

Global Calibrations Module: A Viewpoint from the PreCam Catalog Simulations

DARK ENERGY SURVEY

Douglas L. Tucker (FNAL)

Munich Algorithms Meeting 10 May 2010

Field-to-Field Zeropoints: The Need and The Strategy

DARK ENERGY SURVEY

DES will not always observe under truly photometric conditions...

...and, even under photometric conditions, zeropoints can vary by 1-2% rms pointing-to-pointing.

Jim Annis DES Collaboration Meeting, May 5-7, 2005

The solution: multiple tilings of the survey area, with large offsets between tilings.

Global Relative Calibrations: Field-to-Field Zeropoint Offsets

DARK ENERGY SURVEY

- DES covers the sky twice per year per filter. This is called tiling.
- It takes ~1700 hexes to tile the whole survey area.

Recipe:

- Tile the plane
- Then, tile the plane with hex offset half hex over and up
- This gives 30% overlap with three hexagons
- Repeat, with different offsets
- Large overlaps provide very robust hex-to-hex relative calibrations
- Similar to PanStarrs strategy

Field-to-Field Zeropoints The Algorithm (I)

- Method used by Oxford-Dartmouth Thirty Degree Survey (MacDonald et al. 2004)
- Developed by Glazebrook et al. (1994) for an imaging K-band survey

A Generic Example: Frames 5 & 6 are calibrated. The others are uncalibrated.

- Consider n frames, of which (1, ..., m) are calibrated and (m+1,...,n) are uncalibrated.
- Let $\Delta_{ij} = \langle mag_i mag_j \rangle_{pairs}$ (note $\Delta_{ij} = -\Delta_{ji}$). (Note: GCM currently uses *median*)
- Let ZP_i be the floating zero-point of frame i, but fixing $ZP_i = 0$ if i > m.
- Let $\theta_{ij} = 1$ if frames i and j overlap or if i = j; otherwise let $\theta_{ij} = 0$.
- Minimize S = $\Sigma\Sigma \theta_{ij} (\Delta_{ij} + ZP_i ZP_j)^2$

Field-to-Field Zeropoints: The Algorithm (II)

DARK ENERGY SURVEY Example: Frames 5 & 6 are calibrated. The others are uncalibrated. (From Glazebrook et al. 1994) Δ_{12} + Δ_{16} ZP1 -2 Δ_{21} + Δ_{26} ZP2 -2 Δ_{34} ZP3 -1 Х _ Δ_{43} + Δ_{45} ZP4 -2 ZP5 ZP6

Field-to-Field Zeropoints: An Issue with "Islands"

Issue: uncalibratable islands results in un-invertable matrices

Field-to-Field Zeropoints: A Solution for "Islands"

Solution: use Huchra & Geller (1982) Friends-of-Friends algorithm to identify and remove/adjust such uncalibratable islands

Global Relative Calibrations: The Global Calibrations Module (GCM)

DARK ENERGY SURVEY GCM Zeropoint Solver Code

- NxN matrix inversion, where N=# of hexes (or number of tiles or 62 x # of hexes...)
- Written in Java
- Uses cern.colt.matrix
- Input: An ASCII table of all unique star matches in the overlap regions
- **Output:** The ZP offsets to be applied to each field and the rms of the solution.
- Issue: Switchng from hex-by-hex zeropoints (where N~5000) to CCD-by-CCD zeropoints (where N~300,000) is proving to be difficult. (Jim Annis is conversing with Mike Jarvis regarding this issue.)

Global Relative Calibrations: DES + PreCam data

- Can include both DES and PreCam survey fields when running the Global Calibration Module.
- The PreCam Full Footprint Strategy would provide an additional tiling of the DES footprint.
- The PreCam Rib & Keel Strategy would provide a rigid framework upon which to tie the calibrations of the DES.

Global Relative Calibrations: Residual Star Flats

DARK ENERGY SURVEY

- Due to vignetting and stray light, a detector's response function differs for point sources and extended sources
- Standard flat fields (domes, twilights, skies) may flatten an image sky background well, but not the stellar photometry
- The solution: star flats (Manfroid 1995)
 - offset a field (like an open cluster) multiple times and fit a spatial function to the magnitude differences for matched stars from the different exposures
 - can also just observe a well-calibrated field once (Manfroid 1996)

Koch et al. 2004, ESO WFI star flats based on SDSS Stripe 82 observations (2nd order polynomial fits)

- The worst effects should be modeled by PSM-StarFlat (see earlier slide).
- The many field-to-field overlaps inherent in the DES Survey Strategy can be used to refine the star flats created by the PSM-StarFlat module.
- Not yet implemented in Global Calibrations Module.

Surveys to Simulate (Catalog-level Simulations)

DARK ENERGY SURVEY

- 1. DES g-band (Year 1 and Year 1+2)
 - a. Fewest tilings
 - b. Hardest relative calibrations
- 2. PreCam "Full Footprint"
- 3. PreCam "Rib & Keel"

Types of Simulations

DARK ENERGY SURVEY

- 1. "Perfect" Data (DES, PreCam)
 - a. No Poisson noise in stellar mags
 - b. No flat-fielding errors
 - c. Only deviations from perfection are the pointing-to-pointing zeropoint offsets provided by Jim Annis from his Survey Strategy software.
- 2. "Realistic" Data (PreCam)
 - a. All stars used have Gaussian random errors ($\sigma = 0.01$ mag)
 - b. Residual flat-fielding errors of 1% across the focal plane
 - 1) Linear flat-fielding error across focal plane
 - 2) Direction of flat-fielding error is random (0°-360°)
- 3. "Pessimal" Data (DES)
 - a. Same as "2" above, but the 1% flat-fielding error is always in the same direction, from West to East

RA, DEC Plots of 3 Surveys

SURVEY

-0.3

-0.4

-0.2

-0.1

0

Photometric Zeropoint Offset [mag]

Photometric Zeropoint Offsets from Survey Strategy

DES tilings: Photometric Zeropoint Offset Applied (g-band)

400 DES g Years 1+2 350 300 250 Number 200 150 100 50 -0.3 -0.2 -0.1 -0.4 PreCam Full Footprint: Photometric Zeropoint Offset Applied (Atmosphere Model) 350 Atm. Model [PreCam 300 **Full Footprint** 250 200 Number 150 100 50

0.1

0.2

0.3

0.4

450

0.1 0.2 0.3 0.40 Photometric Zeropoint Offset [mag] PreCam Rib and Keel: Photometric Zeropoint Offset Applied (Atmosphere Model) 350 Atm. Model **PreCam** 300 **Rib & Keel** 250 200 Number 150 100 50 -0.3 -0.2 0.2 0.3 -0.4 -0.1 0.1 0

Photometric Zeropoint Offset [mag]

0.4

Atm. Model

Simulated Stars on the Focal Plane

DARK ENERGY SURVEY

DECam

PreCam

(Not the same fields.) 15

DARK ENERGY SURVEY

- Use overlapping images to measure relative photometric offsets.
- Big matrix inversion problem (uses algorithm of Glazebrook et al. 1994).
- For the current simulations, do focal plane-by-focal plane solutions (not CCD-by-CCD solutions), to cover full DES footprint without memory problems.

Statistical vs. Systematic Errors

DARK ENERGY SURVEY

- It is possible to get a statistically good solution from GCM but still have large systematic errors.
- Consider the a long, thin strip in RA, with a 1% flat fielding error (edge-toedge) from West to East:

• One could still get a statistically tight offset between fields from the overlaps, but still end up with large systematic errors.

Baseline Test of GCM: Solving ZPs for the "Perfect" Simulations

DARK ENERGY SURVEY

- "Perfect" simulations tested:
 - DES g Years 1+2
 - PreCam Full Footprint
 - PreCam Rib & Keel
- RMS of the GCM solutions is << 0.00001 mag (below the round-off)
 - This is a measure of the statistical error.
- RMS of (GCM ZP True ZP) << 0.00001 mag (below the round-off)
 - This is a measure of the systematic error.

Results

DARK ENERGY SURVEY

Simulated Data Set	RMS of GCM Solutions (measure of statistical error)	RMS of "GCM ZP-True ZP" (measure of systematic error)
"Realistic" PreCam Full Footprint	0.00431 mag	0.00759 mag 🖌
"Realistic" PreCam Rib & Keel	0.00398 mag	0.01183 mag 🖌
"Pessimal" DES g-band	0.00358 mag	0.13089 mag 🗡
"Pessimal" DES g-band + "Realistic" PreCam Full Footprint	0.00437 mag	0.10304 mag 🗡
"Pessimal DES g-band + "Realistic" PreCam Rib & Keel	TBD	TBD
"Pessimal" DES g-band + <i>Median</i> "Realistic" PreCam Rib & Keel	0.00568 mag	0.02274 mag 🖌

(For "Pessimal" DES g-band, both Years 1 and 2 were used.)

- RMS of the GCM solutions = 0.00358 mag
- RMS of (GCM ZP True ZP) = 0.13089 mag X

"Pessimal" DES g-band Years 1&2 + Median PreCam Rib & Keel

DARK ENERGY SURVEY

- Here, we created a standard star catalog of all Rib & Keel stars observed at least 5 times, taking the median value for each star as its calibrated magnitude. We then used all these calibrated Rib & Keel stars as members of a single (albeit, strangely shaped) fiducial field, feeding this new fiducial field into the GCM with all the DES g-band stars.
- RMS of the GCM solutions = 0.00568 mag
- RMS of (GCM ZP − True ZP) = 0.02274 mag ✓

Extra Slides

DARK ENERGY

"PreCamSim"

DARK ENERGY SURVEY

The DES/PreCam Calibration software is called "PreCamSim".

- 1. Modular: StarCat, ImageCat, CCDImageCat
- 2. Written in Java
 - a. In principal can be run on Linux, MacOSX, and Windows
 - b. Currently only tested on Linux and MacOSX.
 - c. Hard-wired UNIX-based directory separators (e.g., "/") might be a problem for Windows.
- 3. Available:
 - a. On des06.fnal.gov in /data/des06.a/data/dtucker/PreCamSim
 - b. Also as a tar file: http://home.fnal.gov/~dtucker/DES/PreCamSim.tar.gz
 - c. See README in the PreCamSim/doc subdirectory.

StarCat

DARK ENERGY SURVEY

 StarCat – creates a random catalog ("truth table") of stars over the full survey region using griz data from the North Galactic Pole region in the SDSS (y-band mags are calculated using i-z colors).

 ImageCat – takes a list of image centers and photometric zeropoint offsets (from Jim Annis) to create catalogs in a given pointing (DECam or PreCam)

DES i-band

PreCam Rib & Keel

CCDImageCat

DARK ENERGY SURVEY

 CCDImageCat – takes the image catalogs from the ImageCat step and identifies on which CCD each star is located on in the camera focal plane; additionally, can apply global (focal-plane-based) and local (ccd-based) flatfielding errors to the simulated data.

1.00

DARK ENERGY SURVEY

• Global (focal-plane-based):

dmag = fp0 + fp1*R + fp2*R**2 + fp3*R**3

... where R is the fractional radial distance from the center of the focal plane (R=0 → center; R=1 → edge)

• Local (ccd-based):

dmag = ccd0 + ccdx*Xccd + ccdy*Yccd + ccdxx*Xccd**2 + ccdyy*Yccd**2 + ccdxy*Xccd*Yccd

... where Xccd,Yccd are the fractional x,y distances from the center of the CCD (Xccd, Yccd=0 \rightarrow center; Xccd,Yccd=1 \rightarrow edge)

Output of CCDImageCat

DARK ENERGY SURVEY

• Updated image catalogs for each pointing; e.g.:

 $\texttt{# mag = old_mag + (-0.2 + 0.02*R + -0.02*R^2 + 0.01*R^3) + (0.1 + 0.04*x + -0.17*y + -0.13*x^2 + 0.06*y^2 + 0.08*x*y), }$

- # where R is the normalized radial distance from the center of the focal plane (R=0->center, R=1->edge),
- # x is the normalized distance in the x-direction from the center of the given CCD (x=0->center, x=1->edge), and
- # y is the normalized distance in the y-direction from the center of the given CCD (y=0->center, y=1->edge).
- #
 #expName = PRECAM-20001349
 #expFullID = 20001349
 #expFilter = g
 #expNight = 1349
 #expID = 1349
 #expRaDeg = -2,5371
 #expDecDeg = -41.8
 #exp2POffset = -0.0050

#

#starID	starRaDeg	starDecDeg	mag_g	old_mag_g	relStarRaDeg	relStarDecDeg	ccdname	ccd_x(pix)	ccd_y(pix)	$FP_{\times}(mm)$	FP_y(mm)	R	×	У
95500	-1,60220	-42,24803	16.4013	16,4336	0,69206	-0,45179	1-2	1660,577	910.618	26,134	-17,061	0.719	0,622	-0,555
112495	-3,18013	-42,10784	17.4703	17,4927	-0,47706	-0,30962	1-1	928,689	1268,526	-18,015	-11,692	0.495	-0,093	-0,381
122676	-1,97870	-41,19363	16,7615	16,9524	0,42021	0,60501	1-2	976,201	3571.090	15.868	22,846	0.641	-0,047	0.744
172309	-2,35838	-41,03429	16,4463	16,8047	0,13482	0,76557	1-2	257,746	3975,309	5,091	28,910	0,676	-0,748	0.941
179610	-1,44748	-41,19388	16,6836	16,8886	0,81995	0,60092	1-2	1982,531	3560,814	30,963	22,692	0.884	0,936	0,739
187786	-2,87875	-42,88973	16,6923	16,8826	-0,25036	-1,09023	none	-1000.000	-1000.000	-9,454	-41,169	0.973	-1000.000	-1000.000
264708	-2,36626	-40,96934	17,5193	17,7115	0,12901	0,83053	none	-1000,000	-1000.000	4.872	31,363	0.731	-1000,000	-1000,000
316335	-2,79021	-41,04672	16,4066	16,5839	-0,19091	0,75300	1-1	1649,069	3943,662	-7,209	28,435	0.675	0,610	0,926
335877	-2,96453	-41.10155	16,1650	16,3388	-0.32211	0.69765	1-1	1318,762	3804,320	-12,164	26.345	0.668	0,288	0,858
338675	-1,61714	-41,18635	16,9387	17,1122	0,69236	0,60995	1-2	1661,340	3583,526	26,145	23,033	0,802	0,622	0,750
358235	-1,89311	-42,01268	17,3856	17,4301	0.47848	-0,21447	1-2	1122,898	1508.070	18,069	-8,099	0.456	0,097	-0,264
409398	-2,12718	-41.68651	16,2644	16,4131	0.30613	0.11276	1-2	688,996	2331,872	11,560	4.258	0.284	-0,327	0,139
519417	-1,90940	-41,90926	17,1741	17,2428	0.46713	-0,11097	1-2	1094.330	1768,646	17,640	-4,190	0.418	0,069	-0,136
526494	-2,60264	-41,37446	17,4986	17,7070	-0.04918	0,42552	1-1	2005,853	3119,242	-1,857	16,069	0,372	0,959	0,523
535560	-3,49624	-41,52978	16,6108	16,8591	-0,71802	0,26621	1-1	322,077	2718,190	-27,114	10.053	0.666	-0,685	0.327
566996	-2,21849	-42,22059	17,1134	17,1355	0,23596	-0,42103	1-2	512,347	988.071	8,910	-15,899	0.420	-0,500	-0,518
618472	-3,13821	-40,79909	16,2777	16,4681	-0,45511	0,99932	none	-1000,000	-1000.000	-17,186	37,737	0,955	-1000,000	-1000,000
653885	-2,20941	-41,40199	17,3029	17,5331	0,24580	0.39754	1-2	537,132	3048,804	9,282	15,012	0.406	-0,475	0.489
658796	-2,67703	-41,59895	17,2006	17.3745	-0,10464	0,20096	1-1	1866,236	2553,925	-3,952	7,589	0,197	0,822	0,247
661739	-2,03172	-42,76002	16,8287	17,0196	0.37110	-0.96111	none	-1000,000	-1000,000	14.014	-36,294	0,896	-1000,000	-1000,000
701834	-2,33729	-40,98068	17,5857	17,7779	0,15086	0.81914	none	-1000,000	-1000,000	5,697	30,933	0.724	-1000,000	-1000,000
723265	-1,28644	-41,87625	16,5828	16.7744	0,93119	-0.08302	none	-1000,000	-1000,000	35,164	-3,135	0.813	-1000,000	-1000.000
744358	-2,04140	-42,37679	17,4752	17,4184	0,36620	-0,57785	1-2	840,243	593,283	13,829	-21,821	0,595	-0,179	-0,710
764686	-3,78177	-41,69002	16,7726	16,9642	-0,92943	0,10325	none	-1000,000	-1000,000	-35,097	3,899	0.813	-1000,000	-1000,000
783605	-1,97237	-41,52049	17,4201	17,5683	0,42283	0,27812	1-2	982,787	2748,165	15,967	10,502	0.440	-0,040	0.342
799070	-2,05887	-42,42245	17,8436	17,7723	0.35304	-0,62343	1-2	807,113	478,521	13,332	-23,542	0,623	-0,212	-0,766
809486	-1,90944	-41,12814	17,3850	17,5687	0,47281	0,67013	1-2	1108,614	3735,050	17.854	25,306	0,713	0,083	0,824