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Foreword

This is an instruction set for a lab course on Ordinary Differential Equations. As such, it is
neither complete nor perfect (and we’re not talking about typos here).

From your point of view, the former can be a cause of nuisance and – in most cases – a source
for additional work. This is intended. The script cannot replace reading the original literature.
Wherever appropriate, we have tried to point to the relevant papers/books.

We would greatly appreciate any feedback on inconsistencies, mistakes, obvious blunders, and
outright nonsense in the script. Also, we’d be very thankful for suggestions how to improve the
script beyond the afore-mentioned.

Despite these ominous beginnings, we hope you’ll enjoy the following. After all, numerics are
a never-ending source of surprises!
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Chapter 1

Introduction

1.1. Why Ordinary Differential Equations?

Differential equations (DEs) are omnipresent when it comes to determining the dynamical evo-
lution, the structure, or the stability of physical systems. In many cases, the resulting set of DEs
contains several independent variables (e.g., spatial coordinates and time in hydrodynamics), in
which case the DEs are called partial differential equations (PDEs). These will be of no concern
here.

However, it is often possible to simplify the set of DEs by physical reasoning such that the
number of independent variables is reduced to 1, in which case we speak of ordinary differential
equations (ODEs). For example, the classical stellar structure models neglect time evolution and
non-spherical effects, resulting in coupled differential equations only depending on the radius or
the mass coordinate. Likewise, chemical networks are often formulated locally, i.e., the (coupled)
rate equations depend only on time.

The solving “strategy” (at least for initial value problems) in most cases boils down to:
(0) Choose the appropriate solution method (“solver”), in dependence of the properties of the
ODEs (and their solution functions). (1) Determine the initial conditions. (2) Find the appro-
priate step size. (3) Advance the solution by that step size. (4) Repeat (2) and (3). Of course,
the problems arise in the steps (2) and (3). What is the correct step size, and how should we
integrate the equations? This entails problems like: how large are the errors we make? And,
how much can we trust the solutions? The rest of this script centers around these questions, and
attempts to throw some light on possible answers with the help of some examples.

There is a whole wealth of possible applications of ODEs in physics and astronomy. However,
instead of (re-)introducing the Kepler problem or the differential equations describing stellar
structure, we will (finally) use the Friedmann–Lemâıtre equation(s) describing the temporal
evolution of our cosmos to shed some light on how to integrate ODEs numerically, and to obtain
an impression of what can go wrong if one has no theoretical background.

For this purpose (but also in order to tackle different equations underlying different prob-
lems – for example, so-called stiff problems), we need the integrators and techniques which are
introduced in Chapter 2, after we have briefly recapitulated some basic facts (including the
(in?)famous theorem of Picard–Lindelöf which tells us under which conditions ODEs can be
solved uniquely).

Chapter 3 gives a short introduction into cosmological models, concentrating on the derivation
of the Friedmann–Lemâıtre equations and related problems. As a major outcome, we will
formulate the final equation for the temporal evolution of the “cosmic scale factor”, which has
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CHAPTER 1. INTRODUCTION

to be solved in dependence of the total matter and radiation densities and the cosmological
constant, which is interpreted as “dark energy” nowadays.

After all this, we finally get to the experiments themselves in Chapter 4. On the first day
of our lab work, we will investigate different techniques to solve ODEs, at hand of three differ-
ent examples. On the second day then, we will apply our accumulated knowledge to solve
the Friedmann–Lemâıtre equation under various conditions. A highlight will be the re-
construction of the famous ΩM vs. ΩΛ diagram (e.g., Perlmutter et al. 1999), which allows us
to understand the various possibilities for the future fate of our and other cosmoses, in depen-
dence of total matter density and cosmological constant.

Due to the above layout of the “experimental” work, we suggest the following schedule for a
fruitful preparation:

Before day 1: Study the numerical methods (Chapter 2), and have a look into the problems to
be solved on the first day (Section 4.1).

Before day 2: Study the introduction into cosmological models (Chapter 3), and refer to the
literature in case of problems. Inform yourself on the experiments/problems planned for the
second day (Section 4.2). In order to be able to solve some of these problems, we suggest to work
on Exercises 5 and 6 also before day 2.
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Chapter 2

Numerics

2.1. Some general facts about ODEs

A set of ordinary differential equations1 is defined as

y′ = f(x,y), (2.1)

where x is the independent variable, and the prime denotes derivation w.r.t. x. The vectors shall
have the length n. In most of what follows, we will consider the scalar ODE (first order)

y′ = f(x, y) (2.2)

for the solution function y(x) with initial condition

y(x0) = y0 (2.3)

for given x0 and y0 (initial value problem).
Scalar DEs of higher order can be reduced to first order vector DEs (set of DEs, see above),

which can be treated as scalar ones.

2.1. Example. y′′ = f(x, y, y′) with y(x0) = y0, y′(x0) = y′0.
Let

y :=

(

y1
y2

)

and f(x,y) :=

(

y2
f(x, y1, y2)

)

.

Then we have to solve

y′ = f(x,y) with y(x0) =

(

y0
y′0

)

Interestingly and fortunately, it can be shown that the above problems for y′ have exactly one
solution y, if f fulfills certain conditions.

2.1.1. Existence and uniqueness

2.2. Definition. Let G ⊂ R× R and f : G → R. Then, f is subject to a Lipschitz condition
with Lipschitz constant L ≥ 0, if

∣
∣f(x, y)− f(x, ỹ)

∣
∣ ≤ L|y − ỹ| for all (x, y), (x, ỹ) ∈ G. (2.4)

1A helpful summary is given by Stoer and Bulirsch (1990) and Press et al. (1992).
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CHAPTER 2. NUMERICS

Criterium. Let f ∈ C1(G) with G ⊂ R × R compact and convex. Then, f is subject to a
Lipschitz condition with Lipschitz constant

L = max
(x,y)∈G

∣
∣∂yf(x, y)

∣
∣.

This is a direct consequence of the mean value theorem of calculus. Try to prove this yourself.

2.3. Theorem (Picard–Lindelöf). Let α, β > 0, (x0, y0) ∈ R
2 and

R :=
{
(x, y) : |x− x0| ≤ α, |y − y0| ≤ β

}
.

Moreover, f ∈ C0(R) shall be a function with 0 < γ := max |f | < ∞, which is subject to a
Lipschitz condition.

Then, there is exactly one function y ∈ C1(I) in I := [x0 − δ, x0 + δ], δ := min {α, β/γ} with
y′(x) = f

(
x, y(x)

)
∀ x ∈ I and y(x0) = y0.

For a proof, see any textbook on calculus. The generalization to sets of ODEs is straightforward.
The initial value problem y′(x) = f(x, y) with y(x0) = y0 even has a solution if f is continuous

“only”. But then the uniqueness of the solution can no longer be warranted.

2.4. Example. f(x, y) = y2/3, (x, y) ∈ R× R, is continuous, but not subject to a Lipschitz condition, because
the requirement |y2/3 − 0| ≤ L|y − 0|, or equivalently, 1/|y|1/3 ≤ L, cannot be fulfilled for any L ≥ 0 for all y
around 0.

Obviously, y1(x) = 0 (x ∈ R) and y2(x) =
1
27

(x− x0)
3 (x ∈ R) are two different solutions of the initial value

problem y′ = f(x, y), y(x0) = 0 with x0 ∈ R.

Moreover, it can be shown that the solution of an initial value problem depends continuously on
the initial value, and that – if ∂fi/∂yj is defined, continuous, and finite on R – the solution even
depends continuously differentiably on the initial value.

2.2. Consistency, convergence, and discretization errors

If solving an initial value problem numerically, one has, at specific abscissa values

a =: x0 < x1 < . . . < xN := b (2.5)

with step sizes
hn := xn+1 − xn (n = 0, 1, . . . , N − 1), (2.6)

to construct approximations
yn ≈ y(xn) (2.7)

for the (exact) values of the desired solution. Often, one chooses equidistant step sizes

h :=
b− a

N
. (2.8)

Single-step method. By means of a single-step method, the approximation yn+1 at position
xn+1 is solely calculated from the approximation (xn, yn). (For so-called multi-step methods
– which are no longer as popular as some time ago – see the literature). The corresponding
algorithm has the general form

yn+1 = yn + hnϕ(xn, yn, yn+1, hn), (2.9)
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y

x

y(x)

xn xn+1

|gn+1|

|ln+1|

y(xn)

y(xn+1)

yn

yn+1

Figure 2.1: Local and global discretization error.

where ϕ is a specific, algorithm dependent function. If ϕ does not depend on yn+1, we speak of
an explicit single-step method, otherwise of an implicit single-step method.

In the latter case, an implicit equation for yn+1 has to be solved (numerically). This is the
disadvantage of the implicit method. Its advantage is given by its stability (see Section 2.5).

Let us now consider the error (w.r.t. the exact solution) which has accumulated after a
certain number of steps. At first, we will neglect rounding errors. In the following, we will
restrict ourselves to equidistant step sizes.

Global discretization error. The global discretization error at position xn measures the
difference

gn := y(xn)− yn (n = 0, 1, . . . , N). (2.10)

The single-step method is called convergent, if

max
n=0,1,...,N

|gn| → 0 for h → 0+. (2.11)

Such a method has a convergence order p > 0, if the global discretization error can be written
in the form

max
n=0,1,...,N

|gn| ≤ chp = O(hp), (2.12)

with constants c ≥ 0 and p > 0 independent of h. To obtain useful estimates for the global
discretization error, we also have to define a
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Local discretization error, which is defined (at position xn+1) by

ln+1 := y(xn+1)− y(xn)− hϕ
(
xn, y(xn), y(xn+1), h

)
. (2.13)

This local error describes the deviation of the exact solution from the algorithm function. For
an explicit method, ln+1 is the difference between exact value y(xn+1) and approximation yn+1,
if we would start at xn with the exact value y(xn) (error of one step; see Fig. 2.1).

A single-step method is called consistent, if

1

h
ln+1 → 0 for h → 0+ (n = 0, 1, . . . , N − 1). (2.14)

Because of
ln+1

h
=

y(xn+1)− y(xn)

h
︸ ︷︷ ︸

secant slope of exact solution

− ϕ
(
xn, y(xn), y(xn+1), h

)

︸ ︷︷ ︸

approximation of this slope

, (2.15)

we have the equivalence of

1

h
|ln+1|

h→0+
−−−−→ 0 ⇐⇒ ϕ

(
xn, y(xn), y(xn+1), h

) h→0+
−−−−→ f

(
xn, y(xn)

)
. (2.16)

The method has a consistency order (brief: order) of p, if the local discretization error fulfills the
inequality

|ln+1| ≤ chp+1 = O(hp+1) (2.17)

with constants c ≥ 0 and p > 0, independent of h.
We are now able to relate the global with the local discretization error. For a method of

consistency order p and an ODE with function y subject to a Lipschitz constant L, we finally
obtain after some effort

max
n=0,1,...,N−1

|gn+1| ≤
c

L

(

eL(b−a) − 1
)

hp (2.18)

for the explicit case, and

max
n=0,1,...,N−1

|gn+1| ≤
c

2L

(

e2L(b−a)−1
)

hp +O(hp+1) (2.19)

for the implicit one. Thus, local errors of O(hp+1) will lead, after N =
b− a

h
steps, to a global

error of O(Nhp+1) = O(hp), as to be expected.

Rounding errors. Let us now consider the effect of rounding errors and “faulty” initial values.
To this end, we assume an algorithm subject to errors

ỹn+1 = ỹn + hϕ(xn, ỹn, ỹn+1, h) + δn+1 (n = 0, 1, . . . , N − 1) (2.20)

with
ỹ0 = y0 + ε0. (2.21)

Let
|δn+1| ≤ δ (n = 0, 1, . . . , N − 1) (2.22)

and
ε := |ε0|. (2.23)
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0
0 hopt.

total error

discretization error ∼ hp

rounding error ∼ 1/h

step size

Figure 2.2: Total error due to discretization and rounding.

The estimate of the total error (due to discretization and rounding)

tn := y(xn)− ỹn (n = 0, 1, . . . , N − 1) (2.24)

can be obtained quite similar to the case without rounding errors, and results in

max
n=0,1,...,N−1

|tn+1| ≤ eL(b−a)ε+
1

L

(

eL(b−a) − 1
)(

chp +
δ

h

)

(2.25)

for the explicit case, and

max
n=0,1,...,N−1

|tn+1| ≤ eL(b−a)ε+
1

2L

(

e2L(b−a)/(1−Lh) − 1
)(

chp +
δ

h

)

(2.26)

for the implicit one. In particular, we obtain

max
n=0,1,...,N−1

|tn+1| ≤
1

L

(

eL(b−a) − 1
)(

chp +
δ

h

)

(2.27)

for the explicit, single-step method with exact initial values.

Exercise 1: For the latter case, calculate the optimum step size.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 2.3: Directional field for example 2.5.

2.3. Single-step methods

Let y(x) be the solution of the DE y′ = f(x, y). If the graph of this solution passes through a
point (x̃, ỹ), the slope of this graph at this point is f(x̃, ỹ): the value f(x̃, ỹ) fixes the slope of the
tangent of the solution curve at this point. By drawing the corresponding slopes for many points
in the xy plane, one can roughly sketch the graph of the solution of the initial value problem
y′ = f(x, y), y(x0) = y0, if one follows this directional field (also called slope field), starting at
the initial value (x0, y0).

2.5. Example. y′ = − sin(x)y2 with initial value y(0) = 2.

The exact solution is y(x) =
−2

2 cos(x)− 3
. The directional field and this solution are displayed in Fig. 2.3.

2.3.1. Euler method

The most simple numerical method to solve the initial value problem (2.2) is to approximate
the solution curve by a piecewise linear function (polygon), accounting for the directional field.
For each n, the linear piece of the polygon in between xn and xn+1 points to direction f(xn, yn)
(= slope of the tangent to a solution curve through (xn, yn), which usually differs from the exact
one through (xn, y(xn)).
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y

xx0 x1 x2 x3

y0

y1

y2

y3

y(x)

Figure 2.4: Euler method.

By means of this so-called Euler method, the approximations for the solution are thus
calculated according to

yn+1 = yn + hf(xn, yn) (n = 0, . . . , N − 1), (2.28)

see Fig. 2.4. The local discretization error is given by

ln+1 = y(xn+1)
︸ ︷︷ ︸

(∗)

−y(xn)− hf
(
xn, y(xn)

)

=
1

2

(

∂xf
(
xn, y(xn)

)
+ f

(
xn, y(xn)

)
∂yf

(
xn, y(xn)

))

h2 +O(h3), (2.29)

using the Taylor expansion

(∗) = y(xn) + y′(xn)h+
1

2
y′′(xn)h

2 +O(h3)

= y(xn) + f
(
xn, y(xn)

)
h+

1

2

(

∂xf
(
xn, y(xn)

)
+ f

(
xn, y(xn)

)
∂yf

(
xn, y(xn)

))

h2 +O(h3).

Thus, the consistency order of the Euler method is p = 1.

2.6. Example. y′ = −2xy2, y(0) = 1. Table 2.1 displays the results using the Euler method, for different
step sizes (see also Fig. 2.5). Fig. 2.6 shows the corresponding total error, which decreases (roughly) proportional

to step size. The exact solution is y(x) =
1

1 + x2
.
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h = 0.1 h = 0.01 h = 0.001
xn y(xn) yn tn yn tn yn tn

0.0 1.00000 1.00000 0 1.00000 0 1.00000 0
0.1 0.99010 1.00000 −0.00990 0.99107 −0.00097 0.99020 −0.00010
0.2 0.96154 0.98000 −0.01846 0.96330 −0.00176 0.96171 −0.00018
0.3 0.91743 0.94158 −0.02415 0.91969 −0.00226 0.91766 −0.00022
0.4 0.86207 0.88839 −0.02632 0.86448 −0.00242 0.86231 −0.00024
0.5 0.80000 0.82525 −0.02525 0.80229 −0.00229 0.80023 −0.00023
0.6 0.73529 0.75715 −0.02185 0.73727 −0.00198 0.73549 −0.00020

Table 2.1: Score table of Euler method for example 2.6.

y

x0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

y(x)

Figure 2.5: Euler method (example 2.6).

x

tn

0 0.2 0.4 0.6 0.8 1

0.01

0.001

0.0001

0.00001

0.000001

h = 0.1

h = 0.01

h = 0.001

Figure 2.6: Total error of Euler method (example 2.6).
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2.7. Example. y′ = y, y(0) = 1. Euler method with h = 0.1; the result is displayed in Fig. 2.7, and the exact
solution is y(x) = ex.

y

x0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

y(x)

Figure 2.7: Euler method (example 2.7).

For this example, Fig. 2.7 shows that the (absolute) total error increases with increasing xn,
i.e., the numerical solution deviates more and more from the exact one, which is a typical situa-
tion. To diminish this effect, one can either choose a smaller step size, i.e., increase the number of
steps (global discretization error O(h)). Alternatively, one can use higher-order methods, which
is advisable because of rounding errors and computational time.

Note that the Euler method is not symmetric and can even become unstable (cf. Section 2.5,
in particular Example 2.10). To see this already here, consider

y′ = −cy, (2.30)

where c > 0 is a constant. The Euler scheme with fixed step size h would then be

yn+1 = yn + hy′n = (1− ch)yn. (2.31)

If h > 2/c, the method becomes unstable, since |yn| → ∞ as n → ∞. For constant c, one
could choose the step size small enough to prevent the solution’s explosion. However, if c is not
constant (and we will meet such cases below), this doesn’t work anymore, because for each step
we would need to know what the maximum allowed step size h would be. There are two remedies:
adaptive step sizes, leading to methods with error control, and implicit or semi-implicit methods.

2.3.2. Generalized Runge–Kutta methods

In general, the directional field changes from one to the next approximation value. This is
accounted for by the so-called Runge–Kutta methods, where the idea behind these methods
is to take a “trial” step (usually to the midpoint of the interval), and then to use the values of x
and y at that point to calculate the “real” step across the whole interval. Note that this is not
the same as splitting the integration step in half. A first example is the method by Collatz,
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y

xxn xn+1/2 xn+1

yn

yn+1/2

yn+1

k1

k2

Figure 2.8: Collatz method.

which belongs to the class of extrapolation methods (see Fig. 2.8):

k1 := f(xn, yn),

k2 := f

(

xn +
h

2
, yn +

h

2
k1

)

,

yn+1 = yn + h · k2. (2.32)

The local discretization error can be shown to have the structure

ln+1 = F
(
xn, y(xn)

)
h3 +O(h4), (2.33)

since the symmetrization cancels out the first and 2nd order terms in h. Thus, this method has
a consistency order of p = 2.

2.8. Example (continuation of Example 2.6). Score table of Collatz method:

h = 0.1 h = 0.05
xn yn tn yn tn

0.0 1.00000 0 1.00000 0
0.1 0.99000 0.00010 0.99007 0.00002
0.2 0.96118 0.00036 0.96145 0.00009
0.3 0.91674 0.00069 0.91727 0.00016
0.4 0.86110 0.00096 0.86184 0.00023
0.5 0.79889 0.00111 0.79974 0.00026
0.6 0.73418 0.00111 0.73503 0.00026
0.7 0.67014 0.00100 0.67091 0.00023
0.8 0.60895 0.00080 0.60957 0.00018
0.9 0.55191 0.00058 0.55236 0.00013
1.0 0.49964 0.00036 0.49992 0.00008

For same step size, the total errors are (absolutely) smaller than for the Euler method. Comparing different
step sizes, the consistency order of p = 2 is obvious.
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In order to develop methods of higher order, some systematic procedure is required. To this
end, we integrate the DE y′(x) = f(x, y(x)) over the interval [xn, xn+1] of length h = xn+1 − xn

w.r.t. the independent variable x:

y(xn+1) = y(xn) +

xn+1∫

xn

f
(
x, y(x)

)
dx. (2.34)

Note that the initial value problem (2.2) is equivalent to the integral equation

y(x) = y0 +

x∫

x0

f
(
x′, y(x′)

)
dx′. (2.35)

The integral (2.34) is approximated by quadrature formulas (cf. the Numerical Lab “Integration”)

xn+1∫

xn

f
(
x, y(x)

)
dx ≈ h

m∑

r=1

γr f
(
xn + αrh, y(xn + αrh)

)
(2.36)

with weights γr ≥ 0 and abscissa values xn + αrh with 0 ≤ αr ≤ 1 (r = 1, 2, . . . ,m), α1 := 0.
The major problem now is that the y(xn+αrh) in (2.36) are unknown and have to be replaced

by approximations, using the following ansatz:

f
(
xn + α1h, y(xn + α1h)

)
=: k1

(
xn, y(xn)

)
,

f
(
xn + α2h, y(xn + α2h)

)
≈ f

(

xn + α2h, y(xn) + hβ21k1
(
xn, y(xn)

))

=: k2
(
xn, y(xn)

)
,

f
(
xn + α3h, y(xn + α3h)

)
≈ f

(

xn + α3h, y(xn) + h
(

β31k1
(
xn, y(xn)

)
+ β32k2

(
xn, y(xn)

))
)

=: k3
(
xn, y(xn)

)

...

f
(
xn + αmh, y(xn + αmh)

)
≈ f

(

xn + αmh, y(xn) + h

m−1∑

s=1

βmsks
(
xn, y(xn)

)

)

=: km
(
xn, y(xn)

)
(2.37)

with constants βrs. One requires

r−1∑

s=1

βrs = αr, (r = 2, 3, . . . ,m), (2.38)

so that the approximations (2.37) are exact at least to O(h). This follows from the Taylor
expansion in step size:

f
(
xn + αrh, y(xn + αrh)

)
− f

(

xn + αrh, y(xn) + h

r−1∑

s=1

βrsks
(
xn, y(xn)

)

)

=

=

(

αr −

r−1∑

s=1

βrs

)

f
(
xn, y(xn)

)
∂yf

(
xn, y(xn)

)
h+O(h2). (2.39)
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α1

α2 β21

α3 β31 β32

...
αm βm1 βm2 · · · βm,m−1

γ1 γ2 · · · γm−1 γm

Figure 2.9: Butcher tableau for an explicit Runge–Kutta method of m-th degree.

Ansatz (2.37) together with (2.36) yields the algorithm

yn+1 = yn + h

m∑

r=1

γrkr
(
xn, y(xn)

)
. (2.40)

From the requirement of consistency,

m∑

r=1

γrkr(xn, yn)
h→0+
−−−−→ f(xn, yn),

we finally find
m∑

r=1

γr = 1, (2.41)

since k1(xn, yn) = k2(xn, yn) = . . . = km(xn, yn) at h = 0.

A method constructed in this way is called an explicit Runge–Kutta method of m-th degree.
The degree m denotes the number of evaluations of the function f in one integration step. The
coefficients of the algorithm are usually summarized in a tableau following Figure 2.9.

Special cases. In the following, we summarize a few special cases and indicate their corre-
spondence with well-known quadrature formulas.

• m = 1:

0

1

k1 = f(xn, yn),

yn+1 = yn + hk1. (2.42)

Euler Method (2.28): rectangle rule.

• m = 2:

0

1 1

1

2

1

2

k1 = f(xn, yn),

k2 = f(xn + h, yn + hk1),

yn+1 = yn +
h

2
(k1 + k2). (2.43)

Heun method: trapezoid rule.
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• m = 2:

Exercise 2:
Construct the tableau for
the Collatz method.

k1 = f(xn, yn),

k2 = f

(

xn +
h

2
, yn +

h

2
k1

)

,

yn+1 = yn + hk2. (2.44)

Collatz method(2.32): mid-point rule.

• m = 4:

0

1

2

1

2

1

2
0

1

2

1 0 0 1

1

6

1

3

1

3

1

6

k1 = f(xn, yn),

k2 = f

(

xn +
h

2
, yn +

h

2
k1

)

,

k3 = f

(

xn +
h

2
, yn +

h

2
k2

)

,

k4 = f (xn + h, yn + hk3) ,

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
. (2.45)

Classical Runge–Kutta method: Simpson’s rule.

To calculate the various “slopes” successively, only the previous value is needed. This very
popular method has a consistency order of p = 4. The generalization to sets of DEs is
straightforward:

k1 = f(xn,yn),

k2 = f

(

xn +
h

2
,yn +

h

2
k1

)

,

k3 = f

(

xn +
h

2
,yn +

h

2
k2

)

,

k4 = f (xn + h,yn + hk3) ,

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
. (2.46)

The maximum possible consistency order pmax of an explicit Runge–Kutta method of m-th
degree is given in Table 2.2. To obtain these results, rather complex calculations are required,
due to the need for solving large number of non-linear equations in parallel.

m 1 2 3 4 5 6 7 8 9 10 > 10

pmax 1 2 3 4 4 5 6 6 7 7 ≤ m− 3

Table 2.2: Maximum possible consistency order pmax(m) for Runge–Kutta methods.
Note that pmax = 4 for both m = 4 and m = 5.

One should not be fooled by the “high order” labels here. Higher order does not necessarily
mean higher accuracy. How well the method actually performs, depends solely on the problem
to solve. The classical Runge–Kutta method is implemented in routine rk4, but be warned:
we will break it. The main disadvantage of course lies in the fixed step size, which eventually
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brings us back to the problem we encountered with the Euler method. The higher order just
postpones the failure of the scheme (see Section 2.5), though not to a considerable extent.

Remark. In addition to the explicit methods outlined, there are also implicit Runge–Kutta
methods, which might be used for stiff problems (cf. Section 2.5).

2.4. Step-size control

Clearly, it would be desirable to have some sort of control over the step size h. After all, the
function to be integrated could be smooth over large parts – in which case we would like to
integrate quickly over these boring regions, while isolated regions show large variation – for
which the step size would have to be small in order to catch the salient details.

The problem is: How do we control the step size? The step size should be linked to an error
estimate, i.e., we need an estimate how large the error for a given integration step is. If this
estimate is larger than a certain (user-defined) threshold, the step size must decreased, and vice
versa. With respect to computational time (and also rounding errors!), the step size should be
always as large as possible.

In the following, we consider step (n + 1) of an explicit single-step method of consistency
order p,

yn+1 = yn + hϕ(xn, yn, h). (2.47)

The error made in this single step is ỹ(xn+1)− yn+1, where ỹ(x) denotes the (exact) solution of
the initial value problem

ỹ′ = f(x, ỹ) , ỹn = yn. (2.48)

The step size should be chosen such that this local error is constrained by

|ỹ(xn+1)− yn+1| <∼ ∆0, (2.49)

where ∆0 > 0 is a given tolerance level. Since ỹ(xn+1) is unknown, the error has to be estimated.
In our case, the local discretization error

l̃n+1 := ỹ(xn+1)− ỹ(xn)
︸ ︷︷ ︸

=yn

−hnϕ
(
xn, ỹ(xn)
︸ ︷︷ ︸

=yn

, hn

)
(2.50)

with ỹ(x) instead of y(x) is equal to the corresponding global discretization error

g̃n+1 := ỹ(xn+1)− yn+1, (2.51)

and because of our assumptions we have (convergence provided)

g̃n+1 = l̃n+1 ≈ chp+1
n . (2.52)

2.4.1. Error estimate from step doubling

Originally, the error estimate was achieved by step doubling. The integration step is performed
twice, once with the full step size, then, independently, twice with the half step size. For a step
with step size hn, we have from above

g̃
(1)
n+1 = ỹ(xn+1)− y

(1)
n+1 ≈ chp+1

n , (2.53)
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whereas a double step with size hn/2 results in

g̃
(2)
n+1 = ỹ(xn+1)− y

(2)
n+1 ≈ 2c

(
hn

2

)p+1

≈ c
hp+1
n

2p
(2.54)

(remember that c is independent of h). Subtracting (2.54) from (2.53) yields

y
(2)
n+1 − y

(1)
n+1 ≈

(
1− 2−p

)
chp+1

n . (2.55)

2.9. Example. For a Runge–Kutta method of order p = 4, this difference (in terms of step size hn/2) is given
by

y
(2)
n+1 − y

(1)
n+1 ≈ 30c

(

hn

2

)5

. (2.56)

A final combination again with (2.53) results in

ỹ(xn+1)− y
(1)
n+1 ≈ chp+1

n ≈
y
(2)
n+1 − y

(1)
n+1

1− 2−p
. (2.57)

Optimum step size. Let h̄n be the step size which should result in the predefined tolerance
level, ∣

∣ỹ(xn + h̄n)− yn+1

∣
∣ = ∆0. (2.58)

From (2.52) we have
∆0 ≈ |c| h̄p+1

n , (2.59)

and from (2.57) and (2.59) we obtain

h̄n ≈ hn




(1− 2−p)∆0
∣
∣
∣y

(2)
n+1 − y

(1)
n+1

∣
∣
∣





1/(p+1)

≈ hn

(
∆0

|∆y|

)1/(p+1)

. (2.60)

This equation is used in two ways (see also below). If ∆y is larger than ∆0 in absolute value,
it tells us how much to decrease the step size for a next retry of the present, failed step. If ∆y
is smaller than ∆0, we can accept the present approximation for yn+1, and the equation tells us
how much we can increase h for the next step n+ 2. In so far, we will always integrate close to
optimum step size.

2.4.2. Embedded methods

Step-size control can be achieved also in a different way. Instead of calculating two approxi-
mations with the same method but different h, we can also calculate two approximations with
same h but methods of different consistency order. Indeed, this procedure is favored to date. In
step (n+ 1), we now have

• explicit single-step method with consistency order p:

g̃
(1)
n+1 = ỹ(xn+1)− y

(1)
n+1 ≈ c1h

p+1
n . (2.61)

• explicit single-step method with consistency order p+ 1:

g̃
(2)
n+1 = ỹ(xn+1)− y

(2)
n+1 ≈ c2h

p+2
n . (2.62)
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0

1

5

1

5

3

10

3

40

9

40

3

5

3

10
−

9

10

6

5

1 −

11

54

5

2
−

70

27

35

27

7

8

1631

55296

175

512

575

13824

44275

110592

253

4096

37

378
0

250

621

125

594
0

512

1771
order 5

2825

27648
0

18575

48384

13525

55296

277

14336

1

4
order 4

Table 2.3: Embedded Runge–Kutta method with Cash–Karp coefficients, as used in subroutine rkck.

Error estimate ỹ(xn+1)− y
(1)
n+1:

ỹ(xn+1)− y
(1)
n+1 ≈ y

(2)
n+1 − y

(1)
n+1 +O(hp+2). (2.63)

Optimum step size h̄n for tolerance level ∆0 > 0:
∣
∣ỹ(xn+1)− ȳn+1

∣
∣ = ∆0, (2.64)

i.e.,
∆0 ≈ |c1| h̄

p+1
n . (2.65)

From (2.61) and (2.63), we find in analogy to (2.60) (neglecting terms of order O(hp+2)

h̄n ≈ hn




∆0

∣
∣
∣y

(2)
n+1 − y

(1)
n+1

∣
∣
∣





1/(p+1)

. (2.66)

Step-size control is implemented in analogy to above, e.g.,

• Calculate y
(1)
n+1, y

(2)
n+1 and h̄n.

• If hn ≤ τ h̄n: accept y
(1)
n+1 (τ is a safety factor, e.g., τ = 0.9).

Else: replace hn by τ h̄n. Recalculate y
(1)
n+1, y

(2)
n+1 and h̄n.

If necessary, reduce step size again.

• Use τ h̄n as initial step size for the next step.

y
(2)
n+1 should be calculated in parallel to y

(1)
n+1 with almost no additional effort. This can be

achieved by so-called embedded Runge–Kutta schemes, or Runge–Kutta–Fehlberg inte-
grators. Fehlberg used the fact that for RK schemes of order p > 4, more than p function
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evaluations are needed (though never more than p + 3, cf. Table 2.2). Fehlberg found a 5th-
order method with m = 6 function evaluations, while another combination of those six functions
(i.e., identical αr and βrs but different γr) yields a 4th-order method. Thus, the method of
lower order is embedded into the higher order one. Table 2.3 shows the coefficients for such a
p = 4, 5 method with coefficients as derived by Cash & Karp, which are somewhat advantageous
compared to the original coefficients from Fehlberg.

2.4.3. Defining the tolerance level

With all this, at least the structure is set up. However, one question remains: How do we define
the tolerance level, ∆0, especially if we have a system of ODEs? This depends on the application.
A first guess would be to choose a fractional error. However, this is bound to fail if we integrate
oscillating functions, or simply quantities which are not positive definite (like, e.g., velocities!).
So, should we use absolute errors? But then imagine you plan to integrate the trajectory of
a particle in a gravitational field of a star, let’s say. If the error in the radial coordinate r is
absolute, the integration will get less and less accurate the closer to the star the particle passes.
One possibility is to use a scaling array with an entry for each ODE, such that for a fractional
error ǫ, the i-th equation would get a desired accuracy of

∆0 = ǫyscal,i, (2.67)

where yscal,i is set to yi for fractional errors, and to some absolute value for absolute errors. A
useful “trick” to obtain constant fractional errors except near zero crossings is

yscal,i = |yi|+ |h∂xyi|. (2.68)

This error scaling is done by the routine odeint.

2.5. Absolute Stability. Stiff sets of differential equations

Inappropriate use of numerical methods for solving initial value problems can lead to instabilities.
In the following, we will discuss how to avoid them. Let us firstly consider the test initial value
problem

y′ = λy, y(0) = 1, (2.69)

which has, for ℜ(λ) < 0 (denoting by ℜ the real part), the well known solution

y(x) = eλx. (2.70)

Let us solve this problem with the classical Runge–Kutta method (see (2.45)):

k1 = λyn,

k2 = λ

(

yn +
h

2
k1

)

,

k3 = λ

(

yn +
h

2
k2

)

,

k4 = λ (yn + hk3) ,

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
. (2.71)
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Thus, we have
yn+1 = F (λh)yn (2.72)

with

F (λh) = 1 + λh+
λ2h2

2
+

λ3h3

6
+

λ4h4

24
. (2.73)

The exact solution, on the other hand, follows

y(xn+1) = eλhy(xn). (2.74)

Obviously, a 4th-order Taylor expansion of eλh in λh recovers the factor F (λh). This is con-
sistent with the fact that the local discretization error is of O(h5).

The exact solution always decays with |y(x)| → 0 for x → ∞. The numerical approximation,
in contrast, decays (yn → 0 for n → ∞) only if

|F (λh)| < 1. (2.75)

Because of |F (λh)| → ∞ for ℜ(λ)h → −∞, this is not fulfilled for all λh. But for sufficiently
small h, the condition (2.75) is warranted though.

The set {
µ ∈ C : |F (µ)| < 1

}

is called the region of absolute stability of the method. A measure for its size is the so-called

stability interval := stability region ∩ real axis.

The stability region of the classical Runge–Kutta method is located symmetric to the real axis
(see Fig. 2.10), and the corresponding stability interval is ]− 2.78529, 0[.

−3 −2 −1 1

−3

−2

−1

1

2

3

Figure 2.10: Stability region of the
classical Runge–Kutta method.

−3 −2 −1 1

−3

−2

−1

1

2

3

Figure 2.11: Stability region of the
Euler method.
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2.10. Example (Stability region of the Euler method). For the Euler method, we have

F (λh) = 1 + λh, (2.76)

i.e., the stability region is {µ ∈ C : |µ+ 1| < 1}. The stability interval is ]− 2; 0[ (see Fig. 2.11). For real λ, this
corresponds to a maximum step size of hmax = 2/|λ|, cf. also the discussion below Eq. (2.31) with c ≡ −λ.

The step size h > 0 must be chosen in such a way that λh is located within the region of absolute
stability. Otherwise, the method will give incorrect results and might even “explode”.

If the region of absolute stability comprises the entire half-plane ℜ(µ) < 0, the method is
called absolutely stable.

Remark. Implicit Runge–Kutta methods are absolutely stable, whereas typical multi-step
methods have a finite stability region.

Solutions of sets of differential equations, which describe physical (or chemical or biological)
processes, often have the property that they exponentially reach a stationary solution, partly
coupled with (damped) oscillations (e.g., transient phenomena). The individual components of
the solution can reach their final, constant value with different speed. This is typical for, e.g.,
chemical reaction networks (molecule formation).

To solve such sets with not too small step sizes, one has to use methods which are either
absolutely stable or at least have a large region of absolute stability. For an illustration, we
consider the test problem

y′ = A · y + b, y(x0) = y0 (2.77)

with a d× d matrix A with eigenvalues λi (i = 1, . . . , d) which all have a negative real part.
If these real parts differ considerably, the initial value problem is called stiff. A measure for

the stiffness is the so called stiffness coefficient

S :=
maxi |ℜ(λi)|

mini |ℜ(λi)|
. (2.78)

If the coefficients of the ODE (i.e., the matrix elements) comprise several orders of magnitude,
S can reach values of O(106) or even more. To obtain meaningful numerical solutions, all
products hλi have to be located in the region of absolute stability.

2.11. Example.




y′1
y′2
y′3



 =





−21 19 −20
19 −21 20
40 −40 −40









y1
y2
y3



 ,





y1(0)
y2(0)
y3(0)



 =





1
0

−1



 . (2.79)

The exact solution is




y1(x)

y2(x)

y3(x)



 =







1
2
e−2x + 1

2
(cos(40x) + sin(40x)) e−40x

1
2
e−2x − 1

2
(cos(40x) + sin(40x)) e−40x

− (cos(40x)− sin(40x)) e−40x






. (2.80)

Numerical solution with the Euler method: initial value (y1(0.1), y2(0.1), y3(0.1))⊺ for xstart = 0.1, step size
h = 0.04. The result is displayed in Fig. 2.12. The approximations at the end of the displayed interval are no
longer acceptable, and the situation becomes even worse, if we consider the larger interval from 0.1 to 1.0 in
Fig. 2.13 (note the different scale).

Since the eigenvalues of matrix A (2.79) are λ1 = −2, λ2 = −40 + 40i, and λ3 = −40 − 40i, the stiffness
coefficient is S = 20, i.e., the problem is not particularly stiff. With a step size of h = 0.04 the product
hλ1 = −0.08 is located within the stability region {µ ∈ C : |µ+ 1| < 1} of the Euler method (cf. Fig. 2.11),
whilst hλ2 = −1.6 + 1.6i and hλ3 = −1.6− 1.6i are located outside. Thus, the strong deviation of the numerical
solution from the exact one is due to the violation of the stability condition by eigenvalues λ2 and λ3, although
their contribution to the solution has almost vanished for x >∼ 0.1. In order that all products hλi, i = 1, 3 are
located within the stability region, the step size must be h < 0.025. In this case, then, the numerical solution
becomes satisfactory.
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0 0.1 0.2 0.3

−1

0

1 y1(x)

y2(x)

y3(x)

approximations for y1(x)
approximations for y2(x)
approximations for y3(x)

Figure 2.12: Analytical and numerical solution of example 2.11 for small x-values.

0 0.5 1.0
−1000

0

1000

2000

3000

Figure 2.13: As Fig. 2.12, but for larger x-values.

An alternative approach to derive the stability condition for the Euler-method is as follows.
We consider a set of ODEs

y′ = A · y, (2.81)

where A is a real matrix with eigenvalues λi (i = 1, . . . , d) which all have a negative real part
(in order to assure that the exact solutions are exponentially decaying). Explicit differencing
(see (2.31)) gives

yn+1 = (1+Ah) · yn = C · yn. (2.82)

Now, a matrix Cn → 0 only if the absolutely largest eigenvalue |λmax| < 1. Let us denote the
eigenvalues of A by µi = −ci + iℑi, where ci > 0 and ℑi is the imaginary part of µi. Thus, the
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eigenvalues of C are (1− cih+ iℑi h) and the maximum step size follows as

hmax <
2

max
i

(

ci +
ℑ2

i

ci

) . (2.83)

Exercise 3: Prove Eq. (2.83) and show that the maximum step size in example 2.11 indeed is
hmax = 0.025.

Implicit differencing evaluates the RHS of the ODE not at position n, but n+ 1, i.e.,

yn+1 = yn + hy′

n+1, (2.84)

which is equivalent to
yn+1 = (1−Ah)−1 · yn. (2.85)

If we denote the eigenvalues of A as above, the eigenvalues of (1−Ah)−1 are (1+ cih− iℑi h)
−1,

and their absolute value is < 1 ∀h. Thus, the implicit scheme is stable for all step sizes h (and
for the example above, it converges to the correct solution even for very large h). The downside
is that each integration step requires a matrix inversion, and that the accuracy (for small x) is
rather low, if h is significantly larger than in the corresponding explicit scheme.

2.6. Semi-implicit methods

Since by far not all ODEs have linear coefficients (the matrix A above), we need to generalize
the implicit method for ODEs:

y′ = f(y) → yn+1 = yn + hf(yn+1). (2.86)

Generally, this set of equations needs to be solved iteratively at each time step, which in most
cases means a prohibitively large computational effort. A way out is to linearize the equations,

yn+1 = yn + h

(

f(yn) +
∂f

∂y

∣
∣
∣
∣
y
n

· (yn+1 − yn)

)

. (2.87)

Here, ∂f/∂y is the Jacobian matrix of partial derivatives of the ODE’s RHS w.r.t. yi, i.e.,

∂f

∂y
≡













∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂yn

...
...

. . .
...

∂fn
∂y1

∂fn
∂y2

· · · ∂fn
∂yn













. (2.88)

Eq. (2.87) can be rearranged as

yn+1 = yn + h

(

1− h
∂f

∂y

)−1

· f(yn). (2.89)

If h is not too big, usually one iteration of Newton’s method is enough. This means that at
each step we have to invert the matrix 1 − h∂f/∂y to find yn+1. Since the derivative (due
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to the linearization) is taken at yn, the method is called a semi-implicit Euler method. It is
not guaranteed to be stable, but it usually is, since the Jacobian locally corresponds to the
constant matrix A from above. Of course, Eq. (2.89) is only 1st order (as the explicit Euler
integrator Eq. (2.31)). Again, going to higher order (and subsequently higher computational
effort) in most cases pays off, since generally fewer steps are needed. The most common methods
are (a) generalized RK-schemes (Rosenbrock), an example of which has been implemented
in subroutine stiff, (b) generalized Bulirsch–Stoer methods2 (extrapolation methods), see
Press et al. (1992), and (c) predictor-corrector methods.

The Rosenbrockmethods are close to the embedded Runge–Kutta–Fehlberg integrator
introduced in Section 2.4.2. They are robust and perform well for accuracies of ǫ ≈ 10−4 . . . 10−5

and for systems of up to approximately 10 ODEs. For larger systems or higher accuracies, the
more complicated alternatives mentioned above are preferable.

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +

s∑

i=1

ciki, (2.90)

where the corrections ki are found by solving s linear equations that generalize the structure in
Eq. (2.89):

(

1− γh
∂f

∂y

)

· ki = hf

(

y0 +

i−1∑

j=1

αijkj

)

+ h
∂f

∂y
·

i−1∑

j=1

γijkj , i = 1, . . . , s. (2.91)

The coefficients (γ, ci, αij , γij) are fixed constants independent of the problem. For γ = γij = 0
the scheme reverts to an explicit RK-scheme. Eq. (2.91) can be solved successively for ki. Again,
as above, we are interested in the adaptive step size control, and – again again – there exists an
embedded scheme which returns solutions accurate to 4th and 3rd order (compared to 5th and
4th order previously) by using the same function evaluations with different coefficients.

The details of the scheme are of lesser interest here, however, one point should be raised. As
before, the choice of the “correct” (i.e., most appropriate) error criterion is crucial. This even
more so here, because of the stiff nature of the ODEs, since they often have pieces of the solution
that decay strongly and aren’t of interest, so it wouldn’t make any sense to assign them the same
accuracy (and spend lots of time on that) as to the “relevant” solution parts. Obviously, these
choices depend on the problem. One might control the relative error above some threshold C

and the absolute error below the threshold by setting (cf. Section 2.4.3)

yscal = max(C, |y|). (2.92)

If the variables are properly non-dimensionalized, the components of C should be of order unity,
which should be used as a default value as well.

2Conventional Bulirsch–Stoer integrators are very useful for integrating non-stiff problems, which have a
rather smooth function f(x, y). The method is similar to Romberg integration, i.e., involves an extrapolation to
step size zero.
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Chapter 3

Physics – Cosmological Models

In this chapter, we will give a brief introduction into the derivation and some simple appli-
cations of cosmological models. In particular, we will consider the Friedmann–Lemâıtre
models which describe (in form of an initial value problem) the temporal evolution of the so-
called cosmic scale, R(t). Solutions for the behaviour of R(t), in dependence of various en-
ergy density terms (matter, radiation, “vacuum”/dark energy), will be obtained by numerical
methods on the second day of our numerical lab work. There is a vast number of literature
covering the corresponding physics (cited, e.g., in Wilms05), where, to some extent, we will
follow the text book by Roos (2003). Note that we have included a useful manuscript into
the course material provided, following a lecture given by J.Wilms (University Tübingen 2005,
http://astro.uni-tuebingen.de/~wilms/teach/cosmo/index.html). This manuscript will
be cited as “Wilms05” in the following.1

3.1. Cosmological redshift and Hubble’s law

In 1929, E. Hubble discovered that the spectral lines emitted from various galaxies of well-known
distances are systematically redshifted, by wavelength shifts

λobs − λemit

λemit
=

∆λ

λ
=: z or λobs = λemit(1 + z). (3.1)

Interpreted in terms of a Doppler shift as a recession velocity,

v

c
=

∆λ

λ
= z, (3.2)

and combining his measurements with the distances of the line-emitting galaxies, Hubble sug-
gested these redshifts to be a linear function of distance,

c z = v = H0r. (3.3)

This relation is meanwhile called Hubble’s law, with Hubble parameter2 H0, where the sub-
script “0” refers to our present time, t0. From the relatively close galaxies studied by Hubble,
he could only determine a linear relation, though higher order terms in r cannot be excluded and

1Be prepared for a couple of typos in this script, which have (hopefully) been corrected here.
2The alternative designation as “Hubble’s constant” is somewhat misleading, since the quantity itself is

changing with time.
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are present indeed (see Eq. 3.86). The message of this law is that the Universe is expanding, and
from the so-called cosmological principle (i.e., the Universe is assumed to be homogeneous and
isotropic on large scales), it can be shown that observers located at different positions would al-
ways measure such a law: independent of location, astronomical objects recede from the observer
at the same rate. Thus, a homogeneous and isotropic universe does not have a center.

With respect to redshift alone, the Hubble law reads

z = H0
r

c
(3.4)

and the inverse of H0 has the dimensions of a time, which gives a characteristic timescale for the
expansion of the Universe (though not necessarily its actual age), called the Hubble time,

τH = H−1
0 = h−1 × 9.78 · 109 yr, (3.5)

where h is a dimensionless quantity, conveniently defined as

h = H0/(100 km s−1 Mpc−1). (3.6)

Present measurements can restrict h quite precisely, h ≈ 0.73 ± 0.05, though there is a certain
possibility that its value might be smaller by roughly 15%.

Though the actual size of our Universe is “unmeasurable”, one usually describes distances at
different epochs (which will change due to the expansion or contraction) in terms of a cosmic
scale R(t) (see below), and its present value is denoted by R0 = R(t0). Additionally, one can
normalize R(t) by its present value and define a cosmic scale factor,

a(t) := R(t)/R0. (3.7)

This scale factor affects all distances, in particular also the wavelength λemit emitted at time t
and observed as λobs at t0,

λemit

R(t)
=

λobs

R0
. (3.8)

Indeed, this relation can be simply derived from the Robertson–Walker metric (see Sec-
tion 3.3), accounting for the fact that for photons ds2 = 0 and that comoving distances (in this
case, those traveled by photons) remain preserved in such a metric (see Wilms05, p. 4–19).

By a Taylor expansion of a(t) for t < t0, we find, to first order

a(t) = a(t0)−
∂a

∂t

∣
∣
∣
∣
t0

(t0 − t) = 1− ȧ0 (t0 − t). (3.9)

With source distance r = c (t0 − t) and

λobs

λemit
=

R0

R(t)
= a−1, (3.10)

the redshift can be expressed as

z =
λobs

λemit
− 1 = a−1 − 1 ≈

1

1− ȧ0 (t0 − t)
− 1 ≈ ȧ0 (t0 − t) = ȧ0

r

c
. (3.11)

Thus, both redshift and Hubble parameter are related to the cosmic scale factor,
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1 + z =
λobs

λemit
=

1

a(t)
, (3.12)

ȧ0 = ȧ(t0) =
Ṙ0

R0
=

Ṙ(t0)

R(t0)
= H0, (3.13)

i.e., H0 is nothing else than the present rate of change in this factor (since we know that H0 is
positive, we know that we have an expanding universe at present).

Remarks
(i) From the above, it should be clear that the cosmological redshift is a consequence of the
expansion of the Universe and not of the velocities of the receding objects. There are, of course,
such kinematic effects as well (e.g., peculiar velocities resulting from (gravitationally induced)
flows on smaller scales such as the Virgo-centric flow), which have to be corrected for when
measuring the cosmological redshift.
(ii) For distant objects (of the order of the Hubble radius rH = c/H0 ≈ 3000/hMpc, i.e., for
objects which would recede from us with the speed of light according to the linear Hubble law),
this law has to be modified for relativistic effects. Indeed, it turns out that the redshift from
objects located at rH becomes infinite, i.e., we cannot obtain information from larger distances.

3.2. Newtonian expansion

One of the key questions in cosmology is whether the Universe as a whole is a gravitationally
bound system in which the expansion will be halted one day. A simple model using Newtonian
mechanics will give a first answer. Note already here that the following results can be derived
from General Relativity (GR) as well, in the limit of weak gravitational fields.

Consider a galaxy of gravitating mass mg located at distance r from the center of a sphere
of mean mass density ρ. The total mass of the sphere is

M =
4π

3
r3ρ, (3.14)

so that the gravitational potential of the galaxy is

U = −
GMmg

r
= −

4π

3
Gmgρr

2, (3.15)

with the gravitational constant G. Thus, the acceleration of the galaxy towards the center of the
sphere is given by

r̈ = −
GM

r2
= −

4π

3
Gρr, (3.16)

which is nothing else than Newton’s law. In a Universe expanding according to Hubble’s law,
the galaxy has a kinetic energy of

T =
1

2
mv2 =

1

2
m(H0r)

2, (3.17)

with inertial mass m. Using the equivalence principle (inertial mass = gravitating mass), m =
mg, the total energy of the galaxy is

E = T + U =
1

2
m(H0r)

2 −
4π

3
Gmgρr

2 = mr2
(
1

2
H2

0 −
4π

3
Gρ

)

, (3.18)
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which immediately tells that the expansion will come to a halt (E ≤ 0) if the mass density inside
the sphere (i.e., the mean density of the Universe), ρ, is larger than or equal to the critical
density,

ρc =
3H2

0

8πG
. (3.19)

If ρ > ρc, we speak of a closed, otherwise of an open Universe. Note that ρc is the present critical
density, corresponding to the present Hubble parameter.

Exercise 4: Calculate the critical density, in units of g/cm3 and with respect to h.

Since distance and density are time-dependent, they change with the expansion. Denoting their
present (t = t0) values by the subscript “0”, we have

r(t) = a(t) · r0; ρ(t) = ρ0/a
3(t) (3.20)

(mass conservation), and Newton’s law (3.16) yields

ä =
r̈

r0
= −

4π

3
G

r

r0

ρ

a3
= −

4π

3
Gρ0a

−2. (3.21)

Multiplying this equation on both sides with 2ȧ,

2ȧä = −
8π

3
Gρ0

ȧ

a2
, (3.22)

this is equivalent to
d

da
ȧ2 =

8π

3
Gρ0

d

da

(
1

a

)

, (3.23)

which can be easily integrated from t0 to t (with a0 = 1)

ȧ2(t)− ȧ2(t0) =
8π

3
Gρ0

(
1

a(t)
− 1

)

. (3.24)

By introducing the density parameter

Ω0 =
ρ0
ρc

=
8πGρ0
3H2

0

(3.25)

(in this scenario, Ω0 = 1 would denote a Universe at critical density), we obtain

ȧ2 = H2
0Ω0

(
1

a
− 1

)

+ ȧ2(t0) (3.26)

and, using the definition for H0 = ȧ(t0),

ȧ2

H2
0

=

(

1− Ω0 +
Ω0

a

)

, (3.27)

which is identical with the (first) Friedmann equation for similar conditions (only matter, no
radiation, no cosmological constant).

An “empty” universe (ρ0 = 0 = Ω0) would expand forever, with constant rate ȧ = H0. On
the other hand, a steady state universe would imply H0 = 0.

Since ȧ2 ≥ 0 always, we must have

1− Ω0 +Ω0/a ≥ 0

as well. This implies
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a) for Ω0 < 1, that the universe would be an open, ever-expanding one, since 1−Ω0+Ω0/a > 0.

b) for Ω0 = 1, still an ever-expanding universe, where the expansion rate asymptotically
reaches ȧ → 0.

c) for Ω0 > 1, a closed universe, where after reaching a certain maximum in size (a = amax),
a must decrease (i.e., ȧ < 0) in order to keep the total expression ≥ 0 always.

3.3. Robertson–Walker metric

A suitable metric describing a curved “three-surface” in Euclidean four-space which is con-
sistent with the cosmological principle (e.g., the spatial part is spherically symmetric) has been
introduced 1934 by Robertson & Walker, and can be represented by

ds2 = c2dt2 −R2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)

= gµνdx
µdxν . (3.28)

Note that this metric depends “only” on three spatial coordinates, because the fourth coordi-
nate is irrelevant (fortunately!) since we are considering “three-surfaces” (notably, the space
we inhabit is 3-dimensional) where the fourth coordinate can be expressed by the other three
coordinates and a certain constraint.

Before discussing the above metric in some detail, let us consider some analogy which is more
common to people who cannot think four-dimensionally (e.g., the author of this manual), namely
a “two-surface” in a Euclidean three-space. In particular, we consider the surface of a 3D-
sphere, a so-called “two-sphere”, where the third spatial coordinate can be expressed in terms of
the sphere radius (the constraint from above) and the other two coordinates, (x2

3 = R2−x2
1−x2

2).
The corresponding length element can be written as

dl2 =
R2 dr′2

R2 − r′2
+ r′2dθ2, (3.29)

if we use polar coordinates r′, θ in the x3 plane (see Wilms05, p. 4–6). Expressing the radial
coordinate in units of sphere-radius, r = r′/R, we obtain

dl2 = R2

(
dr2

1− r2
+ r2dθ2

)

. (3.30)

Likewise, the metric for a hyperbolic plane (with x2
3 = R2 + x2

1 + x2
2) is identical to the above

one, if we exchange the minus sign in the denominator by a plus sign,

dl2 = R2

(
dr2

1 + r2
+ r2dθ2

)

. (3.31)

Finally, the length element for a conventional plane can be written as

dl2 = R2
(
dr2 + r2dθ2

)
, (3.32)

where R is now an arbitrary scale factor. Summarizing, the length element for all three cases
can be written as

dl2 = R2

(
dr2

1− kr2
+ r2dθ2

)

, (3.33)

where k ∈ {1, 0,−1} corresponds to a two-sphere, a plane, and a hyperbolic plane, respectively.
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In so far, the generalization to three-dimensional (hyper-)surfaces on four-dimensional spheres,
i.e., three-spheres, flat three-space, and three-hyperboloids is (almost) straightforward (though
the author still has a problem imagining the first and the last case). By allowing the generalized
radius/scale factor to become time-dependent and by including the time coordinate into the met-
ric (which is already required in special relativity), we finally obtain the Robertson–Walker
metric, Eq. 3.28.

Comparing the length element in the RW-metric with the corresponding tensor formulation,
the components of gµν are given by (with x0 = ct)

g00 = 1, g11 = −
R2

1− kr2
, g22 = −R2r2, g33 = −R2r2 sin2 θ, (3.34)

where k ∈ {1, 0,−1} is called the curvature parameter and corresponds to the three geometries
outlined above.

If the Universe is homogeneous and isotropic at a given time and follows the RW-metric, it
will always retain these features: a galaxy at coordinates (r, θ, φ) will always remain at these
coordinates, only the scale R(t) (i.e., the scale of distances) will change with time. Since the
spatial displacement is dr = dθ = dφ = 0, the metric equation reduces to ds2 = c2dt2, and
the corresponding frame is called the comoving frame. Distances in this frame (“comoving”
distances, d, which depend only on the spatial coordinates) remain preserved under expansion,
whereas “proper” distances, D(t) = d ·R(t), change with time.

Summary: The above metric defines a universal coordinate system tied to the expansion of
space, whereas the scale R(t) describes its evolution.

3.4. Friedmann cosmologies

To obtain a model for an Universe which follows the cosmological principle, we have to combine
the RW metric with Einstein’s field equations,

Gµν =
8πG

c4
Tµν , (3.35)

where

Gµν = Rµν −
1

2
gµνR

is the Einstein tensor, derived from the Ricci tensor Rµν and the Ricci scalar R (not to be
confused with the cosmic scale!), where the Ricci tensor itself is a contraction of the Riemann
tensor Rαβγσ,

Rβγ = Rα
βγα, R = gβγRβγ ,

and Tµν is the energy–stress tensor. One of the problems in GR is the calculation of the Riemann
tensor (4th rank, i.e., 256 components, which mostly and fortunately are not independent or
vanish), which itself is a combination of the so-called affine connections (in some languages,
“Christoffel symbols”) and their derivatives. The affine connections themselves (no tensors)
are derivatives of the metric (here, we have the final relation to our work), and are required to
allow for a covariant formulation of the physical laws (i.e., formulations in terms of quantities
which remain invariant in arbitrary (e.g., accelerated) frames).

To proceed further, we consider a comoving observer in a space described by the RW-metric.
Under the assumption of the cosmological principle, the energy–stress tensor becomes purely
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diagonal, and the time-time and space-space components T00 and T11 (only these will be used in
the following) can be written as

T00 = ρc2, T11 =
pR2(t)

1− kr2
, (3.36)

where ρc2 is the energy density of the considered “fluid”, and p the corresponding pressure
(for details, refer to the literature). The corresponding components of the Einstein tensor are
calculated from the RW metric (→ affine connections → Riemann tensor → Ricci tensor/scalar
→ Einstein tensor), with components

G00 =
3

c2R2

(

Ṙ2 + kc2
)

, (3.37)

G11 = −
1

c2(1− kr2)

(

2RR̈+ Ṙ2 + kc2
)

, (3.38)

where, of course, R now denotes the cosmic scale. Using the field equations for the time-time
and space-space components, we obtain

Ṙ2 + kc2

R2
=

8πG

c4
c2

3
ρc2

⇒
Ṙ2 + kc2

R2
=

8πG

3
ρ “Friedmann I”, (3.39)

2RR̈+ Ṙ2 + kc2 = −
8πG

c4
c2pR2

⇒
2R̈

R
+

Ṙ2 + kc2

R2
= −

8πG

c2
p “Friedmann IIA”. (3.40)

These equations have been firstly derived by Friedmann in 1922 (and confirmed by an inde-
pendent derivation by Lemâıtre in 1927), i.e., seven years before Hubble’s detection of the
cosmological expansion!!! At that time Einstein had severe doubts in his own theory, because
it did not allow for a static universe, as it is true for the Friedmann equations as formulated
above. (Already in 1917, Einstein tried to “cure” this problem by introducing the cosmological
constant, see below.)

Subtracting Eq. I from Eq. IIA results in the alternative formulation

2R̈

R
= −

8πG

3c2
(
ρc2 + 3p

)
“Friedmann IIB”. (3.41)

Whereas Eq. I shows that the rate of expansion, Ṙ, increases with increasing density, Eq. IIB
shows that, because of the negative sign, the expansion actually decelerates, at least within the
model discussed so far.

If we evaluate Eq. I at t = t0, we obtain

(
Ṙ

R

)2

0

=
8πG

3
ρ0 −

kc2

R2
0

→ H2
0 = Ω0H

2
0 −

kc2

R2
0

→ kc2 = H2
0R

2
0(Ω0 − 1). (3.42)

Thus, the curvature parameter k from the RW-metric implies, for k ∈ {1, 0,−1}, density pa-
rameters Ω0 > 1, = 1, and < 1, respectively. A spatially flat universe (k = 0) is called an
Einstein–de Sitter universe. Rearranging the last equation, we can define an alternative
curvature parameter

ΩK := −
kc2

H2
0R

2
0

= 1− Ω0. (3.43)
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Let us identify, for the moment, the density in Eq. I with mass density alone, such that ρ(t) =
ρ0/a

3(t), similar to our examination of the Newtonian expansion (Section 3.2). Thus, for
arbitrary t,

(
Ṙ

R

)2

=
8πG

3

ρ0
a3(t)

−
kc2

R2
. (3.44)

Multiplying by (R/R0)
2 = a2(t), we obtain

ȧ2 =
8πG

3

ρ0
a3

a2 −
kc2

R2
0

(3.45)

= H2
0Ω0

1

a
−

kc2

R2
0

= H2
0Ω0

1

a
+ (1− Ω0)H

2
0 (from Eq. 3.43)

= H2
0

(
Ω0

a
+ 1− Ω0

)

, (3.46)

which is identical to the result of the Newtonian approach, Eq. 3.27. Another interesting
relation follows from a somewhat different manipulation. Again, evaluate Eq. I at arbitrary t,

kc2 =
8πG

3
ρR2 − Ṙ2

= R2

(

8πG

3
ρc(t)Ω(t)−

(
Ṙ

R

)2
)

with ρc(t) =
3H2(t)

8πG
, Ω(t) =

ρ(t)

ρc(t)
, H(t) =

Ṙ

R

= R2
(
H2(t)Ω(t)−H2(t)

)
= R2H2(t)

(
Ω(t)− 1

)
. (3.47)

Equating this expression with the corresponding one from Eq. 3.42 (both being equal to the
constant term kc2),

R2H2(Ω− 1) = H2
0R

2
0(Ω0 − 1)

a2H2(Ω− 1) = H2
0 (Ω0 − 1) ⇒

Ω− 1

Ω0 − 1
=

H2
0

H2a2
=

(
Ṙ0

Ṙ

)2

=

(
ȧ0
ȧ

)2

≪ 1 for t/t0 ≪ 1, (3.48)

since ȧ tends towards infinity for small t, as we will see later. From this condition then, Ω must
have been very close to unity, or, in other words, the early Universe must have been asymptotically
flat ! E.g., the maximum deviation from flatness during the phase of nucleosynthesis (t ≈ 1s) can
be constrained by <∼ 10−16, if the present day value of Ω0 is of the order of unity.

This is what is called the flatness problem. Had Ω been different from unity at its beginning,
the Universe would have immediately recollapsed (within one Planck time), or expanded too
fast to allow for the existence of mankind. Thus, the anthropic point of view requires Ω = 1,
i.e., k = 0. To generate a universe surviving for many gigayears without Ω being exactly unity
would have required an incredible fine-tuning, which is extremely unlikely. Without going into
details, inflation can cure this problem, by increasing the cosmological scale exponentially (factor
of ≈ 1043) in a (very) early phase (t ≈ 10−34 s) of the Universe (see below).
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3.5. Cosmological constant

As we have already mentioned, Einstein originally believed in a static universe with Ṙ = R̈ = 0,
R(t) = R0. In this case the Friedmann equations would read

kc2

R2
0

=
8πG

3
ρ0 = −

8πG

c2
p0, (3.49)

which implies that a) k = 1 in order to allow for a positive present mass density, and b) that
the present pressure of matter, p0, becomes negative then. Einstein cured this problem by
introducing a Lorentz invariant term gµνλ, where the “cosmological constant” λ provides a
very tiny correction to the geometry of space-time:

Gµν := Rµν −
1

2
gµνR− gµνλ. (3.50)

In analogy to Eq. 3.37 and the following ones, this correction implies

G00 → Gold
00 −

λ

c2
=

3

c2R2
(Ṙ2 + kc2)− 3

λ

3c2
, (3.51)

G11 → Gold
11 +

λ

c2
R2

1− kr2
= −

1

c2(1− kr2)

(

2RR̈+ Ṙ2 + kc2
)

+
λR2

c2(1− kr2)
, (3.52)

and the original Friedmann equations become

Ṙ2 + kc2

R2
−

λ

3
=

8πG

3
ρ, (3.53)

R̈

R
−

λ

3
= −

4πG

3c2
(ρc2 + 3p) (version B). (3.54)

Since the pressure of matter is very small, we can approximate p ≈ 0 (see Section 3.7), and from
the second equation we obtain for a static universe

ρ0 =
λ

4πG
= 2ρλ (3.55)

if we denote the density corresponding to the λ term by ρλ = λ/(8πG).3 The first equation (with
Ṙ = 0) then yields

kc2

R2
= 8πGρλ ⇒ R2 =

kc2

λ
, (3.56)

which, again, makes sense (requiring ρ0 > 0 ⇒ λ > 0) only for k = 1. A positive λ curves
space-time in such a way as to counteract gravity and to prevent a collapse!

Thus, a static universe with positive matter density has to be closed, and its mean density
and “radius” depend exclusively on λ. Remember, however, that “in our case” a static Universe
is incompatible with the observational fact that H0 = (Ṙ/R)0 6= 0! Another argument against
static universes in general was given by Eddington (1930) (you might have a look into this
historical paper): if there is the slightest imbalance between ρ and λ (i.e., a disturbance), R̈
becomes non-zero, and the universe will begin to expand or contract. This leads to still larger
deviations of ρ from λ, and so on. In other words, static universes are unstable (a fact not realized
before), and after Eddington’s paper Einstein abandoned his belief in this possibility and also
withdrew the cosmological constant from his theory. Only in recent times was it resurrected
again, due to additional observational facts.

3Previously called “vacuum density”.
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3.6. Friedmann–Lema�itre cosmologies

If the physics of the vacuum is Lorentz invariant4, i.e., looks the same to any inertial observer,
its contribution to the energy–stress tensor is the same as Einstein’s correction λgµν to the
geometry, as noted by Lemâıtre. The content of Eqs. 3.53 and 3.54 does not change if the cor-
responding terms are moved from the lhs to the rhs of the equations, though their interpretation
changes. If put on the rhs, they appear as the density (first equation) and pressure (second equa-
tion) of an additional fluid (originally identified with the above vacuum), with density ρλ = λ

8πG
and pressure pλ = −ρλc

2:

Ṙ2 + kc2

R2
=

8πG

3
(ρ+ ρλ) (3.57)

2R̈

R
+

Ṙ2 + kc2

R2
= −

8πG

c2
(p+ pλ) (version A) (3.58)

R̈

R
= −

4πG

3c2

(

(ρ+ ρλ)c
2 + 3(p+ pλ)

)

(version B). (3.59)

In this interpretation then, for λ > 0 the gravitational effect of this fluid is to counteract, via
its negative (!) pressure, the gravitational pull of “ordinary” matter, eventually even leading
to an acceleration of the scale factor, whereas a negative λ would correspond to an additional
attractive term.

Cosmologies as described by Eqs. 3.57 to 3.59 with positive λ are nowadays called Friedmann–
Lemâıtre cosmologies. Since we have to deal with energy densities/pressures from different
sources, the total density parameter is split into the different contributions by matter (including
the dark one), radiation, and cosmological constant

Ω0 = ΩM +ΩR +ΩΛ (3.60)

with ΩR and ΩΛ defined in analogy to Eq. 3.25, i.e.,

ΩR =
ρr
ρc

, ΩΛ =
ρλ
ρc

=
λ

8πGρc
=

λ

3H2
0

. (3.61)

As you will see (and hopefully confirm) during your lab work, the present values of ΩM and
ΩΛ are quite similar, ΩM ≈ 0.3 and ΩΛ ≈ 0.7. In other words, the density corresponding to
the cosmological constant, ρλ, must be of similar order as the present critical density, or, more
precisely, ρλ ≈ 0.7ρc ≈ 0.7h2 · 1.88× 10−29 g/cm3 ≈ 6.5× 10−30 g/cm3.

The vacuum energy problem. Using simple quantum-mechanical arguments, it can be
shown that the actual vacuum energy of the Universe should be MUCH larger: remember that
the ground-state energy of a quantum-mechanical oscillator is not zero by E0 = 1/2~ω. The
generalization to fields is (almost) straightforward. A relativistic field may be thought of as a
collection of harmonic oscillators of all possible frequencies. A simple example is provided by a
scalar field (e.g., a spinless boson) of mass m. For this system, the vacuum energy is simply a
sum of contributions

E0 =
∑

i

1

2
~ωi, (3.62)

4Assuming that the vacuum state of the Universe is not simply an empty space, but the ground state of some
physical system, where this ground state should be independent of coordinate system.
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where the sum extends over all possible modes in the field, i.e., over all wave vectors k. The cor-
responding energy density E0/L

3 = ρvacc
2 can be calculated from integrating over all wavenum-

bers present in a box of Volume L3 with periodic boundary conditions (λn = 2π/kn = L/n,
n = 1, 2, . . .), and results in

ρvacc
2 =

~c

16π2
k4max, (3.63)

where kmax ≫ mc/~ is the maximum wavenumber present in the field. Following Carroll et al.
(1992), we estimate kmax as the energy scale at which our confidence in the formalism no
longer holds. For example, it is widely believed that the “Planck energy” EP marks a point
where conventional field theory breaks down due to quantum gravitational effects. This energy
roughly corresponds to the situation when the wavelength of a particle reaches its corresponding
Schwarzschild radius. More precisely, the Planck mass is defined as the mass of a particle
for which the Schwarzschild radius is equal to the Compton wavelength divided by π,

1

π

2π~

mc
=

2Gm

c2
⇒ mP =

√

~c

G
, (3.64)

and the corresponding energy is the Planck mass times c2. Choosing thus ~kmaxc = EP, we
obtain

kmax =

√

c3

G~
, (3.65)

ρvac =
c5

16π2G2~
= 3.3× 1091 g/cm3. (3.66)

Thus, the ratio of the expected ρvac to the “observed value” ρλ is O(10120), which indeed is not
soooo small.

As in classical mechanics, the absolute value of the vacuum energy has no measurable effect
in non-gravitational quantum field theories. Roughly spoken, non-gravitational forces depend on
potential gradients, i.e., constant terms do not contribute. In GR, however, gravitation couples to
all energies and momenta, which must include the energy of the vacuum: the only manifestation
of vacuum energy will be through its gravitational influence. For a density as high as given
by Eq. 3.66, this would mean a dramatic expansion of the Universe: the cosmic microwave
background would have cooled below 3 K in the first 10−41 s after the Big Bang.

The maximum wavenumber corresponding to the “observed” value of ρλ would be kmax ≈
413 cm−1 ≈ 0.008 eV, which is way too low, since QM has been tested to be valid at much
higher energies, and the reality of a vacuum energy density has been quantitatively verified by
the Casimir effect.

In physical terms, then, the cosmological constant problem is this: there are independent
contributions to the vacuum energy density from the virtual fluctuations of each field (since
there is not only a single field but many more, due to the presence of different particle species)
and from the potential energy of each field (and maybe even from a “real” cosmological constant
itself). Each of these contributions should be much larger than ρλ, but they seem to combine
to a very small value.5 Thus, this situation indicates that new, unknown physics must play a
decisive role, nowadays called “dark energy” (which usually has an energy density and equation
of state which varies through space-time).

5At least at the present epoch, keeping in mind that the inflationary phase of the Universe requires a rather
large value of λ in this very first phase.
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3.7. Energy conservation and equation of state

Differentiating Eq. 3.57 with respect to time and combining the result with Eq. 3.54 to cancel
the second derivatives, we obtain a new equation for the evolution of the energy density

ρ̇c2 + 3H(t)(ρc2 + p) = 0, (3.67)

which is valid for both the total energy density and pressure and for their individual components,
if different energy “forms” are present (following different equations of state). Eq. 3.67, which can
be interpreted as a local energy conservation law, shows that the local energy density is changed
by the expansion/contraction and by the corresponding volume work. This equation also clarifies
the (at first glance somewhat puzzling) fact that a negative pressure – which in “normal life” is
encountered as a pull – leads to a gravitational repulsion, i.e., increased expansion: the larger the
ratio of pressure to energy density, the more volume work is done, which has to be compensated by
a faster decrease in available gravitating energy density. The lower the energy density, however,
the less the expansion (Ṙ2 ∝ (ρR)2)! For negative pressure, on the other hand, the volume
“work” becomes a gain. Loosely formulated, we create energy from the expansion of space, and
the decrease in available gravitating energy density is slower than for p > 0 (and stops completely
for p = −ρc2). Consequently the expansion remains faster than for positive pressure. Note that
a decelerating universe becomes an accelerating one if the dominating energy densities/pressures
relate via p < −(1/3)ρc2.

By integration of Eq. 3.67 we obtain
∫

ρ̇(t)

ρ(t) + p(t)/c2
dt = −3

∫
ȧ(t)

a(t)
dt, (3.68)

which can be immediately solved when the corresponding equation(s) of state is (are) known.

Equation of state (EOS). The most general form of an EOS in a space-time with RW metric
can be shown to be

p = wρc2, (3.69)

where w depends on the energy form considered. Assuming w to be constant with time, Eq. 3.68
results in

ρ(a) ∝ a−3(1+w) = (1 + z)3(1+w), (3.70)

because (1 + z) = a−1, cf. Eq. 3.12.

(i) For “ordinary” matter (in the spirit of cosmology, i.e., non-relativistic cold matter: pres-
sureless, non-radiating dust and cold dark matter), we have p = 0 (otherwise, galaxies
would have random motions similar to that of gas particles under pressure which is not
observed), and thus w = 0. Accordingly,

ρm(a) = ρm(0)a
−3. (3.71)

(ii) Radiation or relativistic hot gas composed of elastically scattering particles follows

pr =
1

3
εr =

1

3
ρrc

2

(e.g., the ratio of 2nd moment of specific intensity, K, to mean intensity (0th moment), J ,
is 1/3 for isotropic radiation). Thus, w = 1/3, and

ρr(a) = ρr(0)a
−4. (3.72)
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(iii) As we have already seen, the pressure corresponding to a cosmological constant is pλ =
−ρλc

2, i.e., w = −1 and
ρλ(a) = ρλ(0), (3.73)

assuming that λ and w are constant over the considered expansion/contraction interval.
This EOS can be derived from the energy–stress tensor of a perfect fluid required to be
Lorentz-invariant. Note that this follows also from the requirement that, under an adia-
batic expansion/compression, ρvac should remain constant:

dQ = dU + pdV = ρvacc
2 dV + wρvacc

2 dV
!
= 0 ⇒ w = −1.

3.8. Evolution of the scale factor

We are now (finally!) ready to write down the “equation of motion” of the Universe, i.e., the
evolution of the cosmic scale factor, a(t). By means of the above relations for the different
densities, we obtain from the “first” Friedmann–Lemâıtre equation (3.57)

Ṙ2 =
8πG

3
R2

(
ρm(0)

a3
+

ρr(0)

a4
+ ρλ

)

− kc2, (3.74)

which can be easily rephrased in terms of the various density parameters,

ȧ2 = a2H2
0

(
ΩM

a3
+

ΩR

a4
+ΩΛ +

ΩK

a2

)

= H2
0

(
ΩM

a
+

ΩR

a2
+ a2ΩΛ +ΩK

)

, (3.75)

again assuming λ to be constant. Convince yourself of the validity of this expression!

Remarks
(i) You might ask yourself why we have always considered the two Friedmann(–Lemâıtre)
equations throughout this chapter, when we finally use only the first one. Remember, however,
that the 2nd equation has been used as well (together with the different equations of state) in
order to calculate the various densities as a function of a, which otherwise would have remained
unspecified!
(ii) Note also that the density parameters in Eq. 3.75 are defined with respect to the present
critical density (i.e., with respect to H0). The variation of the density parameters themselves
can be calculated from Ω(t) = ρ(t)/ρc(t) and results in

ΩM(t) =
H2

0

H2(t)

ΩM

a3
, ΩR(t) =

H2
0

H2(t)

ΩR

a4
, ΩΛ(t) =

H2
0

H2(t)
ΩΛ, ΩK(t) =

H2
0

H2(t)

ΩK

a2
.

Recall that the sum of the first three parameters must have been VERY close to unity for very
small t. If λ indeed had been constant, the corresponding density parameter would have been
negligible at very early times, and radiation would have dominated throughout the very first
epochs.

At t = t0, ȧ = H0 and a = 1 per definition, such that

H2
0 = H2

0

(
ΩM +ΩR +ΩΛ +ΩK

)
or ΩK = 1−

(
ΩM +ΩR +ΩΛ

)
= 1− Ω0,

cf. Eq. 3.43. Thus, the evolution of the Hubble parameter follows

(
ȧ

a

)2

= H(t) = H2
0

(
1− Ω0

a2
+

ΩM

a3
+

ΩR

a4
+ΩΛ

)

. (3.76)

During your lab work, you will solve this equation in the form
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(
ȧ

H0

)

= ±

(

1− Ω0 +
ΩM

a
+

ΩR

a2
+ a2ΩΛ

)1/2

. (3.77)

By integration, we find the time elapsed after the big-bang (requiring a(0) = 0),

t(z) =
1

H0

1
1+z∫

0

da

(

1− Ω0 +
ΩM

a
+

ΩR

a2
+ a2ΩΛ

)−1/2

, (3.78)

t′(a) =
t(a)

τH
= H0 t(a) =

a∫

0

da

(

1− Ω0 +
ΩM

a
+

ΩR

a2
+ a2ΩΛ

)−1/2

, (3.79)

if we denote by t′ the time measured in units of the Hubble time τH = 1/H0, and neglect the
inflationary phase. Otherwise, we would have to account for the fact that λ = λ(t), where λ is
considerably larger during inflation than nowadays.

Exercise 5: Calculate t(z = 0) (a) for a flat universe consisting only of matter and (b) for an
empty universe without vacuum energy.

Inflation. For the physics of inflation (“inflaton field”), we refer to textbooks. Let us note here
only the basic assumption of inflation: during a very early phase in the universe6, the λ-term
dominated the other ones in the Friedmann–Lemâıtre equations (i.e., it was much larger than
now). Thus,

H2(t) =

(
ȧ

a

)2

=
8πG(ρm + ρr)

3
−

kc2

R2
+

λ

3
≈

λ

3
, (3.80)

which results, via

H(t) =

√

λ

3
= const, a(t) ∝ eHt, (3.81)

in an exponential increase of the scale factor, which then also explains the flatness problem, since

Ω(t)− 1 = −ΩK(t) ∝
1

a2
∝ e−2Ht. (3.82)

If the inflation lasted for 100 τH, the scale factor increased by e100 ≈ 1043, and Ω− 1 decreased
by 10−86, i.e., the Universe became very flat indeed, independent of the actual initial conditions!

Remarks
(i) A universe with ΩΛ > 0 but ΩM = ΩR = 0 (i.e., a universe where the above relations are
valid for all times) is called a de Sitter universe.
(ii) Due to the different dependencies of the various density parameters on a, the ΩΛ term, if
present, will almost always7 dominate at later times. Thus, in most cases the final fate of a
universe with λ > 0 is an exponential expansion, sometimes called a second inflationary phase.

6Starting at t ≈ 10−34 s and lasting for roughly 100 Hubble times (τH = 1/H ≈ 10−34 s).
7An exception is given for large ΩM and ΩΛ <∼ 0.2, as you will see during your lab work.
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Dark energy. An empirical approach to remove some of the problems with the cosmological
constant is to allow for a time-dependence, λ = λ(t). The corresponding energy component is
called “dark energy” then. The initial conditions require a value corresponding to the expected
vacuum density, ρλ(tP) ≈ 10120ρλ(t0) at Planck time tP = 10−47 s, from which it decays to its
present value, via matching the inflaton field as well. In this case, the EOS becomes (cf. Eq. 3.70)

pλ = −ρλ

(

1 +
1

3

d ln ρλ(a)

d ln a

)

, (3.83)

which recovers the limit w = −1 for slowly changing ρλ. Of course, this approach does not tell
us anything about the physics responsible for the effect. Note that enormous effort is presently
spent to obtain observational constraints on this EOS, which might allow discriminating between
competing physical models or might even trigger setting up new ones.

A popular model for dark energy is the so-called quintessence. Quintessence is a scalar field
which has an equation of state with w < −1/3. As postulated above, quintessence is dynamic,
and generally has a density and equation of state that varies through space-time.

Many models of quintessence have a so-called tracker behaviour, which partly solves the
cosmological constant problem. In these models, the quintessence field has a density which closely
tracks (but is less than) the radiation density until matter–radiation equality, which triggers
quintessence to start having characteristics similar to the observed ρλ, eventually dominating
the universe.

The deceleration parameter. In the beginning of this chapter, we derived Hubble’s law
from a linear expansion of the cosmic scale factor. Being familiar now with the Friedmann–
Lemâıtre equations, we are also ready to perform a second order expansion, which will tell us
about the present acceleration or deceleration of the Universe:

R(t)

R0
= a(t) ≈ a(t0) +H0(t− t0) +

1

2

R̈(t)

R0

∣
∣
∣
∣
∣
t0

(t− t0)
2, (3.84)

where a(t0) = 1 and R̈ can be extracted from the 2nd Friedmann–Lemâıtre equation. With
pM = 0 and neglecting ρλ and pλ for the moment, we find

R̈(t)

R(t)

∣
∣
∣
∣
∣
t0

= −
4πG

3
ρ0 = −

Ω0

2
H2

0 , (3.85)

a(t) = 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2 (3.86)

to second order. In this expansion, the term

q0 :=
Ω0

2
= −

R̈(t0)

R0H2
0

= −
R̈(t0)R0

Ṙ2(t0)

measures the deceleration of the Universe (i.e., is positive for a decelerating cosmic scale).

Exercise 6: Generalize the above approach for ΩΛ 6= 0 but ΩR = 0 (which is legitimate at the
present epoch). What can be concluded from a negative q0 as derived, e.g., from the distances of
SNe Ia?
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Chapter 4

Experiment

4.1. Numerical solution of ODEs:

Test problems and integrators

The problems covered in this section should be solved on the first day of your lab work.

4.1.1. The programs

Sources

Everything you need to edit, compile, and run the codes (as well as to create the plots) can
be found in (sub-)directory codes. Switch to this directory, and have a look into the various
subdirectories. All source files (Fortran 90, though with the ending .F) can be found in
directory src. A short structure of the program is given in frame.F.

In order not to (unintentionally) destroy or corrupt the original files, you will do most of the
work in directory cmp. Switch to this directory, and have a look into the only file which should
reside there, the Makefile. Check the various options, and install the source files in cmp.

Exercise 7: Locate all the sources and draw a diagram, specifying briefly what each subroutine
does, down to the level of the integrators.

Compilation, execution, and plotting

Compile all files using make (with the appropriate target).
For all your following work, copy the resulting executable into directory run/problemN ,

where N is a number 1 . . . 4 corresponding to the specific test problem. Perform all runs (which
usually requires updating the particular input files) in this directory. Plots using idl have to be
finally created in the directory plots, by using the plotting routines to be found there.

4.1.2. Problem 1 – A first test

We will check whether the integrators are running smoothly by analytically and numerically
solving the ODE

∂xy(x) = a y(x) (4.1)

with a = 2.5 and the initial condition y(0) = 10−3 on the interval x = [0, 10].

Exercise 8: Solve Eq. (4.1) analytically. :-)
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Exercise P1: The integrators

All steps which are detailed in this exercise have to be performed analogously when working on
the other exercises.

P1.1: Obviously, something’s wrong with eulerstep.F: there’s nothing in there. That’s your
chance to write your version of an Euler integrator. Add the required statements to the corre-
sponding subroutine in cmp, compile the program, and copy the executable to run/problem1.
Switch to the latter directory and test your integrator using 100 steps. Before running the
code, check the corresponding input file frame.inp11 with respect to the various input quan-
tities. Which ones are not needed to perform the Euler method?

Update the variables which are needed and copy frame.inp11 to frame.inp, which is the file
being used by the executable. Hopefully, the program runs. Now inspect the created output file
and check whether it makes sense!!!

Switch to directory plots. At first, study the first part of plotode.pro, regarding input,
possible keywords, and the variables runN and labelN , where N = 1 . . . 4. Plot the result of
your first test and the analytical solution with plotode.pro with options /solu and /points.
Does the result agree with the analytical solution? Increase the number of steps to 1000. Don’t

forget to change the label for the output file to "00p1i2"! A correct label is important for
the plotting routine to work! Gotten any better? (Plot the results of both simulations into one
figure, and compare the results.) What are the mean relative errors?

After you are satisfied with your results, always create a corresponding Postscript file for your
lab report (see plotode.pro for the relevant arguments). You may also find it helpful to print
out a hardcopy.

P1.2: Now use the 4th order RK integrator with 1000 steps. Again, choose a different label
("00p1i3") to prevent overwriting of the previous result. Compare the result with the corre-
sponding Euler and analytic solution (one plot, again with /points).

P1.3: Repeat P1.2 with rkqs and stiff, labels: "00p1i4" and "00p1i5". Convince yourself
that the quantities eps etc. in frame.inp make sense. How many integration steps does each of
the integrators need? Compare the requested accuracy with the achieved accuracy. Are the more
“fancy” integrators more accurate? What is their strength in this problem?

P1.4: Now use the RK integrator with adaptive step size to find out the number of steps it needs
to actually obtain the same accuracy as rk4 with 1000 steps. To this end, change the input
parameter eps until you obtain the desired accuracy. Label: "00p1i6".

P1.5: Summarize the results you obtained for Problem 1. Which integrator would you trust
most, and why?

4.1.3. Stiff Equations

As discussed above, physical systems which can be described by ODEs often evolve on very
disparate scales. Such a set of ODEs is called stiff. In the following, we will test the integrators
on two different sets of stiff equations.

Problem 2 – Two coupled ODEs

We begin with the set

∂xy1 = 998y1 + 1998y2, (4.2)

∂xy2 = −999y1 − 1999y2. (4.3)
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This corresponds to iprob = 2 in frame.inp. The initial conditions are y1(0) = 1 and y2(0) = 0,
and the ODEs are to be integrated between x = [0, 4].

ADVANCED Exercise 9: Solve the above problem analytically. Remember the solution ansatz
for such homogeneous DEs with constant coefficients: y = v exp(λx). Inserting this ansatz
into the DE, you should be able to derive the general solution, and, using the initial condition,
the particular one. (Hint: as an intermediate result, you should find the eigenvalues of A as
λ1,2 = (−1,−1000).)

Exercise P2: Integrator stability

For this exercise, use directory run/problem2 as a working directory.

P2.1: Implement Eqs. 4.2 and 4.3 into file odedef.F, which contains the four subroutines
setproblem, initproblem, derivs, and jacobian. Test all integrators (for the fixed-step inte-
grators, use 10000 steps, for the others an accuracy of 10−5), and plot the results with plotode,
with option /solu. Is there any difference between the results? Plot and compare the relative
errors as well (logarithmically, to better display the different scales). How many steps do rkqs

and stiff need?

P2.2: Test the stability conditions derived in Section 2.5, both for the euler integrator (label
"00p2i5") and for rk4 (label "00p2i6"). Which maximum step size is “allowed” in each case?
(Eigenvalues provided in exercise 9.) How does this transform into step number? Check the
solution with the corresponding (minimum) step numbers, particularly whether the numerical
results decay to the analytic solution. Plot the corresponding numerical solutions in comparison
to the exact one.

Reduce the step number successively until the behavior becomes unstable. For comparison,
also increase the step number to see how the behavior changes.

Problem 3 – Three coupled ODEs

For this exercise, use directory run/problem3 as a working directory. Labels are "00p3i1" and
"00p3i2".

Exercise P3: Now switch to problem 3 (iprob = 3). Find its definition in odedef.F, write
down the corresponding set of ODEs and discuss why this is a difficult problem to integrate. Run
integrators rkqs and stiff over the interval [0, 50] and plot the results. Do the results agree?
How many iterations does each of the integrators need? (Don’t forget to check kmax.)

4.1.4. Advanced: Problem 4 – Accuracy and rounding errors

This problem is optional and should be solved only if time allows. Otherwise, contact your
supervisor for a discussion of the results. Use directory run/problem4 as a working directory.

In this final test of numerical solutions of ODEs we will check our error analysis with respect to
discretization and rounding errors. In particular, we will try to verify the result of exercise 1
on the existence of an optimum step size, which should vary as a function of consistency order, p.

Exercise P4: To this end, we switch back to problem 1, and investigate the achieved precision
as a function of (equidistant) step size, for both the Euler and the Runge–Kutta integrator.
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P4.1: At first, we have to modify our driver-routine, frame.F. We will use the new driver
frame error.F. Document the differences, and briefly describe their purpose. If you do not know
how to find out differences between two files, check the Linux manual page of diff. Finally,
modify odeint.F by commenting out the output line regarding nstp,h,x,y(1) in the branch
responsible for fixed step size methods. This test performs so many integration steps that the
computation time would become dominated by the creation of this output if not commented out.

P4.2: Compare the error as a function of step size, for Problem 1 and both integrators as dis-
cussed above. Modify the Makefile in such a way that a new target frame error can be built
with make, which should compile frame error.F instead of frame.F and create the executable
frame error.x.

Use the Makefile to create the executable, and perform the required test in directory problem4.
Use the corresponding input files. Plot the results with ploterror.pro (modify to create .ps

files), and discuss them in terms of our theoretical predictions of Section 2.2.
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4.2. Friedmann–Lema�itre cosmologies:

numerical solutions

The problems covered in this section should be solved on the second day of our lab work.

4.2.1. Implementation and first tests

Implement the ODE describing the temporal evolution of the scale factor, as derived in Chapter 3,
into the program, as a new “problem 5”. Neglect the radiation term, since this plays a role
“only” in the very first epoch(s) of the Universe, together with inflation, which we will neglect
as well, and which is justified as long as we are not interested in the details of these phases and
have normalized all quantities to their present values. Remember that all times are in units of
τH if we solve the equation for ȧ/H0.

Perform the required changes as in P2.1, and allow the input quantities ΩM and ΩΛ to be
read in from a file friedmann.inp (logical unit = inpunit, already defined). As initial value,
invert your result from exercise 5a (integrated from 0 to a!) to obtain an approximate value
a(tstart). In all what follows, we will adopt t′start = 10−10 (in units of τH). Since we will only use
the RK-integrator with adaptive step size, the Jacobian does not need to be defined.

For all your following work, use run/problem5 as a working directory.

P5.1: Test your program now by comparing with your results from Exercise 5a and 5b. Plot
the run of a(t) with plotode.pro, after appropriate modifications (enable plotting the results for
problem 5). The idl routine xhair,x,y allows measuring the x-y-coordinates in a plot.

4.2.2. Solutions for various parameter combinations

P5.2: Now, try the solution for a matter-dominated, closed universe without cosmological con-
stant and ΩM = 3. Calculate until t′max = 3.0, observe the problem, and try to cure it by
manipulating t′max. Plot the result, and try to explain the origin of the problem. At which a does
the Lipschitz-constant become infinite?

If everything you did so far was OK, you should have realized that the temporal resolution is
rather coarse (the solution is well-behaved, such that large step sizes are taken.) To cure this
“problem”, edit odeint.F, locate the term “uncomment” and do as suggested. By including the
appropriate statement, a maximum step width as given by the input variable dxsav is ensured.
Recompile, and replot the last figure, now with dxsav=0.01.

P5.3: After everything runs smoothly, calculate and plot the following models. Choose an appro-
priate tmax – start with a default of tmax = 4, and adapt as necessary to adequately demonstrate
the behavior of each universe. Briefly explain/comment on your findings, considering the partic-
ular values of ΩM and ΩΛ:

a) ΩM = 3.0 ΩΛ = 0.1 b) ΩM = 3.0 ΩΛ = 0.2
c) ΩM = 0.0 ΩΛ = −0.1 d) ΩM = 1.0 ΩΛ = 1.0
e) ΩM = 1.0 ΩΛ = 2.55 f) ΩM = 1.0 ΩΛ = 2.6

P5.4 – Constraints on ΩM and ΩΛ: Using the observationally well-proven fact that our present
Universe is very close to flatness, use your simulations to obtain the (ΩM,ΩΛ) pair which is
consistent with the present Hubble parameter and the age of our universe, t0 = 13.7± 0.2 Gyr
(from the WMAP team). Analyze roughly the corresponding errors.

4-5



CHAPTER 4. EXPERIMENT

P5.5 – The (ΩM,ΩΛ) diagram: The idl procedure diag.pro, in combination with data from
diag.sav, displays the well-known (ΩM,ΩΛ) diagram which allows visualizing the present con-
straints for our Universe. At first, run the program, and have a look into the various possibilities
for a(t) as a function of (ΩM,ΩΛ), if one integrates the corresponding ODE with initial value
a = 1 into the past and into the future (which is done here by the executable program bs which
uses the Bulirsch–Stoer method).

Play around a bit, and compare with your previous solutions. In particular, have a look into
the “no big bang” and the “loitering1 universe” domain. What happens? Note also that there is
a (small) region with ΩΛ > 0, where the universe still collapses finally.

Now, improve the figure as follows, and plot the result.

• draw the line distinguishing an open from a closed universe, with corresponding captions.

• draw the line distinguishing a presently accelerating from a presently decelerating universe.

• indicate your solution (with errors) from exercise P5.4.

1In German: “herumlungernd”.
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