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1 Introduction
The solution of a set of linear algebraic equations

a11x1 + a12x2 + a13x3 + · · ·+ a1NxN = b1 (1)
a21x1 + a22x2 + a23x3 + · · ·+ a2NxN = b2

...
...

aM1x1 + aM2x2 + aM3x3 + · · ·+ aMNxN = bM .

is the subject of this practical. Here there are M equations for the N unknowns
xi. The coefficients aij and the numbers on the right-hand side are assumed to be
known. The set of equations can be written in matrix form

Ax = b. (2)

Note that we can swap rows without affecting the set of equations at all while
swapping the columns means that we need to change the ordering of the variables.
In addition we can form linear combinations of the equations without changing the
information content.

If the number of equations is larger than the number of unknowns (M > N )
then the system is overdetermined and can only be solved in the sense of a least
squares fit. In the opposite case (M > N ) there is no unique solution. We thus
restrict ourselves to the case where M = N , the matrix A is square.

Even with M = N a solution is not guaranteed since the matrix might be
singular, i.e. it’s determinant might be zero. This happens when two or more rows
are linear combinations of each other (row degeneracy) or the equations define one
or more variables only in a linear combination of each other (column degeneracy).
For square matrices column degeneracy implies row degeneracy and vice versa.
Since our computer models are only of limited numerical accuracy the equations
we wish to solve can be degenerate numerically even if the “true” equations are
not.

Formally, as long as A is not singular, the solution may be written

x = A−1b. (3)

and A−1 is the inverse of A. However, in most cases it is not necessary to obtain
A−1 explicitly since we can obtain a solution without it. There are several ways
of doing this, the first being Gaussian elimination which we discuss next.
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2 Gaussian Elimination
The easiest way to learn about Gaussian elimination is to see it in action. We solve
the set of equations

2x + 3y − 4z = 12
x + 5y − z = 12

3x + 7y − 3z = 20
(4)

First we subtract half of row one from row 2 and obtain

2x + 3y − 4z = 12
0x + 7/2y + z = 6
3x + 7y − 3z = 20

(5)

Note that there is now a zero in the first column. We can do the same with rows 1
and 3, this time with 3/2 as the factor to find

2x + 3y − 4z = 12
0x + 7/2y + z = 6
0x + 5/2y + 3z = 2

(6)

The important thing here is that x no longer appears in the the last two rows which
we must now solve for y and z. Subtracting 5/7 of row 2 from row 3 then gives

2x + 3y − 4z = 12
0x + 7/2y + z = 6
0x + 0y + 16/7z = −16/7

(7)

The last equation now only contains z and can be solved trivially to give z = −1.
Knowing z in row two allows us to solve for y, 7

2
y = 7 or y = 2 and finally the

first row implies that x = 1. Using the matrix form the reductions look like this 2 3 −4
1 5 −1
3 7 −3

∣∣∣∣∣∣
12
12
20

 row2− 1
2
·row1,row3− 3

2
·row1

−−−−−−−−−−−−−−−→

 2 3 −4
0 7/2 1
0 5/2 3

∣∣∣∣∣∣
12
6
2


row3− 5

7
·row2

−−−−−−−→

 2 3 −4
0 7/2 1
0 0 16/7

∣∣∣∣∣∣
12
6

−16/7


and we have saved a little space by writing the right hand side (RHS) as a fourth
column.

3



Thus we have

• reduced the initial matrix to triangular form

• solved the system by back substitution

The algorithm in the general case is then
for all row i do

for all row j > i do
for all column k > i do

subtract lji = aji/aii times aik from ajk and bj
and store the result in ajk, bj

end for
end for

end for
for the reduction to U (for upper) form followed by

for all row i in descending order do
for all column j > i do

subtract aij times bj from bi
and store the result in bi

end for
bi = bi/aii

end for
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There are a few points to note

• the solution is performed in place so no additional storage is needed

• in consequence both A and b are destroyed, occasionally a copy may be
required

• the necessary computation time is proportional to N3.

• since U is triangular the determinant is simply the product of the diagonal
elements.

• as written, the algorithm is only applied to a single RHS but this is only
for didactical purposes. Any number of RHSs may be treated. In particular,
setting b equal to the unit matrix will give the inverse of A since the solution
of

Ax = I

is
x = A−1

In fact elements of A below the diagonal remain unchanged so that all the
information needed to reduce any given RHS is available. We can perform the
U reduction for A alone and later reduce and solve for b. This scheme is im-
plemented in the pair of routines LURED/RESLV (to be found in lured.f90 and
reslv.f90).

There is one additional very important point about the algorithm as written

• It can fail!

To see why we change our example slightly 0 3 −4
1 5 −1
3 7 −3

∣∣∣∣∣∣
10
12
20


If we try to divide by the diagonal element a11 we have a problem. The same
could happen if any of the aii are zero or very small compared to the non-diagonal
elements. The solution to this problem is pivoting.
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3 Pivoting
Pivoting is the re-ordering of the equations to avoid divisions by small or zero ele-
ments during the reduction process. This is done by searching for a the largest el-
ement in the present column and bringing it onto the diagonal. Rows and columns
that have already been treated are not considered. Looking at the example again 0 3 −4

1 5 −1
3 7 −3

∣∣∣∣∣∣
10
12
20


we see that the largest element in the first column is 3 and it appears in the third
row. So we swap rows 1 and 3, obtain 3 7 −3

1 5 −1
0 3 −4

∣∣∣∣∣∣
20
12
10


and then proceed as before.

Here we have only looked for the largest element in the present column, the
procedure is called partial pivoting. Of course it is possible to look for the largest
element in the remaining sub-matrix, full pivoting. In this case, the 7 to be found in
row 3 and column 2 would be the chosen pivot. The two columns 1 and 2 and rows
1 and 3 would then be swapped. The advantage in doing this, numerical stability in
all cases, is far outweighed by the disadvantages that the increase in bookkeeping
brings with it. This is particularly so, since, in practice, partial pivoting is equally
stable (artificial examples can be constructed for which partial pivoting also fails).

It is instructive to look at a very simple example to see just how badly things
can go wrong. We imagine that we are computing to three significant figures and
want to solve the following system(

0.1 100
1 2

)(
x1
x2

)
=

(
100
3

)
The usual procedure leads to the new system(

0.1 100
0 −1000

)(
x1
x2

)
=

(
100
−1000

)
since the −997 will be rounded to −1000. Solving for x − 2 gives x2 = 1 which
is correct but for x1 we have

0.1x1 + 100 = 100 (8)
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or x1 = 0 which is incorrect.
Now we use pivoting which in this case simply implies that we swap the two

rows. (
1 2

0.1 100

)(
x2
x1

)
=

(
3

100

)
Now the reduction leads to(

1 2
0 99.8

)(
x2
x1

)
=

(
3

99.7

)
and the solution for x1 is 1 while x2 is given by

x2 + 2 = 3. (9)

x2 = 1 which is also correct. It is the ratio of a11 to a12 which is important here.
The same situation can, in principle, occur in real applications but is somewhat
more unlikely since single precision delivers roughly 6.5 significant figures and
double precision something like 14. At some point, however, if the matrix is
large enough rounding errors are capable of producing such a situation so partial
pivoting at least is a must.

Finally, we note that the numerical value of the pivots depends on the scaling
of the equations, we can multiply row 2 throughout by 1000, say, without changing
the actual solution vector. But in this case we would choose row 2 as the pivot
instead of 3. To deal with this implicit pivoting can used. The pivot candidates
are chosen as if they were normalized so that the sum of the absolute values of the
row elements is 1. We look at

|aik|∑
k |aik|

(10)

Turning again to our example, the sum of the elements in row 2 is 7 and the
first factor is 1/7. For row 3 the sum is 13, the factor is 3/13 so we would once
again choose row 3 as our pivot.

The row interchanges may be represented succinctly by the use of a permuta-
tion matrix P. For N = 2 the matrix

P =

(
0 1
1 0

)
(11)

swaps two rows as a simple test will show(
0 1
1 0

)(
a11 a12
a21 a22

)
=

(
a21 a22
a11 a12

)
(12)
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In the general case we notice that PI = P by definition so that P for any permu-
tation can be found simply by performing the same operations in the same order
on the unit matrix I. For instance, the P corresponding to the exchange of row 1
with row 3 and then row 2 with row 3 is given by

I =

 1 0 0
0 1 0
0 0 1

 swap1and3−−−−−−→

 0 0 1
0 1 0
1 0 0

 swap2and3−−−−−−→

 0 0 1
1 0 0
0 1 0

 = P

(13)
Thus having begun with the system

Ax = b. (14)

the row interchanges correspond to multiplication of both sides by P

PAx = Pb (15)

and it is this system of equations which is solved. As a final comment, it may be
noted that swapping two rows multiplies the determinant by −1, so that counting
the number of swaps allows the determinant to be determined.
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4 LU decomposition
The elements below the diagonal are zero by definition after the reduction. By
leaving them unchanged we were able to deal with any number of RHSs. There
is however another alternative, we can store the multiplicative factors lij in the
appropriate elements. Our example was 2 3 −4

1 5 −1
3 7 −3

 (16)

and we reduced the first column to 0 by subtracting 1/2 and 3/2 times the first
row from the second and third rows respectively. We store these factors l21,l31 in
place of a21,a31  2 3 −4

1/2 7/2 1
3/2 5/2 3

 (17)

The final step (for this 3 × 3 matrix) was to subtract 5/7 of the second row from
the third. Our final matrix is  2 3 −4

1/2 7/2 1
3/2 5/7 16/7

 (18)

But what is the advantage in doing this? We complete the matrix below the
diagonal (L) with 1s on the diagonal and calculate LU (hence the name) 1 0 0

1/2 1 0
3/2 5/7 1

 2 3 −4
0 7/2 1
0 0 16/7

 =

 2 3 −4
1 5 −1
3 7 −3

 (19)

i.e. we have A = LU. Now we can solve

Ax = LUx = b (20)

in two stages: first we find y from Ly = b followed by x from Ux = y.
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The second equation is solved by the same algorithm as before
for all row i in descending order do

for all column j > i do
subtract aij times bj from bi
and store the result in bi

end for
bi = bi/aii

end for
Since L is also triangular, the algorithm to solve Ly = b is similar

for all row i in ascending order do
for all column j < i do

subtract aij times bj from bi
and store the result in bi

end for
end for

and we have explicitly set the diagonal elements to 1.
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In general L has only elements on and below the diagonal, we call them lij
with the understanding that lij = 0 for j > i. Similarly the elements of U are uij
with uij = 0 for j < i. This gives us N2 equations for N2 + N unknowns. They
read

i < j : li1u1j + li2u2j + · · ·+ liiuij = aij
i = j : li1u1j + li2u2j + · · ·+ liiujj = ajj
i > j : li1u1j + li2u2j + · · ·+ lijujj = aij

(21)

We are free to choose N of these unknowns and we set lii = 1. The solution is
then found using Crout’s algorithm

for all column j in ascending order do
for all row i i < j do

calculate

uij = aij −
i−1∑
k=1

likukj (22)

end for
for all row i i > j do

calculate

lij =
1

ujj

(
aij −

i−1∑
k=1

likukj

)
(23)

end for
end for

Then uij is the reduced upper matrix and the lij are the corresponding multiplica-
tive factors as described above. For i = j the two equations are identical apart
from the division by the pivot element ujj so pivoting can be introduced by per-
forming the U reduction completely and then for i = j make the choice for the
pivot and continue with the L reduction. Subroutines implementing this scheme
with implicit pivoting are to be found in ludcmp.f90 and lubksb.f90 (from Numer-
ical Recipes).
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5 Special cases
If you have information about the structure of the matrix you should use it as the
speed and accuracy can be increased dramatically. In the solution of differential
equations using differencing band matrices occur frequently. These are such that
the matrix has non-zero elements only in bands on and close to the diagonal. A
diagonal matrix is the simplest, the next simplest being a tridiagonal matrix and
we look at this example in more detail. The equations are

aixi−1 + bixi + cixi+1 (24)

with a1 = cn = 0. In matrix form this reads

b1 c1 0
a2 b2 c2 · · ·

a3 b3 c3 · · ·
...

· · · bn−1 cn−1
0 · · · an bn





x1
x2
x3
...
xn−1
xn


=



d1
d2
d3
...
dn−1
dn


(25)

The solution is a simple application of the Gaussian elimination we saw earlier.
The first equation has solution

x1 = −b−1
1 c1x2 + b−1

1 d1 ≡ e1x2 + v1. (26)

The equation is written in this way because the system could be block tridigonal
with ai,bi,ci matrices and xi,bi vectors. Substituting this result into the second
equation we obtain

x2 = e2x3 + v2 (27)
e2 = −(b2 + a2e1)

−1c2 (28)
v2 = (b2 + a2e1)

−1(d2 − a2v1) (29)

and in the general case

xi = eixi+1 + vi (30)
ei = −(bi + aiei−1)

−1ci (31)
vi = (bi + aiei−1)

−1(di − aivi−1) (32)

For i = n we have cn = 0 and thus en = 0 and xn = vn. Having found vn the
equations 30 can then be used to derive all the xi, the back-substitutions. There
are several points to note here
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• a,b,c can be stored as vectors

• The algorithm is now O(n)

• The algorithm can be extended to more bands in an obvious way
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6 Astrophysical application
A star with mass not too far from that of the sun will, at the end of its life, throw
off its outer shell leaving the central star to cool as a white dwarf. The shell will be
illuminated by the remnant and is observed as a planetary nebula. They come in all
shapes and sizes as the pictures show. They are of considerable interest since the
elemental abundances are representative of the outer layers of the star as the nebula
was thrown off giving clues about stellar evolution. Also since they have large
diameters they are very bright and with their distinctive forbidden line spectra (see
below) they are easy to spot in galaxies well outside the local group. Their optical
properties make them good standard candles with well known physics allowing
the Hubble constant to be determined independently of Cepheids.

Figure 1: A selection of planetary nebulae images from the HST. They are a) hb5;
b) mycn18; c) spirograph; d) ring; e) cat’s eye; f) eskimo.

The physics of such a nebular is particularly simple. Photoionization by stellar
photons is negligible to a first approximation due to geometrical effects (the nebula
is large, the star small) and densities are small so that photons escape immediately.
Thus radiative transfer need not be considered. Under such circumstances the
strengths of well-chosen line pairs can be used to give a direct measure of the
temperature and the electron density.

The strength of a spectral emission line is given by the particle number density
of the upper level nj multiplied by the transition probability

j = njAji. (33)

The latter is an atomic physical quantity and can be taken as given. Normally
ratios of two lines belonging to the same ion are taken as in this case abundances
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and other complicating factors do not play a rôle. Thus we have

j1
j2

=
n1A1

n2A2

(34)

and since the As are known, the line strength ratio depends on the population ratio
n1/n2.

In thermodynamical equilibrium this ratio is given by the Boltzmann formula

n1

n2

=
g1
g2

exp−[(E1 − E2)/kT ] (35)

g1,g2 being the statistical weights and E1, E2 the excitation energies of levels 1,2
respectively. The Boltzmann constant is k and the temperature is T . Of course,
thermodynamical equilibrium is not possible in a nebula but if the densities are
high enough so that collisional processes are more efficient than radiative ones,
then Local Thermodynamic Equilibrium can apply and the Boltzmann formula
can be used with local values of the temperature, the line ratio does not depend on
the density.

In the opposite extreme, at very low densities, every excitation of the atom
by a collision will lead directly to a line photon. Only collisions involving the
ground state (population ng) need be considered since none of the other levels
will be populated. Thus we have

n1A1 = ngneqg1(T ) (36)
n2A2 = ngneqg2(T ) (37)

and the line ratio is given by
j1
j2

=
qg1(T )

qg2(T )
. (38)

There is again no dependence on the density ne. The collision rates qg1(T ),qg1(T )
are calculated or measured by atomic physicists and are given. Normally, the
downward rate

q1g(T ) =
8.631× 10−6

g1T 1/2
Υ(T ) (39)

is to be preferred since Υ(T ) is a slowly varying function of temperature. The
upward rate is then given by detailed balance to be

qg1(T ) =
g1
gg

exp−[(E1 − Eg)/kT )q1g(T ) (40)

At intermediate densities the picture is more complicated and the populations
must be derived from the equations of statistical equilibrium. They simply balance
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the number of transitions into a level and those leaving it. So for a level i the
equation reads

ni

∑
j

Pij =
∑
j

njPji. (41)

The sum extends, in principle, over all possible levels j but in practice only a few
terms are necessary. The transition rate Pij includes contributions from collisional
Cij = neqij and radiative processes but the latter are only to be included in the
downward rates. For three levels the three equations will read (n1 is the ground
level)

n1(C12 + C13) = n2(C21 + A21) + n3(C31 + A31) (42)
n2(C21 + A21 + C23) = n1C12 + n3(C32 + A32) (43)

n3(C31 + A31 + C32 + A32) = n1C13 + n2C23 (44)

Note that these are linearly dependent as, for example, the third is equal to the
sum of the other two. So we need a further equation to close the system e.g. for
the total number density N

n1 + n2 + n3 = N. (45)

If we only deal with line ratios the actual value of N is not important. Having
derived T and ne from suitable line ratios N , the element abundance, is deter-
mined separately from the individual line strengths. This is a much more com-
plicated question however, for instance, several ionization stages will need to be
considered, and we shall not investigate it here.

Instead we will look at line ratios in doubly (O III)and singly O II ionized
oxygen the line ratios of which are temperature and density sensitive respectively.
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Figure 2: Energy level (Grotrian) diagram for O III

6.1 Temperature dependent O III

Two lines will be sensitive to temperature if the respective upper levels have a
large energy difference. In O III the lines at λ4959/5007 and λ4363 (see fig. 2)
have upper levels 1D and 1S that are more than 20000 cm−1 apart. The ratio of the
populations of the two levels is proportional to the Boltzmann factor exp−20000/kT
which will be sensitive up to temperatures where kT ≈ 20000 (with kT in cm−1).
Since the electron density only appears linearly in the equations the exponential
factor dominates.

The relevant atomic data are shown in Table 1. They have been taken from
the book on Gaseous Nebulae by Osterbrock. Of particular interest is the fact
that all the levels belong to the 2p2 configuration, the two valence electrons can
both be labelled with 2p. Transitions among the 5 levels are forbidden since no
change in the electron configuration takes place. As a consequence, the radiative
transition probilities are very small, the largest is only 1.82 sec−1. For compari-
son, the transition probabilities for allowed transitions are of order 108 sec−1. The
small radiative probabilities allow collisions to produce relatively large popula-
tions in the excited states even though the electron densities are low (perhaps 103

cm−3). The collisional rates are so small that the atoms are far from thermody-
namic equilibrium so forbidden lines in emission are among the strongest to be
seen in Planetary nebulae as illustrated in fig. 3.
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5 ! Number of levels
3P0 1 0.0 ! For each level a label, the statistical weight and energy
3P1 3 113.178
3P2 5 306.174
1D2 5 20273.27
1S0 1 43185.74
1 2 0.54 2.6e-5 ! For each pair of levels two indices, an effective collision strength
1 3 0.27 3.0e-11 ! and a transition probability
1 4 0.24 2.7e-6
1 5 0.03 0.0
2 3 1.29 9.8e-5
2 4 0.72 6.7e-3
2 5 0.09 0.22
3 4 1.21 2.0e-2
3 5 0.16 7.8e-4
4 5 0.62 1.8

Table 1: Input data for O III

Figure 3: An amateur spectrum of the Saturn nebula. The Mais Observatory. Note
the strength of the O III(=O2+) lines.
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Figure 4: Energy level (Grotrian) diagram for O II

6.2 Density dependent O II

The levels of O II all belong to the 2p3 configuration so that the lines are forbidden
as was the case for the O III. On the other hand, the energy level structure is
completely different (see fig. 4. The energy levels appear in pairs, doublets. The
ratio of the strengths of the two lines from the 2D levels to the ground state is
primarily sensitive to the electron density. This is simply because the energy
difference is only 20 cm−1, as can be seen from Table 2, so that the Boltzmann
factor, exp−20/kT , is approximately 1 even at very low temperatures. Thus
there is almost no sensitivity to temperature.

As we shall see later, the ratio of the two lines and their wavelength separation
is small so that the observations are difficult making O II a far from ideal case.

As a final comment, the collision rates are in fact dependent on temperature
and for accurate work a table should be read in and interpolated upon. However,
the principle is the same, only the numerical values appearing in the rate equations
are slightly different and we omit this detail here.
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5 ! Number of levels
4S3_2 4 0.0 ! For each level a label, the statistical weight and energy
2D5_2 6 26810.55
2D3_2 4 26830.57
2P3_2 4 40468.01
2P1_2 2 40470.00
1 2 0.80 3.6e-5 ! For each pair of levels two indices, an effective collision strength
1 3 0.54 1.8e-4 ! and a transition probability
1 4 0.27 5.8e-2
1 5 0.13 2.4e-2
2 3 1.17 1.3e-7
2 4 0.73 0.11
2 5 0.30 5.6e-2
3 4 0.41 5.8e-2
3 5 0.28 9.4e-2
4 5 0.29 1.4e-10

Table 2: Input data for O II

7 Exercises
Exercise 1

Solve the equations

2w + 2x + 3y + 1z = 0
3w + 4x − 2y + 5z = 4
−5w + 5x − 1y − 2z = 3
−w − x − 3y + 3z = −2

(46)

using Gaussian elimination.

Exercise 2

Solve the same system of equations as before

2w + 2x + 3y + 1z = 0
3w + 4x − 2y + 5z = 4
−5w + 5x − 1y − 2z = 3
−w − x − 3y + 3z = −2

(47)

this time using LU decomposition.
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Download the programs (la progs.tar) from the web page. When you have
unpacked the archive (tar xvf la progs.tar) you will have two directories, TEST
and PN we will begin with TEST. Enter the following

cd TEST
ifort -c precision.f90
ifort -o test *.f90

or

cd TEST
gfortran -c precision.f90
gfortran -o test *.f90

to compile the package. You should inspect the various subroutines to find out
that they do and how they do it. With the help of the script this should be straight-
foward. Note that ludcmp and lubksb have been taken from Numerical recipes.
You can change from single to double precision by changing the value of the
variable 1.e0 to 1.d0 in precision.f90. Read the comments carefully for more in-
formation. Pay particular attention to the warning about compiling the module
first before the rest of the routines.

You can start the program with

./test

and you will be offered 4 options

1) fill the matrix with random values (default)
2) the hilbert matrix
3) a user-defined matrix: edit user.f90 first
4) read a matrix and a RHS from mat.dat

for each of the first 3 you will then need to give the size of the required matrix and
which pair ludcmp/lubksb,lured/reslv you wish to use.
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An intermezzo: the Hilbert matrix

The Hilbert matrix is a very strange beast. It’s elements are easy to define

Hij = 1/(i+ j − 1) (48)

and its inverse has elements

(H−1)ij = (−1)i+j(i+ j + 1)

(
n+ i− 1

n− j

)(
n+ j − 1

n− i

)(
n− i
i− 1

)2

(49)

where the notation
(
n
j

)
is the binomial coefficient defined by(

n

j

)
=

n!

j!(n− j)!
. (50)

The interesting property of the matrix is that its determinant is one divided
by 1,12,2160,6048000,266716800000 and so on making it an extremely stringent

Table 3: Determinant of the first few Hilbert matrices
n det(H)
1 1
2 8.33333e-2
3 4.62963e-4
4 1.65344e-7
5 3.74930e-12
6 5.36730e-18

test for any numerical linear algebra solution routine.
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Exercise 3
Perform the following in single precision

a Choose option 1 and compare the error for a number of matrix sizes (100s
to 1000s) and for both algorithm pairs. How fast does it grow? Does
the algorithm become unusable. For these runs start the program with
time ./test, take the user entry as an indication of the computer time
used. Plot this logarithmically and compare the slope with the predicted
value of 3. (Note that large matrices may not fit into the available mem-
ory in which case the system will write data to disk, as needed making the
execution times much longer. This is called paging. You can use the top
command in another window to see if this is happening. CPU usage below
90% for any period us a good sign that this is the case).

b Choose option 2 and compare the error for a number of matrix sizes and for
both algorithm pairs. Here the matrix size should be small (< 20).

c Choose option 3 and for 3 different choices of matrix perform similar tests. You
will need to edit and change user.f90 appropriately and then recompile the
program (see above).

d Option 4 is included chiefly for pedagogical purposes but with an appropri-
ate input data set you can check your answers from exercises 1 and 2 (see
mat1.dat).

Exercise 4
Perform the same tests as in exercise 3 but in double precision and compare

your results. You will need to edit precision.f90 and recompile the program.

Exercise 5
Solve the following tridiagonal matrix.

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2



x1
x2
x3
x4
x5

 =


1
2
3
4
5

 (51)

Exercise 6 Write a subroutine to solve a tridiagonal matrix. Use this routine to
check your solution to exercise 5.

Exercise 7 For this exercise
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cd ../PN
ifort -c precision.f90
ifort -o line *.f90
./line | tee output

The input is simple. You will be asked to calculate data for oii or oiii. Then
for oiii which is temperature dependent, you should enter a density, while a
temperature is needed for oii. For each ion you should perform 2 or 3 runs
with a different output file for each run. Then plot your results for each ion, line
intensity ratio versus temperature for oiii and versus density for oii. Comment
on your results.

Advanced task 1
The subject of this practical has been to solve the set of linear equations

Ax = b. (52)

In fact, we have only found an approximate solution which satifisies the perturbed
equation

A(x + δx) = b + δb. (53)

The difference between the two gives an equation for δx in terms of δb

Aδx = δb (54)

while δb is known from Eqn. 53

Aδx = A(x + δx)− b. (55)

This last equation can be used to improve the current solution and may be applied
iteratively. The A and b on the RHS are the original matrix and vector so a
copy is needed. Since the RHS is the current error vector it must be calculated as
accurately as possible, double precision should be used.

Your mission, should you choose to accept it is to write a subroutine to im-
plement this algorithm (no peeking in Numerical Recipes). You should use lud-
cmp/lubksb and write a test program.

Advanced task 2
S II and S III are very similar to O II and O III in their atomic physical prop-

erties and so can be used in a similar way to derive temperatures and densities.
Construct input data sets suitable for use with line. The necessary data are to be
found in the appendix.
Advanced task 3

lured/reslv as written do not use pivoting. Modify them to use partial or im-
plicit pivoting. You may use ludcmp/lubksb as an example. Once more you should
test your routines to ensure that they are correct.
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8 Appendix
The energy level notation is (2S+1)LJ , S being the total spin, L the total angular
momentum (this is a letter whereby L = S = 0, L = P = 1, L = D = 2. The total
angular momentum is J = L + S. The statistical weight of any level is simply
2J + 1 while the statistical weight of a term is (2S + 1)(2L + 1). These weights
are such that

∑
(2J + 1) = (2S + 1)(2L + 1). The configurations are denoted

by 2s22p3 and 3s23p3. They are not important here but the fact that they are very
similar means that the energy levels are very similar and that the two elements are
chemically related.

Osterbrock has saved space in his tabulations by making use of some ele-
mentary properties of the collision strengths. For instance the 3P −1 D collision
strength between the two terms, 3P, 1D splits into three collision strengths between
the levels 3P0,1,2 −1 D2 according to the statistical weights

Ω(3P0 −1 D2) =
(2J + 1)

(2S + 1)(2L+ 1)
Ω((2S+1)L−(2S′+1 L′)

=
(2 ∗ 0 + 1)

(3 ∗ (2 ∗ 1 + 1)
Ω(3P−1 D)

=
1

9
Ω(3P−1 D)

and so on. We have used this to write out the tables in full. You can check your
values by comparing with the O II, O III numbers given in the text and the input
data files.

8.1 Atomic data for O II and S II

Table 4: O II and S II energy levels in cm−1 from the NIST website. Note the
ordering.

O II S II

Configuration Level Energy Configuration Level Energy
2s22p3 4S3/2 0.0 3s23p3 4S3/2 0.0
2s22p3 2D5/2 26810.55 3s23p3 2D3/2 14852.94
2s22p3 2D3/2 26830.57 3s23p3 2D5/2 14884.73
2s22p3 2P3/2 40468.01 3s23p3 2P1/2 24524.83
2s22p3 2P1/2 40470.00 3s23p3 2P3/2 24571.54
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Table 5: O II and S II radiative data taken from the book “Astrophysics of Gaseous
Nebulae” by Osterbrock. The transition probabilities are given in units of sec−1.

Upper Lower O II S II
2P1/2 – 2P3/2 1.4× 10−10 1.0× 10−6
2D5/2 – 2P3/2 1.1× 10−1 1.8× 10−1
2D3/2 – 2P3/2 5.8× 10−2 1.3× 10−1
2D5/2 – 2P1/2 5.6× 10−2 7.8× 10−2
2D3/2 – 2P1/2 9.4× 10−2 1.6× 10−1
4S3/2 – 2P3/2 5.8× 10−2 2.2× 10−1
4S3/2 – 2P1/2 2.4× 10−2 9.1× 10−2
2D5/2 – 2D3/2 1.3× 10−7 3.3× 10−7
4S3/2 – 2D5/2 3.6× 10−5 2.6× 10−4
4S3/2 – 2D3/2 1.8× 10−4 8.8× 10−4

Table 6: O II and S II collision strengths taken from the book “Astrophysics of
Gaseous Nebulae” by Osterbrock. The collision strength is dimensionless.

Transition O II S II Transition O II S II

Ω(4S3/2,
2 D5/2) 0.80 4.19 Ω(4S3/2,

2 D3/2) 0.54 2.79
Ω(4S3/2,

2 P3/2) 0.27 1.52 Ω(4S3/2,
2 P1/2) 0.13 0.76

Ω(2D3/2,
2 D5/2) 1.17 7.59 Ω(2D3/2,

2 P1/2) 0.28 1.52
Ω(2D3/2,

2 P3/2) 0.41 3.38 Ω(2D5/2,
2 P1/2) 0.30 2.56

Ω(2D5/2,
2 P3/2) 0.73 4.79 Ω(2P1/2,

2 P3/2) 0.29 2.38
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8.2 Atomic data for O III and S III

Table 7: O III and S III energy levels in cm−1 from the NIST website. Here the
ordering is the same

O III S III

Configuration Level Energy Configuration Level Energy
2s22p2 3P0 0.0 3s23p2 3P0 0.0
2s22p2 3P1 113.178 3s23p2 3P1 298.69
2s22p2 3P2 306.174 3s23p2 3P2 833.08
2s22p2 1D2 20273.27 3s23p2 1D2 11322.7
2s22p2 1S0 43185.74 3s23p2 1S0 27161.0

Table 8: O III and S III radiative data taken from the book “Astrophysics of
Gaseous Nebulae” by Osterbrock. The transition probabilities are given in units
of sec−1.

Lower Upper O III S III
1D2 – 1S0 1.8× 100 2.2× 100

3P2 – 1S0 7.8× 10−4 1.0× 10−2
3P1 – 1S0 2.2× 10−1 8.0× 10−1
3P2 – 1D2 2.0× 10−2 5.8× 10−2
3P1 – 1D2 6.7× 10−3 2.2× 10−2
3P0 – 1D2 2.7× 10−6 5.8× 10−6
3P1 – 3P2 9.8× 10−5 2.1× 10−3
3P0 – 3P2 3.0× 10−11 4.6× 10−8
3P0 – 3P1 2.6× 10−5 4.7× 10−4

Table 9: O III and S III collision strengths taken from the book “Astrophysics of
Gaseous Nebulae” by Osterbrock. The collision strength is dimensionless.

Transition O III S III Transition O III S III

Ω(3P0,
1 D2) 0.24 0.93 Ω(3P1,

1 D2) 0.72 2.80
Ω(3P2,

1 D2) 1.21 4.66 Ω(3P0,
1 S0) 0.03 0.13

Ω(3P1,
1 S0) 0.09 0.40 Ω(3P2,

1 S0) 0.16 0.66
Ω(3P0,

3 P2) 0.27 1.11 Ω(3P0,
3 P1) 0.54 2.64

Ω(1D,1 S) 0.62 1.88 Ω(3P1,
3 P2) 1.29 5.79
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