<u>Automated</u> PSF measurement and homogenization in DESDM

E.Bertin (IAP)

PSF homogenization

- History
- Science requirements
- PSFEX internals
 - Point source selection
 - PSF modeling
 - Modeling PSF variations
- PSFEx in the DESDM
 - specific issues
 - Built-in quality control and metadata output
 - Pending issues and forthcoming developments

History

- Development started back in 1998

 (!) while working on the ESO
 Imaging Survey
 - Originally intended to provide accurate PSF models for crowded field photometry (e.g. Kalirai et al. 2001)
- Used mostly for quality control at TERAPIX
- Modeling of PSF variations refined in the framework of the EFIGI project (galaxy morphology)
- PSF homogenization module developed for the DES project

PSF requirements from contemporary science

- Faint galaxy morphometry
 - PSF Full-Width at Half-Maximum < 0.9"
 - PSF FWHM must be mapped with an accuracy of a few %
- Weak lensing studies
 - PSF ellipticity must be mapped at the 0.1% accuracy level
- Some existing and future wide-field imagers are undersampled: the PSF extraction software must be able to recover the PSF from aliased images.

PSFEx: Modeling the PSF

- Modern imagers behave as linear, translation-invariant systems (at least locally) and can be fully characterized by their Point Spread Function (PSF)
- Knowledge of the PSF is needed for many image analysis tasks
 - image quality control (FWHM, elongation, asymmetry, distance to best-fitting Moffat)
 - PSF homogenisation
 - matched filtering
 - profile-fitting
 - star/galaxy separation
 - galaxy morphology
 - weak-lensing analyses

Automatic point-source selection

PSF modeling: Principle

- For practical reasons, PSFEx works internally with <u>rasterized</u> PSF models. PSF models are tabulated at a resolution which depends on the stellar FWHM (typically 3 pixels/FWHM)
 - Satisfy the Nyquist criterion + margin for windowed-sinc interpolation
 - Handle undersampled data by representing the PSF model on a finer grid
 - Minimize redundancy in cases of bad seeing
 - Find the sample values by solving a system using point-sources located at different positions with respect to the pixel grid
- The PSF is modelled as a linear combination of basis functions ψ_b
 - "Natural" pixel basis $\psi_b(\mathbf{x}) = \delta(\mathbf{x} \mathbf{x}_b)$
 - Work with any diffraction-limited image (images are bandwidth-limited by the autocorrelation of the pupil)
 - Fourier basis
 - Gauss-Hermite or Gauss-Laguerre basis functions (aka polar Shapelets) $\psi_b(r, \theta)$

- Scale parameter (β) adjusted to provide proper sampling
- Should provide a more robust model for data with low S/N
- Others (e.g. PCA components of the theoretical PSF aberration components for diffraction-limited instruments).

Solving in Fourier space

Reconstructed NICMOS PSF

Lauer 1999

Aliased portion of the spectrum

Problem: noise is seldom stationary on astronomical images!

PSFEx: solving in direct space

 A resampling kernel h, based on a compact interpolating function (*Lanczos3*), links the "super-tabulated" PSF to the real data: the pixel j of star i can be written as

• The c_b 's are derived using a <u>weighted</u> χ^2 minimization.

 $P_{\mu} = \alpha_i \sum \sum h_i (\mathbf{x}_i - \mathbf{x}_j) c_i \psi_{\mu}$

- The *a*_{*i*}'s are obtained from "cleaned" aperture magnitude measurements
- Regularisation required for highly undersampled PSFs (FWHM <1.5 pixel)
 - | ² norm (Tikhonov)
- PSF variations are assumed to be a smooth function of object coordinates
 - \sim The variations can be decomposed on a polynomial basis X_{l}

X.1X.1

 $X_n = X_n |V_n V_{nn}|$

Recovered PSF with simulated, undersampled data

Simulated, defocused data

Gauss-Laguerre basis vs pixel basis on simulated images

Except for the simplest PSF profiles, shapelet decomposition does not seem to be more efficient than simple tabulation for precise modeling.

•

 Typically a few hundred free parameters required in each case.

Image

Recovered PSF: pixel basis Recovered PSF: shapelet basis

DES Munich meeting 05/2010

Modelling PSF variations: Reconstructed MEGACAM average PSF in the i-band

- 5th order polynomial in x, y: _psfvar_keys x_IMAGE, Y_IMAGE -psfvar_DEGREES 5
- Derived from 19,000
 point sources
- $\chi^2/d.o.f. \sim 1.3$
- Processing time ~ 100s on a 2GHz processor

Reconstructed CFHTLS-D1 PSF FWHMs and ellipticities in i

00240

0.06 6

(q+e)/(q-e)0.04

0.02 2

PSF ellipticity

8

+00°20

-00°20'

-00°40'

Make the PSF depend on other parameters

- 6th order polynomial in MAG_AUTO: _**PSFVAR_KEYS MAG_AUTO PSFVAR_DEGREES 6**
- 1670 point-sources from the central 4096×4096 pixels of a photographic scan (SERC J #418 survey plate, courtesy of J. Guibert, CAI) FWHM ≈ 3pixel

PSF variability mapping: advanced options

- Principal component analyses at the pixel level from PSF model variations: PSFEx offers 2 possibilities (that can be used together)
 - within an image or a series of images: find the image basis with the smallest number of vectors that fits the variable
 PSF at a given MSE: NEWBASIS_TYPE PCA_COMMON

- trace hidden dependencies of PSF variations from a series of images (Jarvis & Jain 2004); 3 steps:
 - 1. extract principal components of PSF variations from a series of image to obtain one set of coefficients per image
 - 2. use the obtained coefficients as part of a polynomial variation model and fit them to the data
 - 3. reconstruct the PSF model and its variations for each image: -psfvar_keys x_image, y_image, hidden1 -psfvar_degrees 3,2

DES Munich meeting 05/2010

PSF homogenization

- Co-addition: large pointing offsets + small number of exposures create jumps in the PSF at image boundaries
 - ➔ PSF homogenization
 - Bring all images to the same, circular PSF, using the variable PSF models
 - DECam images are expected to be properly sampled
- R&D: Combine exposures with variable image quality
 - "Cheap" alternative to image fusion/Bayesian inference.
 - Impose the target PSF with median seeing to minimize noise correlation
 - Handle noise correlations on arcsec scales
 - Masking of artifacts is important

Darnell et al. 2009

4

5

PSF homogenization: making the kernel

• We seek a convolution kernel $\kappa(x)$ which, when applied to the model PSF, minimizes (in the χ^2 sense) the difference with a target PSF.

 Gauss-Laguerre basis has interesting "self-regularizing" properties (Alard and Lupton 1998)

 $\psi' = \sum Y_i(x_i) \kappa_i \circ \psi(x_i) \quad \forall i$

- kernel variations handled as polynomial in *x* and *y*.
- Kernel components are saved as a FITS datacube
- All computations done are in PSFEx (-HOMOBASIS_TYPE GAUSS-LAGUERRE OPTION)

PSF homogenization: applying the kernel

- Individual kernel components are convolved with the input image, multiplied by the corresponding polynomial term, and summed (psfnormalize program by Tony Darnell).
 - Very fast; convolutions done using parallelized FFTs.
 - PSF variations are assumed to be negligible on the scale of the PSF

Noise and image weighting issues for coaddition

- Homogenized bad seeing images exhibit increased noise in a narrow spatial frequency range
 - Unweighted coaddition: S/N decreased at high frequencies because of noise contribution from bad seeing images
 - Simple weighted coaddition: S/N decreased at low frequencies because of the reduced contribution from bad seeing images
 - Multiband weighting (E.Nielsen): 2 bands might be enough

Galaxy measurements on homogenized simulations

Stack of 16 homogenized exposures with 0.65"<FWHM<1.3" (including ≈0.5 " coma)

PSF modeling and galaxy model-fitting

- Accurate enough for shear measurements?
 - Shear recovery test on Great'08 challenge data (LowNoise sample) on both homogenized and non-homogenized versions
 - |∆**e**|<0.0005

•

Built-in quality control and metadata

- PSFEx runs a variety of diagnostics
 - Various 2D histograms are produced
 - Numbers are written to a metadata file in XML-VOTable format at the end of each run.
 - An XSLT stylesheet that translates to HTML comes with the PSFEx package.
 - High level libraries such as vo.table for Python can be used to parse the VOTable
 - there are a few stability and compliancy issues (can easily be fixed)
 - More information at Astromatic.net

Built-in quality control (cont.)

Pending issues and future improvements

- Need to tune up the level of wings in the target PSF (Moffat beta parameter)
 - Depends on the details of the real average PSF
- Improve image weighting
- Dealing with undersampled images?
- Fit star residuals instead of rejecting them!
 - Useful in crowded fields
- Offer more customizable basis
 functions to describe PSF variations

