Cosmic-Ray detection and masking

Algorithm by Pieter van Dokkum Implemented and modified by Marino Maiorino & Santiago Serrano

Munich Algorithms Meeting, 10-11 May 2010

Santiago Serrano

lunes 10 de mayo de 2010

Objective

Identify and mask cosmic-rays present in astronomical images for the data reduction process.

The Algorithm

The concept was designed by Pieter Van Dokkum. The method is described in his paper: arXiv:astro-ph/0108003v1 [2001]

The code

The code is written in Python and requires some analysis libraries:

- pyfits
- numpy
- imaging
- scipy

Algorithm Diagram

Input Parameters

The current code runs with the following parameters that allow different results:

#Algorithm Parameters

iterations	#Number of laplacian filtering passes
subsampling	#Subsampling for filtering (should not affect to result)
auto limits	#f lim & sigma lim are adapted to the image or fix
f lim	#Usually 0.05 - Ignored in auto limits mode
sigma_lim	#Usually 1 - Ignored in auto limits mode
f_lim_tolerance_	multiplier #Flim tolerance
sigma_lim_tolerance_multiplier	
F_image_mode	#Pieter van Dokkum original mode or Time optimized mode
recon_type	#Image Reconstruction type.
	#Valid any surrounding pixels 2:Valid axis only

Results From author's analysis in a HST WFPC2 image

Results in our python code with DES GSN data

> Input image (Overscan, Bias, Flat field and CCD cosmetics "corrected")

Results in our python code with DES GSN data

> Output Cosmic-Ray Mask

Results in our python code with DES GSN data

> For newer revisions of the code, bright stars are eclipsed at the input image

Further Work

- Optimize parameters for detection (specially f_lim and sigma_lim)
- Avoid masking non CR objects (at least non saturated stars!).
- Reduce CPU processing time. Implement a faster Laplacian and median filtering.
- Perform a better reconstruction method