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The Radial Drift Barrier against Dust Growth
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St = Ωtstop : Stokes number

Headwind ➡ Angular mom. loss
➡Inward drift

(Adachi et al. 76; Weidenschilling 77)

At St~1, inward drift is faster than 
collisional growth (Brauer et al. 2008)

➡ A barrier against 
planetesimal formation



Beyond the Compact Grain Paradigm
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Okuzumi et al. (2009)

Compact Sphere
• Filling factor ~ 1
● High St
• The “classic” model

Porous Aggregate
• Filling factor ≪ 1

• Low St
• Ormel et al. ‘07; Okuzumi et al. ‘09; 
Zsom et al. ’10, ’11
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The filling factor can be << 0.1 
even after the onset of collisional compression!

Collisional Compaction is Inefficient
Suyama, Wada, & Tanaka (2008)
Suyama, Wada, Tanaka, & Okuzumi (2012)

Number of Monomers

Fig. 5.—Density evolution of growing aggregates in the simulations for various impact velocities and critical rolling displacements. We set vimp ¼ 0:27, 0.54, 1.1, 2.2,
and 4.4 m s"1 and !crit ¼ 2, 8, 168. The solid lines show the densities of the resultant aggregates in our simulations, and the dashed lines indicate the densities of BCCA
clusters. Filled circles indicate the critical number of particles Ncrit to start compression, as estimated from eq. (17) with b ¼ 0:5.

Fig. 6.—Average number of particles in spheres of radii r, N̄in, inside resultant aggregates withN > Ncrit. Left, Case of vimp ¼ 0:54m s"1 and !crit ¼ 2 8; right, case of
resultant aggregates formed by collisions with vimp ¼ 2:2 m s"1 and !crit ¼ 8 8. The dotted lines, dashed lines, and solid lines represent aggregates with N ¼ 4096, 8192,
and 16384, respectively. Since the vertical axis is N̄in divided by (r/r1)

2:5, the horizontal slope indicates N̄in / r 2:5, which means that the compressed aggregates have the
fractal dimension of 2.5. The filled circles show the scale of the radius of gyration. In the range of 4r1 < r < rg, N̄in is approximately proportional to r2:5 for all aggregates,
which indicates that the aggregates have the fractal dimension of 2.5.
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(“hit-and-stick”)

Compression 

Eimp ~ Eroll



Dust Growth Outside the Snow Line
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 Outside the Snow Line
  ● Ice mantle → High sticking efficiency
  ● Disruption velocity  vdisr ~ 40-70 m/s  (Wada et al. 2009)  ≳ Collision velocity

➡ We neglect fragmentation

 Coagulation + Radial Drift + Porosity Evolution
  ● Coagulation + drift:  Global bin method (Brauer et al. 2008)
  ● Porosity:   Compression recipe based on N-body experiments (Suyama et al. 2012)

● Minimum-mass solar nebula (Hayashi et al. 81)

● Turbulence α = 10-3

● Dust-to-gas mass ratio = 0.01

● T = 280(r/AU)-1/2 K  ➡ rsnow ≈ 3AU 



Results:  Global Evolution
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Compact Porous

(Okuzumi et al. 2012)



Evolution of the Aggregate Internal Density
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RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SONW LINE 9

δvg =
√
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Thus, the impact energy is proportional to the mass. We define
the rolling mass mroll by the condition Eimp = Eroll. Using
Equation (22), the rolling mass is evaluated as
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where we have used that Eroll = (πa0/2)Froll (see Sec-
tion 2.3.1). Using the relations a ≈ (m/m0)1/2a0 and ρint ≈
(m/m0)−1/2ρ0 for d f ≈ 2 aggregates, the corresponding radius
and internal density are found to be

aroll ∼ 1 cm
(

mroll

10−4 g

)1/2

, (24)

ρint,roll ∼ 10−5 g cm−3
(

mroll

10−4 g

)−1/2

. (25)

The triangles in Figure 8 mark the rolling mass at r = 5 AU
and 20 AU predicted by Equation (23). The analytic predic-
tion well explains when the decrease in ρint terminates.

The density evolution is more complicated at m > mroll,
where collisional compression is no longer negligible (i.e.,
Eimp > Eroll). At r = 5 AU, the internal density is approx-
imately constant until the stopping time reaches Ωts = 1, and
then decreases as ρint ∝ m−1/5. At r = 20 AU, by contrast, the
density is kept nearly constant until m ∼ 102 g (a ∼ 102 cm),
and then decreases as ρint ∝ m−1/8.

As we will show below, the density histories mentioned
above can be directly derived from the porosity change recipe
we adopted. Let us assume again that aggregates grow mainly
through collisions with similar-sized ones (m1 ≈ m2 and
V1 ≈ V2). In this case, the evolution of ρint at Eimp ' Eroll
is approximately given by Equation (13). Furthermore, we
neglect the term (2V5/6

1 )−4 in Equation (13) assuming that the
impact energy is sufficiently large (which is true as long as
Ωts < 1; see below). Under these assumptions, the internal
density of aggregates after collision, ρint = 2m1/V1+2, is ap-
proximately given by

ρint ≈
(

3
5

)3/2( Eimp

N1+2bEroll

)3/10

N−1/5
1+2 ρ0, (26)

where N1+2 = 2m1/m0. Since the impact energy Eimp ≈
m1(∆v)2/4 is proportional to N1+2(∆v)2, Equation (26) implies
that

ρint ∝ (∆v)3/5m−1/5, (27)

where we have dropped the subscript for mass for clarity.
Equation (27) gives the relation between ρint and m if we
know how the impact velocity depends on them. Explicitly,
if ∆v ∝ mβργint, Equation (27) leads to

ρint ∝ m(3β−1)/(5−3γ). (28)

Figure 8. Temporal evolution of the weighted average mass 〈m〉m and the
internal density ρint(〈m〉m) at orbital radii r = 5 AU (upper panel) and 20 AU
(lower panel). Shown at the top of the panels is the aggregate radius a(〈m〉m)
at each orbital radius. The triangles, circles, diamonds, and square mark the
sizes at which Eimp = Eroll, a = λmfp, ts = tη, and Ωts = 1, respectively. At
r = 20 AU, dust growth stalls due to the radial drift barrier (cross symbol)
before reaching Ωts = 1.

In our simulation, the main source of the relative velocity
is turbulence. The turbulence-driven velocity depends on ts
as ∆vt ∝ ts at ts * tη and ∆vt ∝

√
ts at tη * ts * tL(= Ω−1)

(see Equation (19)). As found from Equation (4), the stopping
time depends on ρint and m as ts ∝ m/A ∝ m/a2 ∝ m1/3ρ2/3

int in
the Epstein regime (a * λmfp) and as ts ∝ ma/A ∝ m2/3ρ1/3

int
in the Stokes regime (a ' λmfp) . Using these relations with
Equation (28), we find four regimes for density evolution,

ρint ∝




m0, a * λmfp and ts * tη,
m1/4, a ' λmfp and ts * tη,
m−1/8, a * λmfp and tη * ts * tL,
m0, a ' λmfp and tη * ts * tL.

(29)

The circles, diamonds, and square in Figure 8 mark the size
at which a = λmfp (i.e., t(Ep)

s ∼ t(St)
s ), ts = tη, and Ωts = 1,

respectively. At r = 5 AU, the sizes at which a = λmfp and
ts = tη nearly overlap, and hence only two velocity regimes
ts = t(Ep)

s * tη and tη * ts = t(St)
s * tL are effectively relevant.

For both cases, Equation (29) predicts flat density evolution.
At r = 20 AU, there is a stage in which ts ' tη and a *
λmfp, for which Equation (29) predicts ρint ∝ m−1/8. There
predictions are in agreement with what we see in Figure 8.

hit-and-stick

collisional compression
St = 1

10-5 g/cm3 !!



Higher Porosity ➡ Wider Stokes Regime
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St = 1
⬇Epstein (a<λmfp)

Compact (φ=100%) Fluffy (φ=10-5)

⬆Stokes  (a
>λmfp)

⬇Epstein (a<λmfp)

⬆Stokes  (a
>λmfp)

St = 1

St = 1 in the Epstein regime St = 1 in the Stokes regime
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 In the Epstein Regime (a ≪ λmfp): 

➡ Rapid Growth in the “Deep” Stokes Regime (a >> λmfp)

(Takeuchi & Lin 05; Brauer et al. 08;
Birnstiel et al. 12)

 However, in the Stokes Regime (a ≫ λmfp): 

Growth timescale

This is not short enough to overcome the drift barrier! (see Brauer et al. 08)

(Okuzumi et al. 12)

“Stokes Acceleration”

(see also Fig. 11 of Birnstiel et al. ’10 and Fig. 3 of Zsom et al. ‘11)
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Millimeter Appearance of the Stokes Acceleration
(Preliminary!)

● Σg = 10×MMSN,  (Σd/Σg)init = 0.01
● κν calculated with the Maxwell-Garnett effective medium theory



Summary
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 Porous aggregates grow rapidly thanks to the fast decoupling 
in the Stokes drag regime (“Stokes Acceleration”).

 Caveats:

• Rocky planetesimal formation is still a mystery! (Fragmentation 
barrier needs to be overcome.)

• Non-collisional compression (by headwind / self gravity) needs to be 
taken into account. 

 Icy planetesimals can form through direct collisional 
growth at  <~ 10 AU. 
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Disk Mass Dependence
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MMSN 10×MMSN

Higher Σg → Shorter λmfp → Even Wider Stokes Region

10 AU 30 AU
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Dust Growth in Dead Zones

Mass
Distribution

⬇ Dead Zone

(Okuzumi & Hirose 2012, ApJL, 753, L8)


