Astromatic calibration of astronomical images in DESDM

E.Bertin (IAP)

Automated astrometric calibration of astronomical images

- History
- Science requirements
- How positions are measured in SExtractor
 - what parameter to use
- SCAMP internals
 - matching of detections
 - global astrometry
 - astrometric reference catalogs
 - improving astrometric accuracy: DRC, proper motions
- Example of results
- SCAMP in the DESDM
 - specific issues
 - Built-in quality control and metadata output
 - Pending issues and forthcoming developments

- SCAMP was originally developed at TERAPIX to calibrate the CFHTLS, as a successor to Mario Radovich's Astrometrix. The CFHTLS:
 - >20TB of science image data
 - Each individual MEGACAM 300-600s exposure is a 1° mosaic of 36 CCD frames and contains about 10⁴-10⁶ detections.
 - ~580 sq.deg. covered in up to 5 bands
 - In a given region of the sky anything from 1 to 2000 exposures can overlap
 - Scientific goals required an accurate relative positioning of images (below 50 mas)
 - Astrometric and photometric calibrations ----had to accommodate various sky coverage strategies

Astrometric requirements for contemporary science

- Morphological analyses and weak lensing studies
 - Relative astrometry must be accurate to the level of <10% of the PSF FWHM.
- Galactic structure: proper motions
 - Relative positional accuracy over the field must be close to photonnoise limited
 - Good image sampling
 - Appropriate observing strategy
 - Low airmasses
 - Dithering strategy

Proper motion accuracy expected from a 5-year Gaia experiment (*Kucinskas et al. 2005*)

٠

Centroid measurements

- Several centroiding procedures have been implemented in SExtractor:
 - X_IMAGE,Y_IMAGE: « isophotal » measurements are fast but their accuracy is poor
 - **XPSF_IMAGE**, **YPSF_IMAGE**: derived from PSF-fitting
 - XMODEL_IMAGE, YMODEL_IMAGE: derived from galaxy model-fitting
 - XWIN_IMAGE, YWIN_IMAGE: Gaussian-weighted centroiding:.
 - FWHM of the Gaussian set to twice the half-light radius
 - 5 iterations in average
 - Almost (within ~10%) as accurate as PSF-fitting on background-noise limited images, but much faster
 - Works well with galaxies

Astrometry: automated pattern matching

- Associate detections with a reference catalogue like GSC, USNO, or UCAC.
- Direct matching techniques with invariance to scale, rotation, and translation
 - Search in "triangle space" (e.g. Groth et al. 1986, Valdes et al. 1995)
 - Brute-force approach: memory usage & computing time $\propto N$
 - practical limit is a few hundred stars
 - relies heavily on stellar magnitude ranking
 - A clever pre-selection of triangles can speed up processing by 1-2 orders of magnitudes (*Pál & Bakos 2006*)
 - Search in "quad-space": Astrometry.net (Hogg et al. 2008)
 - Huge index in the form of a 4D KD-tree pre-computed on USNO-B+Tycho-2
 - Very fast on most images
 - Not in SCAMP because of licensing issues
 - SCAMP (Bertin 2006) approach: 3 steps
 - Find position angle and pixel scale using pairs of detections
 - Find coordinate shift using detections
 - Match based on Euclidean distance after applying scaling, rotation and shift.
 - Several thousands of sources can be cross-matched in a matter of seconds

FIG. 1—Representation of triangles in *triangle space*. The lengths of the triangle sides are used to form the ratios b/a and c/a and these ratios define a two-dimensional space. Because of the ordering of the lengths the triangle coordinates will only occupy the indicated triangular region. Triangles from two images are matched when they are within a distance ϵ of each other in the triangle space.

Astrometric matching: finding position angle and scale

- Match source pairs in the reference and extracted catalog in pos.angle-log(distance) space using bandpass-filtered cross-correlation (e.g. *Kaiser et al.* 1999)
- Must pay attention to folding on the scale axis
- In general, a 7'×15' image can be correctly oriented and scaled within a 1 sq.deg box.

Astrometric matching: finding coordinate shift

- Match source pairs in the reference and extracted catalog in projected coordinate space using crosscorrelation
- Possible image flip
- Modulation due to source clustering and catalog boundaries must be minimized with data-windowing and bandpass-filtering
- Typically, a 7'×15' image can be correctly positioned within a box of a few sq.deg.
- Slight improvement by adding magnitude dependency.

A global astrometric solution

- The mapping of astrometric distortions requires at least a 3^{rd} order polynomial in projected coordinates ξ
 - 20 free parameters per CCD
 - Naive approach: fit the distortion coefficients for each exposure using a reference catalog (GSC, USNO,...)
 - Simple and fast <u>but too sensitive to inaccuracies in the reference</u> <u>catalog</u>, especially when a little more than 20 stars are cross-identified on a CCD.
 - Global solution: fit the distortion coefficients by additionally minimizing the distances between the projected coordinates of overlapping detections.
 - Approach taken for many astrometric reduction problems (e.g. *Eichhorn 1960*, *Deul et al. 1995*, *Kaiser et al. 1999*, *Radovich et al.* 2004)
 - Manages to reach a very good accuracy (close to the theoretical instrumental level)
 - For every source s on overlapping exposures a and b minimize

$$\chi^2 = \sum_{s} \sum_{a} \sum_{b} w_{sab} \| \boldsymbol{\xi}_a(\boldsymbol{x}_{sa}) - \boldsymbol{\xi}_b(\boldsymbol{x}_{sb}) \|^2$$

Minimising the number of free parameters

- DECam: 62x20 = 1240 free parameters per exposure
 - Quickly leads to impractically large normal equation matrices
 - Iterative approach necessary
 - Too many free parameters: robustness problems arise because of a lack of sources or confusion in some fields
- For a given instrument (and a given filter combination), one may assume that the distortion pattern does not vary measurably over some period of time
 - We must allow the linear part of the distortion pattern to vary <u>globally</u> from exposure to exposure because of differential atmospheric refraction and flexures
 - 1240. n_{instru} + 6.(n_{exp} n_{instru}) free parameters
 - Requires an intermediary transformation to a common re-projection
 - stereographic projection chosen because it maps disks to disks.
 - · Jacobians of the re-projections are involved

$$\begin{aligned} \frac{\partial \chi^2}{\partial c_{qf}} &= 2\sum_s \sum_a \sum_{b>a} w_{sab} \sum_d \left(\xi^0_{ad}(x_{sa}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) + \frac{\partial \chi^2}{\partial d_{gnf}} \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{gd}(x_{ga}) - \xi^0_{bd}(x_{sb}) \right) \\ &= 2\sum_s \sum_{b\neq g} w_{sgb} \sum_d \left(\xi^0_{bd}(x_{sb}) + \sum_{b\in g} w_{sgb} \sum_{d \in g} w_{sgb} \sum$$

DES Munich meeting 05/2010

Distortion patterns of some existing wide-field instruments derived with SCAMP

DES Munich meeting 05/2010

SCAMP can compute astrometric solutions for arbitrary survey/instrument geometries/ histories and several overlapping instruments simultaneously

12

Astrometric reference catalogs

- Systematic offsets of ~0.2-0.3" are commonly found between astrometric reference catalogs on scales of 0.1-1 degree
- Amongst existing deep allsky catalogues, 2MASS seems the most reliable.
 - confirmed by several SCAMP users and others
- UCAC-3 is the best catalog for shallower surveys

Code	Real name	Coverage	$Density^a$	Bands	Mag. limit	$\sigma_{\rm pos.}{}^{b}$	$System^c$	$Epochs^d$	Proper motions
GSC-1.3	Guide-Star Catalog ACT V1.3 ^e	All sky	610	V	$V \approx 15.5$	0.3"	FK5	1975 - 1988	
GSC-2.2	Guide-Star Catalog ACT V2.2.1 ^{f}	All sky	11050	$B_{ m J},V,R_{ m F},I_{ m N}$	$B_{\rm J} = 19.5$	0.3"	ICRS	1975 - 2000	
GSC-2.3	Guide-Star Catalog ACT V2.3.2 g	All sky	22920	$U, B, B_{ m J}, V, R_{ m F}, I_{ m N}$	$B_{\rm J} = 21.5$	0.3"	ICRS	1975 - 2000	\checkmark
USNO-A1	PMM US Naval Observatory A1.0 ^h	All sky	11830	$B_{\rm J}, R_{\rm F}$	$B_{ m J} \approx 19.5$	0.3"	FK5	1949 - 1990	
USNO-A2	PMM US Naval Observatory $A2.0^{i}$	All sky	12760	$B_{ m J}, R_{ m F}$	$B_{ m J} pprox 19.5$	0.3"	ICRS	1949 - 1990	
USNO-B1	US Naval Observatory B1.0 ^{<i>j</i>}	All sky	25350	$B_{ m J}, R_{ m F}, I_{ m N}$	$B_{ m J}pprox 21$	0.3"	ICRS	1949-2002	\checkmark
UCAC-1	1st USNO CCD Astrograph $Catalog^k$	$\delta \leq -15^\circ$	pprox 1500	$R_{\rm U}$	$R_{\rm U} = 16$	70 mas	ICRS	1998-1999	\checkmark
UCAC-2	2nd USNO CCD Astrograph $Catalog^l$	$\delta \le +40^{\circ}$	pprox 1500	$R_{\rm U}$	$R_{\rm U} = 16$	70 mas	ICRS	1998-2002	\checkmark
UCAC-3	3rd USNO CCD Astrograph $Catalog^m$	All sky	2440	$R_{ m U}$	$R_{ m U}pprox 16.3$	70 mas	ICRS	1980-2002	\checkmark
NOMAD-1	Naval Obs. Merged Astrom. Dataset ^{n}	All sky	27090	B, V, R, J, H, K_s	$B \approx 21$	0.3"	ICRS	1949-2002	√
PPMX	Position and Proper Motions eXtended ^o	All sky	440	$B, V, R_{\rm U}, R_{\rm F}, J, H, K_s$	$R_{\rm f} \approx 15.2$	40 mas	ICRS	1975 - 2002	\checkmark
2MASS	2-Micron All Sky Survey point source ^p	All sky	11420	J, H, K_s	J = 17.1	0.2"	ICRS	1997 - 2000	
DENIS-3	DEep Near Infrared Survey version 3^q	$\delta < +2^{\circ}$	21270	i, J, K_s	ipprox 18.5	0.2"	ICRS	1996-2001	
SDSS-R3	Sloan Digital Sky Survey release 3^r	5282 deg^2	27660	u,g,r,i,z	r = 22.2	80 mas	ICRS	2000-2003	
SDSS-R5	Sloan Digital Sky Survey release 5^s	8000 deg^2	26880	u,g,r,i,z	r = 22.2	50 mas	ICRS	2000-2005	
SDSS-R6	Sloan Digital Sky Survey release 6^t	9600 deg^2	29950	u,g,r,i,z	r = 22.2	50 mas	ICRS	2000-2006	
SDSS-R7	Sloan Digital Sky Survey release 7^u	11700 deg^2	30610	u, g, r, i, z	r = 22.2	50 mas	ICRS	2000-2008	

DES Munich meeting 05/2010

Astrometry: improving accuracy

- Intrinsic sources of astrometric errors
 - Variability of the intra-pixel response profile from pixel to pixel
 - Mostly affect IR arrays
 - On modern CCDs, repeatability of centroiding with properly sampled stars is ~ 1/300th of a pixel over the array (e.g. **Yano et al. 2004**)
 - Step-and-repeat pixel size error on some large CCDs (*Shaklan & Pravdo 1994*): typically 0.5µm (a few hundredth of a pixel) each 512 or 1024 pixel
 - Equivalent to a few mas
 - MEGACAM CCDs did not have this problem
- Differential Chromatic Refraction
 - Atmospheric
 - Chromatic aberrations
- For large time intervals between exposures, one may leave source proper motions and parallaxes as free parameters (e.g. *Eichhorn & Russell* 1976)

Differential Chromatic Refraction

 For a star with spectral index α, observed at zenithal distance z in a filter of bandwidth w (in microns) centered on wavelength λ₀ (in arcsec):

$$\Delta z_{\lambda_0,w} \approx 23750 \left(\frac{dn}{d\lambda}\right)_{\lambda_0} \tan z \ w^2 \alpha$$

- w≈0.1µm for the u,g,r,i,z photometric system (SDSS,CFHTLS,...)
 - At z=45 deg, Δz varies from ~20mas (z band) to ~150mas (u band).
- <u>Most all-sky catalogues are not</u> <u>corrected for DCR!</u>
- Correction for differential chromatic refraction available in SCAMP
 - 2 different photometric instruments are required at least
 - Available in the merged catalogue output from SCAMP

 $\Delta \alpha$ and $\Delta \delta$ as a function of u-g at airmass ~1.5

Differential Chromatic Refraction matrix in u,g,i

DES Munich meeting 05/2010

Proper motions

- Proper motion estimates
 - Linear regression over Julian dates
 - At least 2 different epochs are required
 - Most proper motion measurements >50 mas/yr in USNO-B1 catalog appear to be spurious
- SCAMP does not update the position of reference sources to the epoch of observations
 - Proper motions of stars with V>16 found in most all-sky catalogs are not reliable
 - The impact on calibration could easily be checked since a large fraction of faint sources are actually galaxies (fixed positions in the ICRS)

Comparison with USNO-B1 proper motions (abcissa): 20 D3 exposures in r over a period of 15 months (ordinates)

Example a very large astrometric calibration run: 1500 MEGACAM exposures from CFHTLS wide

- Accuracy
 - Internal residuals down to ~5 mas rms for uncrowded, high S/N sources in selected 300s CFHTLS exposures (χ^2 /d.o.f. ~2). 20 mas *rms* is a more typical value for large numbers of exposures $(20.10^{6} \text{ sources})$, half of which are galaxies).
 - Residuals with respect to
 - 2MASS ~ 250 mas rms
 - SDSS ~ 40 mas rms
 - A large-scale (~10') residual distortion component variable from exposure to exposure can often be noticed at the level of a few mas RMS
 - Anomalous refraction?
- Speed
 - Based on FFTW, BLAS/LAPack
 - Multi-threaded
 - Efficient cross-identification engine
 - 2-10,000 sources/s on a quad-core CPU@3.0 GHz
 - Memory footprint: 200 bytes / detection

SCAMP in the DESDM

Instrument A1: distortion map

- SCAMP (astrometric reduction) is not operated in the way it was originally meant to
 - One solution per single exposure and per CCD, instead of a global solution that involves multiple exposures
 - Fix: assume that a stable, global solution exists for all CCDs (for the night, or the run), and adjust only low order terms over the whole mosaic.
 - stupidly, such an approach had not been planned while designing the software
 - currently using a "trick" by ٠ providing an additional mock catalog centered at RA,dec=0,0. The mock catalog is has the desired distortion pattern, very low errors, and therefore "drives" the global solution

Instrument A1: distortion map

Built-in quality control and metadata

- SCAMP runs a variety of diagnostics
- Various scatter plots and 2D histograms are produced
- Numbers are written to a metadata file in XML-VOTable format at the end of each run.
 - An XSLT stylesheet that translates to HTML comes with the SCAMP package.
 - High level libraries such as vo.table for Python can be used to parse the VOTable
 - there are a few stability and compliancy issues (can easily be fixed)
 - More information at Astromatic.net

Built-in quality control (cont.)

E. Bertin

DES Munich meeting 05/2010

Pending issues and future improvements

- Improvements to SCAMP
 - Implement a specific operating mode to restrict the solution to global focalplane parameters
 - at least up to low-order polynomial terms
 - Solve the issue of excessive residuals in RA after calibration of simulations based on TRILEGAL proper motions
 - Proper motions in current deep all-sky reference catalogs can't be used (unreliable)
 - Would have to derive proper motions by ourselves (SCAMP can already do that)
 - Would need at least two observations at one year interval, each in at least two bands (to correct for DCR)
 - Are we sure that the simulated proper motions have to right amplitude?
 - Add compliancy with the most recent WCS prescriptions for describing distorsion patterns

