 10 Spitzer G FO 15 (O5.5Vz + O9.5 V,v)

15 10:45:36.6 -60:12:50 1 52 32 1.82 ( 0.43) 6 Spitzer H ⋆ · · ·

16 10:45:47.1 -60:05:07 2 31 31 1.62 ( 0.96) 4 Spitzer K ⋆ CPD -59◦2660 (B0.5 V,w)

17 10:45:53.2 -59:56:53 2 96 71 1.84 ( 0.63) 6 Treas Chest CPD -59◦2661 (O9.5 V,x)

Spitzer L ⋆

18 10:45:54.4 -59:59:59 2 40 25 1.40 ( 0.20) 2 Spitzer J ⋆ · · ·

19 10:45:59.5 -60:08:32 1 25 23 2.05 ( 0.61) 9 Spitzer K-SE ⋆ · · ·

20 10:47:14.7 -60:05:48 1m 137 92 1.72 ( 0.75) 5 Bochum 11 ⋆ HD 93632 (O5 I-IIIf,y)

A · · · · · · 1 2867 2343 1.57 ( 0.58) 3 · · · · · ·

B · · · · · · 1 1183 1116 1.67 ( 0.60) 4 · · · · · ·

C · · · · · · 1 1407 1069 1.65 ( 0.63) 4 · · · · · ·

D † · · · · · · 1 5271 3899 1.73 ( 0.85) 5 · · · · · ·

Note. —

⋆ Cluster within the Collinder 228 and South Pillars region

† Region D contains stars not assigned to clusters 1−20 or Regions A−C
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Table 2. Small Groups of X-ray Stars Outside of Major Clusters

X-ray selected cluster Absorption Spitzer

CCCP-Gp RA (J2000) Dec N NME 〈MedE〉 AV cluster

keV mag

(1) (2) (3) (4) (5) (6) (7) (8)

1 10:42:13.5 -59:35:59 5 5 2.32 (1.24) 11 · · ·

2 10:42:25.8 -59:46:21 6 1 · · · · · · · · ·

3 10:42:46.7 -59:46:56 8 0 · · · · · · · · ·

4 10:42:47.3 -59:25:35 11 8 2.30 (0.69) 11 · · ·

5 10:42:49.5 -59:09:05 6 2 · · · · · · · · ·

6 10:42:52.8 -60:13:20 7 3 · · · · · · · · ·

7 10:42:53.4 -59:26:15 7 5 1.89 (0.74) 7 · · ·

8 10:43:34.6 -60:00:18 9 5 1.26 (0.10) 1 A ⋆

9 10:43:41.0 -60:01:16 8 3 · · · · · · A ⋆

10 10:43:46.6 -60:02:24 7 0 · · · · · · A ⋆

11 10:43:59.9 -60:01:59 6 2 · · · · · · A ⋆

12 10:44:15.0 -60:00:05 5 1 · · · · · · B ⋆

13 10:44:20.8 -59:59:03 9 9 1.39 (0.18) 2 B ⋆

14 10:44:22.5 -59:59:37 10 10 1.16 (0.16) 1 B ⋆

15 10:44:22.6 -59:25:14 12 11 1.52 (0.22) 3 · · ·

16 10:44:26.3 -59:59:55 7 7 1.34 (0.19) 2 B ⋆

17 10:44:40.2 -59:46:52 9 9 1.55 (0.53) 3 ⋆

18 10:44:51.9 -60:25:09 5 5 4.79 (1.60) 125 · · ·

19 10:44:56.7 -59:24:51 10 7 1.26 (0.18) 1 · · ·

20 10:44:58.5 -59:47:11 8 7 1.43 (0.25) 2 ⋆

21 10:45:30.0 -59:57:41 12 7 1.27 (0.16) 1 ⋆

22 10:45:36.8 -59:57:58 11 4 1.50 (0.12) 2 ⋆

23 10:45:38.5 -60:00:44 7 7 1.47 (0.38) 2 J ⋆

24 10:45:40.4 -60:01:07 8 8 1.78 (1.19) 6 J ⋆

25 10:45:44.9 -59:55:27 7 4 1.57 (0.10) 3 L ⋆

26 10:46:05.8 -59:56:55 11 7 1.93 (0.90) 7 L ⋆

27 10:46:06.0 -59:58:59 12 4 1.70 (0.68) 4 M ⋆

28 10:46:50.7 -60:04:23 9 6 1.44 (0.23) 2 N ⋆

29 10:46:52.0 -60:06:03 8 5 1.61 (0.35) 4 N ⋆

30 10:46:54.4 -60:04:39 11 7 1.29 (0.25) 1 N ⋆

31 10:47:17.4 -60:07:51 10 4 1.43 (0.24) 2 N ⋆

Note. —

⋆ Group within the Collinder 228 and South Pillars region
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Table 3. Carina Cluster Membership

Source Membership

Seq Labela CXOGNC RA (J2000) Dec NetCounts t logFt,photon MedEb Class Cl/Gp Reg

deg cnts photon s−1 cm−2 keV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

8044 CTr16 1375 104454.19-594536.9 161.225804 -59.760260 48.0 -5.65 1.70 H2 C9 B

8045 C4 1687 104454.20-592221.0 161.225861 -59.372510 4.7 -6.46 1.31 H2 C8 A

8046 SP1 251 104454.21-601118.2 161.225878 -60.188400 4.5 -6.50 1.45 H2 · · · D

8047 CTr16 1373 104454.21-594703.6 161.225883 -59.784353 4.6 -6.64 1.30 H2 · · · B

8048 CTr14 3633 104454.22-593118.9 161.225922 -59.521931 17.6 -6.09 1.29 H2 · · · A

8049 CTr16 1376 104454.23-594556.6 161.225985 -59.765746 4.0 -6.71 0.82 H1 C9 B

8050 C4 1688 104454.28-591855.0 161.226194 -59.315283 9.4 -6.16 1.48 H2 · · · A

8051 CTr16 1377 104454.29-594533.5 161.226232 -59.759316 8.1 -6.42 1.04 H2 C9 B

8052 SP1 253 104454.31-601131.3 161.226313 -60.192030 3.6 -6.60 · · · H2 · · · D

8053 C4 1690 104454.32-592011.2 161.226341 -59.336467 69.8 -5.29 1.51 H2 C8 A

8054 SP5 384 104454.33-602545.2 161.226388 -60.429224 4.6 -5.71 2.55 H4 · · · D

8055 CTr16 1378 104454.36-594355.3 161.226525 -59.732032 10.0 -6.33 1.16 H2 · · · B

8056 SP5 385 104454.37-602545.7 161.226543 -60.429364 4.5 -5.73 2.90 H4 · · · D

8057 CTr16 1380 104454.38-593925.2 161.226611 -59.657025 57.6 -5.55 1.74 H2 · · · B

8058 CTr16 1379 104454.38-594423.8 161.226624 -59.739970 67.9 -5.50 1.44 H2 · · · B

8059 CTr16 1381 104454.40-594550.4 161.226693 -59.764002 3.0 -6.86 · · · H2 C9 B

8060 CTr16 1382 104454.42-594527.8 161.226752 -59.757737 5.2 -6.59 1.61 H2 C9 B

8061 C4 1691 104454.43-591928.1 161.226805 -59.324479 10.6 -6.10 1.34 H2 C8 A

aSource labels identify a CCCP pointing; they do not convey membership in astrophysical clusters.

bThis quantity is named MedianEnergy t in Broos et al. (2010).

Note. — The full table with 14,368 sources appears in the electronic edition of the Journal
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Fig. 3.— Estimated X-ray luminosity functions (upper histograms) for the CCCP sources

classified as likely Carina members (excluding OB stars) in the large-scale (a) Region A,

(b) Region B, (c) Region C, and (d) Region D. The lower histograms show the XLF of the

low-mass COUP Orion Nebula Cluster, and lines show powerlaw fits.
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