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Abstract

Latest X-ray observations revealed the importance of cooling flows in galaxy clus-
ters. However current cosmological simulations of cluster formation are not resolv-
ing the cooling flows in much details.
In this work we will use the massively parallel TreePM/SPMHD Code GADGET-3
originally developed by Springel et al. In 2004 Jubelgas et al. included an isotropic
implementation of thermal conduction into GADGET for cluster formation simu-
lations. They used the classical Spitzer conduction and also considered the effect
of saturation in low density gas. With this implementation the temperature profile
of the simulated clusters was definitely changed, although it’s detailed structure
was lost.
Theoretical discussions of observations show, that the classical Spitzer conduction
is not sufficient to describe the cooling flows in galaxy clusters. Binney & Cowie
already suggested ideas of further development in 1981. They considered the effect
of magnetic fields on different scales in the clusters and showed, that heat flows
perpendicular to magnetic fields should be suppressed.
Therefore we want to derive a new numerical scheme for anisotropic heat conduc-
tion in SPH. In this thesis we will discuss several approaches to achieve this and
present test cases as well as results from galaxy cluster simulations regarding our
new implementation in GADGET-3.
We find that anisotropic heat conduction is very similar to overall suppressed
isotropic conduction. For a rather small galaxy cluster we do not find drastic dif-
ferences between these both cases.
This has to be further investigated by simulating more galaxy clusters for a better
statistics. One needs to have a closer look especially at more massive clusters to
maximize the effect of anisotropic conduction for a more detailed analysis.
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1 GALAXY CLUSTERS AND COOLING FLOWS

1 Galaxy Clusters and cooling flows

Galaxy clusters are the largest gravitationally bound objects which have formed
in the observable universe so far. They consist usually out of 50 or more member
galaxies. The typical mass of an entire cluster is bigger than 3 ·1014M�. This mass
is however not dominated by the optically visible stars in the galaxies but by dark
matter and (in comparison to stars) the hot gas between the galaxies. As a rule of
thumb a typical cluster consists out of 84% dark matter, 13% hot gas and only 3%
stars. The free gas is called Intra Cluster Medium and has a typical temperature
of 3 · 107K. This corresponds to a wavelength of about 5 · 10−11m. Therefore
emissions by this hot gas component can be typically observed in the X-ray. It is
very important to fully understand these processes in order to infer for example
the total mass of galaxy clusters. Details on the radiation processes will follow in
the next section where we discuss the physics of the ICM in general. [Schneider,
2008, Peterson and Fabian, 2006]
We will also present problems which arise through comparison of models and ob-
servations concerning cooling flows and show some existing ideas to solve those
problems and discuss their success. We will then focus onto thermal conduction
in a fully ionized plasma and present a numerical implementation and simulation
results using that code.
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1.1 Physics of the ICM

1.1 Physics of the ICM

For a general overview of the ICM we follow the review papers of [Fabian, 1994],
[Peterson and Fabian, 2006] and [Sarazin, 2008].
As already mentioned the hot intra cluster gas has temperatures of about 107K.
Some temperature profiles from measurements are shown in figure 1.

Figure 1: Temperature plotted against the distance to the cluster center for sev-
eral galaxy clusters using Chandra data. Both axes are scaled to their values at
r2500. (The radius where the density is equal to 2500 times the critical density.)
One can see, that the temperature decreases strongly when going into the cluster
core.[Peterson and Fabian, 2006]

2



1 GALAXY CLUSTERS AND COOLING FLOWS

Obviously the temperature declines strongly in the inner parts of the cluster. The
plasma seems to be more or less isothermal in the outer parts. The X-ray emitting
ICM is usually contained in a radius of about 2Mpc. Therefore it’s origin can
not be a single galaxy but has to be an extended region with a considerable gas
component.1

The origin of the gas is still uncertain. It cannot be pure primordial since it is
highly metal enriched. So at least some of the gas must have undergone the pro-
cess of star formation and supernova explosions. Another possibility for metal
enrichment of the ICM is the stripping of gas from young galaxies during the for-
mation of the cluster. In both cases the gas receives it’s kinetic energy from the
member galaxies. Therefore we can conclude, that the sound speed of the gas will
be similar to the galaxy velocities of several 1000 km/s at 108 K. It is likely that
most of the gas in the ICM was shock heated this way and not only accelerated
gravitationally. This leads to the high temperatures the ICM should have, inferred
by X-ray observations.
Having a look at typical densities inside the ICM, one can distinguish between
so called peaked and non-peaked clusters which have gas densities of roughly
10−1 cm−3 and accordingly 10−3 cm−3. For comparison, the mean cosmic den-
sity of baryons is only about 10−8 cm−3 ([Peterson and Fabian, 2006]). So the
inter cluster medium is dense enough to be really visible but it is still optically
thin, meaning that the mean free path inside is pretty large. This property is
very important for observations, since emitted light won’t be reabsorbed to a large
fraction and can therefore been observed very well. This allows us to extensively
study the properties of the ICM in an unperturbed state.
One can calculate the typical time which is needed to bring the gas into kinetic
equilibrium (for general particles of type 1 in a field of particles of type 2) via
collisions as

teq(1, 2) =
3m1 ·

√
2π (kBT )3/2

8π · √m2n2Z2
1Z

2
2e

4 · ln Λ
(1.1.1)

with the so called Coulomb logarithm which is defined by the minimum and max-
imum collision parameters:

ln Λ = ln
bmax
bmin

(1.1.2)

1The typical size of an elliptical galaxy is only of the order of 1− 100 kpc. [ast, 2013]
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1.1 Physics of the ICM

For electron-electron collisions this is equal to

(1.1.3)
ln Λ = 23.5− ln

(
n−1/2
e T−5/4

e

)
−

(
10−5 + (lnTe − 2)2

16

)−1/2

≈ 37.8 + ln

[(
Te

108 K

)( ne
10−3 cm−3

)−1/2
]

The weak logarithmic dependence on the temperature and the density is often
neglected for calculations regarding the ICM. Usually one uses just the constant
value ln Λ ≈ 37.8. [Sarazin, 1986],[Jubelgas et al., 2004],[Huba, 2011]

After that this equilibration time all particles will have velocities according to
a Maxwellian distribution for their respective temperature. Calculating this time
for electrons and protons with typical cluster conditions one gets values which are
about one magnitude lower then typical cluster ages. Therefore electrons and ions
are supposed to have almost the same temperature.
Regarding the mean free path we want to mention, that it is however still small
enough for the ICM to be treated as a fluid. [Spitzer, 1956] gives a formula to
calculate the typical mean free path of electrons as:

λe =
33/2 (kBTe)

2

4π1/2nee4 ln Λ
≈ 22.5

(
Te

108 K

)2 ( ne
10−3 cm−3

)−1

kpc (1.1.4)

The outcome is much lower than the typical size of a galaxy cluster, however it is
small enough to allow a pure hydrodynamic formulation in all parts of the cluster.
But this formula does not take the influence of magnetic fields into account, which
then decrease the mean free path drastically. Further calculations regarding the
collision time in a plasma are presented in details in section 2.2.

We can use combined techniques of imaging and spectroscopy to infer proper-
ties of the ICM like temperature and density and also the origin of the radiation
itself. To understand the origin of the radiation, we need to point out that galaxy
clusters typically contain not negligible magnetic fields of the order of µG. [Taylor
et al., 2006]
Therefore the ICM can be assumed as a fully ionized plasma. For this tempera-
ture the emitted radiation is in the X-ray band and typically consists mainly of
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1 GALAXY CLUSTERS AND COOLING FLOWS

continuous free-free emission (also called bremsstrahlung). Additional components
are continuous bound-free emission (recombination) and two-photon decays of 2s
levels in helium like ions. These processes can be best identified by comparing
characteristics shown in the spectra. We know for example that bremsstrahlung
has a more or less flat spectrum with an upper exponential cutoff. The cutoff fre-
quency is defined through the highest energy an emitted photon can get from the
electron, i.e. the average thermal energy of electrons. For details see for example
[Flynn, 2006].
Bremsstrahlung is radiation due to acceleration of electrons in the Coulomb field of
the ions. Dependent on the velocity of the electrons (or rather their temperature)
the emitting wavelength is different. Since the electron velocities are distributed
continuously (typically following a Maxwell-Boltzmann distribution) we also get a
continuous spectrum.
In contrast to that, line emission happens at discrete wavelengths which are how-
ever broadened by various effects like the Doppler effect. The strongest lines belong
to the Fe Kα complex at about 6.7 keV . For low energies even more lines from
lighter elements become crucial.

Which one of these two processes dominates radiation is also temperature de-
pendent:
The emissivity due to free-free radiation scales mainly like ∝ T−1/2 · exp

(
− hν
kBT

)
.

It is the dominant effect for gas above roughly 2 · 104K. We will show actual spec-
tra when we discuss the Perseus cluster in section 1.2. By analysing the spectral
information about the received light one can verify the mentioned components as
origin of the radiation.
An important consequence of the emission of X-ray radiation is strong cooling of
the gas. Reducing the thermal pressure which stabilizes the gas against gravity,
it will start to fall into the cluster core. However this infall reheats the gas again
which works stabilizing and slows down the whole process. Therefore the infall will
stay subsonic. The key temperature at which the these processes equilibrate is the
virial temperature.2 This process is what we call a cooling flow. As an example,
[Fabian et al., 1981] have calculated mass inflow of several hundred solar masses
per year for NGC1275 in the Perseus cluster.

2We will further discuss the virial temperature in section 5.2.1
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1.1 Physics of the ICM

For our analysis we define some typically used quantities: the so called cooling
time and cooling radius. The time it takes for an optically thin plasma to cool,
can be defined as the gas enthalpy over the energy loss per unit volume. Therefore
we get

tcool =
5
2
nekBT

n2
eΛ

≈ tU ·
T

108K

(
ne

10−2 cm−3
· Λ

10−23 erg cm3 s−1

)−1

(1.1.5)

with

• ne: the electron number density

• Λ: the cooling function

• tU ≈ 13.82 Gyr: the age of the universe3

The gas enthalpy is used instead of the thermal energy, because the gas is com-
pressed while it cools and therefore the heat capacity rises accordingly.
The equation shows, that for typical values the cooling time is similar to the age
of the universe and therefore approximately the age of galaxy clusters. Therefore
cooling plays an important role and cooling flows can in principle occur.
About two third of low and moderate redshift clusters have cooling times less than
10 Gyr, for one third it is even less than 3 Gyr.
For this calculation we needed the cooling function, which is usually used in a
tabulated form. It follows an equation of the form

Λ(T, Zi) =

∞∫
0

dE E
dα

dE
(E, T, Zi) (1.1.6)

with dα/dE being the energy dependent line/continuum power. Typical X-Ray
luminosities are in the range of LX ∼ 1043 − 1045 erg

s
depending on the clusters

mass. Typical results for different abundances in clusters are shown in figure 2.

3For latest measurements of cosmological parameters see [Aghanim et al., 2013].
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1 GALAXY CLUSTERS AND COOLING FLOWS

Figure 2: Different cooling times dependent on the temperature for three abun-
dances. From top to bottom: solar abundances, one third of solar abundances and
pure hydrogen and helium. Plotted is the temperature region in which free-free
radiation and line emission operate. The curves are basically the solution of equa-
tion 1.1.6. We see that typical values lie between 5 · 10−24 and 2 · 10−22 erg cm3

s
.

[Peterson and Fabian, 2006]

The cooling time exceeds however the gravitational free-fall time. Therefore we
can approximate the gas as in hydrostatic equilibrium.
For completeness, the cooling time only due to free-free radiation can be calculated
as

tcool f−f ≈ 69 n−1
−3 T

1/2
8 Gyr (1.1.7)

It is important to state, that the cooling accelerates as the gas cools, since the
increase due to rising density through gravitational infall is stronger than the
decrease due to the temperature dependence. For line emission this effect is even
bigger due a different temperature dependence. This is often called the cooling
catastrophe.
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1.1 Physics of the ICM

The cooling radius is then simply defined as the radius, where the cooling time
equals the age of the galaxy cluster. In figure 3 one can see the cooling time
plotted against the distance from the cluster’s center for several galaxy clusters.
The horizontal line marks the typical cluster age, so we can read of typical cooling
radii as 100− 200 kpc.

Figure 3: Different cooling times plotted against the distance from the cluster cen-
ter for several galaxy clusters using Chandra data. The horizontal line marks
approximately the age of the universe (new measurements suggest a value of
13.82 Gyr [Aghanim et al., 2013]) Without any disturbance all plasma within
100− 200 kpc would have enough time to cool.[Peterson and Fabian, 2006]
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1 GALAXY CLUSTERS AND COOLING FLOWS

Within rcool we can assume the gas to lose energy due to cooling. To support the
pressure, it has to contract further. Assuming we have no matter sources within
this region, the result is a cooling flow. Since we find the necessary conditions for
cooling flows in most of the cluster observations we can assume the cooling flows
to be long-lived and fairly stable.
We can further define the total luminosity of the cooling gas, i.e. inside the cooling
radius. This luminosity measurement can be used to determine the mass deposition
rate (or accretion rate) due to the cooling flow. Assuming that only radiation of
thermal energy and the energy gained by contraction is crucial, we can write the
luminosity of the cooling gas as

Lcool =
5

2

Ṁ

µ
kBT (1.1.8)

with the reduced mass of the gas particles µ. Plugging in typical luminosities we
get values of Ṁ = 50−100 ·M� yr−1.4 For some clusters like Hydra A even bigger
mass deposition rates are found. By measuring a whole set of galaxy clusters one
can find an empiric relation between the accretion rate and the age of a cluster of

Ṁ ∝ t1/3a (1.1.9)

Therefore the error of the cluster age estimate does not influence the results too
much.
So far we have assumed a spherical symmetric and homogeneous setup. Without
going into detail, we can define the cooling flow equations for this kind of setup in
a steady state model as

Ṁ = 4πr2ρv (1.1.10)

ρ
dΦ

dr
=
d (ρT )

dr
(1.1.11)

ρv
d

dr

(
5

2
T − Φ

)
= −nenHΛ + interactions (1.1.12)

1

r2

d

dr

(
r2dΦ

dr

)
= 4πG (ρ+ ρDM) (1.1.13)

4See for example [Fabian et al., 1981] for measurements.
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1.1 Physics of the ICM

However X-ray observations show, that inhomogeneities and mixtures of density
and temperature exist. Usually the cluster cores are especially well resolved and
observers find that the accretion rate scales only linear with r. For the homoge-
neous model we would expect flatter X-ray surface brightness profiles. A so called
multiphase gas model can take this into account. For details about multiphase
models see for example [Fabian et al., 2006].
Still homogeneous models lead in general to fairly good results and are usually the
only feasible method due to complexity and the lack of detailed information.
Also non steady state models have been considered so far, but without the ex-
pected success. See for example [Meiksin, 1990] for details.
Moreover there is another inconsistent aspect in the X-ray observations involving
the soft X-ray spectrum which does not totally match a simple cooling flow model.
This issue can be solved by assuming intrinsic absorption in the flow. [Fabian
et al., 2003]

10



1 GALAXY CLUSTERS AND COOLING FLOWS

1.2 The Perseus cluster in different wavebands

Figure 4: Picture of the Perseus cluster (Abell 426) in the optical band.
The bright blobs here are the galaxies of the cluster. The dominant galaxy is
NGC 1275 on the left in the image. A more detailled image of the galaxy is
shown in figure 5. [Source: Apod http://apod.nasa.gov/apod/ap110712.html]

After that overview we want to discuss the details of what can be found in the
different wavebands and not only the X-ray and the implications on cooling flow
models. A detailed discussion can be found in [Fabian, 1994] and [Fabian et al.,
2003].
In figure 4 you can see an optical image of one of the closest galaxy clusters we
know: the Perseus Cluster. In the optical band we see the light emitted by stars
in the member galaxies of the cluster, which is also known as Abell 426. The
Abell catalogue is a collection of galactic over-densities which was published in
1958 for the first time. The Perseus cluster has a redshift of z = 0.0183 and it’s
central galaxy is called NGC 1275 (left part of the image or in detail figure 5).

11

http://apod.nasa.gov/apod/ap110712.html


1.2 The Perseus cluster in different wavebands

Figure 5: Composite image of several observations of NGC 1275 (Perseus A)
combining optical observations (HST), X-ray (Chandra ACIS) and radio data
(VLA). The cooling gas is represented by the violet shells around the center, while
the radio lobes are shown in pink. [Source: Chandra http://chandra.harvard.
edu/photo/2008/perseus/]

High resolution X-ray observations of the hot gas (done by [Fabian et al., 2003])
can be seen in figure 6.

Since X-ray observations have been our focus all along, let us start to give some
details on Perseus properties in this waveband. Interestingly it’s cooling flow does
not peak in the center of the cluster but about 20 kpc off. This is probably due
to the two radio lobes which can be found in the cluster which seem to be holding
off the cooling flow. More details on the radio lobes will follow when we come to
that waveband.
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1 GALAXY CLUSTERS AND COOLING FLOWS

Figure 6: Central regions of the Perseus cluster (Abell 426) in the X-ray band
emitted by cooling gas taken from Chandra data. Intensity between 0.3 keV and
7 keV colour coded by temperature. The X-ray emission is sharply peaked around
the center of the cluster. The two darker regions are radio bubbles surrounded by
hard X-ray radiation, which have been blown out by jets from the radio source
3C 84. The picture is of size 131 kpc squared. [Fabian et al., 2003]

13



1.2 The Perseus cluster in different wavebands

Measurements of the Fe XVII line lead to a cooling time less than 3 ·107yr.5 These
measurements agree with those of the hotter gas. Spectral information about the
inner core of the Perseus cluster (and therefore mainly of NGC 1275) is shown
in figure 7. Note, that the Fe XVII line emission lies in the left corner of the
plot and is therefore totally different than the main part of the emission in higher
energy channels. The theoretical line spectrum is shown in figure 8.

Figure 7: Spectral information of the inner core of the Perseus cluster. Shown
is the spectrum in the upper panel and the residuals in the lower panel. Positive
residuals indicate a more soft emission while negative ones show that excess ab-
sorption is required. The spectrum can be well fitted by a cooling flow spectrum
plus isothermal hot emission. Details about the line emission can be found in
figure 8. [Fabian, 1994]

5The FE XVII line is measured for gas with temperature lower than 5 · 106K
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1 GALAXY CLUSTERS AND COOLING FLOWS

Figure 8: Typical emission lines which overlay the thermal Bremsstrahlung spec-
trum. The most prominent lines belong to iron and oxygen. The spectrum is
produced using a isobaric cooling flow model with a maximum temperature of
6 keV . [Peterson et al., 2003]

In total the X-ray evidence from imaging and spectra combined indicates strongly
the existence a steady long-lived cooling flow. The question is now if this predic-
tion can be proven or falsified by observations in other wavelengths.

In one short sentence: there is only little evidence for cooling flows in the optical
band. Central regions of cooling flow clusters often show optical line nebulosity in
regions up to 10kpc with luminosities above 1043 erg s−1 in Hα. In NGC 1275
the total UV and optical luminosity is even over 3 · 1043 erg s−1. However most
observed nebulae are about one or two orders of magnitude less luminous and some
cooling flow clusters do not show this kind of line emission at all. These nebulae
are probably powered by the energy of the hot gas or it’s turbulence.
Additionally one can usually see a blue optical continuum emission extended over
several kpc. Earlier we estimated the mass deposition rates of typical cooling flows.
Without any disturbance the gas should cool until it can not emit in the X-ray
any longer and contract while that. These over-dense regions of cold gas should
be a massive source of star formation in the cluster core. This kind of increased
star formation rate should then be visible in the optical continuum data, where we
find however only little evidence. The central galaxies should be much brighter in

15



1.2 The Perseus cluster in different wavebands

blue colour than they are observed if the whole cold gas would form stars with a
normal initial mass function (IMF). We would expect about a factor of 10 more
star formation than has been observed. Therefore the cold gas (if it exists) remains
in it’s state for some reason or forms some kind of non visible objects. This is very
often called the cooling flow problem because it indicates something in the model
is missing. Attempts to solve this mystery will be discussed in section 1.3.

Before we come to the radio emission we want to mention briefly, that there have
been observations in the infrared which could correspond to cooling flows. However
this seems not to be totally clear until today. For a discussion please see [Fabian,
1994] and references therein.

As we have already stated earlier, in the Perseus cluster sits the radio source
3C 84 which is most like responsible for the displacement of the high X-ray re-
gion from the cluster center. Figure 9 shows radio observations overlaid on a
smoothed X-ray map, where this effect can be seen very well. The puzzling aspect
about these radio lobes is, that despite the assumed heating effect the coolest gas
is seen close to them (see again figure 6).
Strong central radio sources like 3C 84 seem to be very common in cooling flow
clusters. Other examples are Cygnus A, Hydra A or Virgo A. They are pro-
duced by the relativistic outflow of an active galactic nucleus (AGN) surrounded
by a dense medium which is provided by the cooling flow. However not every
cooling flow cluster hosts a powerful radio source like this. An example would be
Abell 478. [Fabian, 1994]

NGC 1275 has additionally an outer radio halo which is mainly due to accel-
eration of electrons in the presence of a magnetic field. Therefore we can study
the magnetic field strength and structure in clusters through detailed radio obser-
vations. Typical magnetic field strengths are between 0.1−10 µG. By compression
of gas through the cooling flow the magnetic field can however even exceed these
values. Observing the detailed structure is very complicated, since small scale
changes can not be resolved very well. Over the whole range of cluster gas one
could talk about chaotic magnetic fields, where entangling and also reconnection
play an important role.

16



1 GALAXY CLUSTERS AND COOLING FLOWS

Figure 9: 1,4 GHz radio image of the Perseus cluster combined with a smoothed
X-ray map (0.5−7 keV ). The two radio lobes coincide very well with displacement
of the high X-ray regions. [Fabian, 2002]
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1.2 The Perseus cluster in different wavebands

Typical length scales for field reversal are found to be 1− 10 kpc.

Summing up the findings from the different wavebands we clearly see, that cooling
is happening in the galaxy clusters, one identifies as cooling flow clusters purely
from X-ray informations. Observations confirm, that the gas has a high density, a
high pressure and a short cooling time. No general occurring anomalies are found
so far. But for example optical observations only show no direct indications of
cooling flows but in the most inner parts of clusters (several kpc). It is very diffi-
cult to prove the (non-) existence of cooling flows using data from other wavebands
than X-ray. [Fabian, 1994]

As already stated, some implications of the model do not match the observa-
tions: The amount of cold gas (T < 1 keV ) we would expect to find due to the
large mass accretion rates we estimated is not observed so far. Additionally it is
not clear, why we cannot see the gas cooling any further. The radiation could
be absorbed or the cooling could not be radiative any more but due to mixing.
Nevertheless one question still remains: What happens to the expected cold gas?
This is the main question which we want to tackle in the next section.

18



1 GALAXY CLUSTERS AND COOLING FLOWS

1.3 Possible solutions of the cooling flow problem

Throughout the years there have been many attempts to solve the problem of the
not detected cold gas. We want to show different attempts6 and discuss the success
so far before we focus on thermal conduction for the rest of this thesis.
We can distinguish two main categories of ideas to solve the problem:

1. The gas evolves to a non visible state, or at least one which could not been
observed so far.

2. A mechanism has to be taken into account, which balances the cooling flow
and prevents the gas to cool beyond the boundary of 1− 2 keV . This would
most likely be some kind of heating process, but there are also some different
approaches to this.

Since the first category is highly speculative, we will discuss only on ideas of the
latter type in this thesis. For further reading we just want to mention, that cold
molecular gas (T ≈ 3 K) like fractal hydrogen could be a candidate for an invisible
final state. The properties of this gas are thoroughly discussed in [Pfenniger and
Combes, 1994] while [Salomé and Combes, 2003] show that cold molecular gas can
indeed be detected in cooling flow clusters.

For all the possible ideas concerning the second type of solution we can establish
one constraint: the timescale on which the process happens has to be comparable
to the cooling time. If the timescale of the process is to short it will probably
overwhelm the cooling flow. If it’s to long, it is dynamically not really important
won’t solve the problem. [Peterson et al., 2003]
One general problem with heating mechanisms is, that most heating mechanisms
are proportional to volume whereas the cooling rate is proportional to the density.
This tends to make the gas unstable: Some regions will carry on cooling while
others heat up. [Peterson and Fabian, 2006]
Furthermore the mechanism we look for, would have to stop the temperature
change of gas at a temperature of 1 − 3 keV . It needs to work against cooling
over the full range of temperatures, and thus radii, to be effective. Therefore a
lot of energy is needed. Estimations show, that this would not be a problem for
6Without claim of completeness.
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1.3 Possible solutions of the cooling flow problem

smaller clusters like Virgo, however the big ones like Abell 1835 would need an
enormous amount of energy (∼ 1046 erg/s). [Fabian, 2002]

So let us at first discuss one idea which is not related to heating processes at
all. In the last section we stated, that with a normal IMF we would expect a
factor 10 more star formation through the predicted amounts of cold gas, than is
been observed. Therefore a first approach could be, to state, that for some reasons
stars are simply not formed according to a normal IMF. Nearly all cooled stars
would have to form stars less massive than 0.6 M�. Since even "normal" star
formation is still not totally understood in all details, we do not want to go into
more detail about that approach. It is still highly speculative! Further discussions
can for example been found in [Bregman and David, 1989] and references therein.

Earlier we mentioned the typical velocities of cluster’s member galaxies (see section
1.1). Another idea stated in [Bregman and David, 1989] is, that the drag heating
of galaxies could reheat the cooling gas strong enough to serve our purpose. A
reheating in general reduces the net cooling of the gas and therefore decreases Ṁ .
With a significantly lower mass deposition rate we could again get a match up
with observed star formation rate of high mass stars.
For drag heating to have any effect we need highly supersonic galaxy motion
(Mach number M � 1). Since the ICM outside the cooling radius should still
have a sound speed similar to the galaxy motion, there would hardly be any heat
transfer in the outer regions of a cluster. This is a very good property, since the
model then only tackles the regions, where we want to change our description due
to inconsistencies without an effect on the surrounding material. The heating rate
through supersonic galaxies can be roughly described through

H = ngalvgalσ︸ ︷︷ ︸
galaxy

·
gas︷︸︸︷
ngas · kB∆T︸ ︷︷ ︸

energy

(1.3.1)

with the gas and the galaxy density n, the velocity of the galaxy v, the cross
section of the galaxy σ and the temperature increase ∆T which is given by the
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Rankine-Hugoniot jump condition

∆T

T
=

(5M2 + 3) · (M2 − 1)

16M2
(1.3.2)

This formulation is consistent with the fact, that H should be very small for
M � 1.
Simulations including this kind of model have been performed, however with mod-
erate success. The results seem to vary strongly dependent on the value of the
galactic heating parameter Φ = ngalvgalσ. Unfortunately the mass deposition rate
has not been decreased much for most of the typical values of Φ, which basically
rules out the idea (or at least the presented model for the idea).

Another more straight forward approach for a heating source, which has not been
considered in the standard cooling flow model are supernova explosions. So far we
just let the cooling gas form stars. But an increased star formation rate will also
lead to an increased rate of supernova explosions, which reheat the surrounding
medium. Therefore if the heating by supernovae is strong enough this could bal-
ance the cooling and therefore the star formation. Considerations regarding the
following description are again taken from [Bregman and David, 1989].
At first we have to distinguish between the different supernova types:

• Type Ia

• Type Ib and II, which cover about 2/3 of all supernovae in normal star
forming regions

The latter type of supernovae are commonly associated with the explosions of
massive stars. Since these massive stars are nowadays very rare observed in galaxy
clusters, we can assume these supernovae to occur mainly during the time of star
and galaxy formation. Type Ia supernovae however are the product of binary star
systems and therefore their feedback can be seen as a more continuous sort of
heating.[Sarazin, 2008]
By balancing the energy difference of the cold gas and the cooling ICM with the
energy released by supernovae one can estimate the fraction of cold gas f which is
reheated as

1

f
= 1.2 · 1 SN/100 M�

v

1051 erg

ESN

Teff
3 · 107K

+ 1 (1.3.3)
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A reduction of Ṁ by one order of magnitude would correspond to f = 0.9 and
requires due to this relation one supernovae per 9 M� of star forming gas. Since
known values for typical supernova rates are more like one per 100− 300 M�, the
reduction of Ṁ due to supernovae heating according to this model is minimal.
Furthermore one can derive the required supernova rate as at least

SN rate = 1.1 · Ṁ

100 M� yr

T

3 · 107 K

SN

yr
(1.3.4)

which leads for example in the Perseus cluster for f = 0.9 to a value of 300 −
600 SN/yr. However observations do not show supernovae rates nearly as high.
Only for elliptical galaxies, wehre the temperatures are significantly lower, super-
novae heating can play a role but not for galaxy clusters.

The next idea we want to discuss was proposed by [Soker et al., 2001]. They
state, that a cooling flow is disturbed and partially disrupted by a powerful radio
jet on a timescale of several 109 yr. This jet can either be produced by the out-
burst of active galactic nuclei (AGN) of inner cD galaxies7 triggered by accretion
of cooled gas or a cluster submerger- The jet is assumed to output an energy of
1047 erg/s over a time of 107 yr. Since most of the observed cooling flow clus-
ters contain strong radio activity in the inner regions these assumptions could be
reasonable. An example for a cluster with ongoing merger event is the Centaurus
cluster.
The jet will propagate through the ICM with velocities of several 103− 104 km/s.
[Soker et al., 2001] claim, that the jet frequently disrupts the cooling flow but only
in the outer regions while it remains stable in the inner parts. The ICM up to
30 kpc is very robust to destruction and thusly long lived. This is why all the
properties of cooling flows are found in these inner regions. Another result of this
is, that clusters which do not show a cooling flow now will probably never form
one.
This disruption of the flow reduces the effective age of the cooling flow way below
the cluster age which therefore decreases the amount of expected cold gas by more
than one order of magnitude. It is additionally reduced by the amount of gas
accreted to the central black hole.
7A subtype of type d giant elliptical galaxies, often called supergiant elliptical.
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1 GALAXY CLUSTERS AND COOLING FLOWS

Summing up, this idea could solve the cooling flow problem for clusters which
show the assumed jets. It is however unlikely that this applies to all cooling flow
clusters and can therefore be not a complete and universal answer to the mystery
of the missing cooled gas.

Thinking a bit easier the radio emission of AGNs (or other sources like relativistic
electrons) simply have a heating effect onto the ICM. However the argument still
applies, that not every cooling flow cluster hosts necessarily a strong radio source.
For those which do, the question arises if there is enough energy in the outflow and
if enough of it can be transferred to the ICM to balance the cooling flow. Most
likely it is only the kinetic energy of the jet or of the relativistic particles which
is the relevant energy source. Additionally radio galaxies and radio quasar most
likely deposit energy in the ICM. [Sarazin, 2008]
It is also important that the transported head is distributed evenly even through
thermally unstable regions, which could be difficult. A model describing this pro-
cess certainly needs a lot of fine tuning, since it needs to be self regulating according
to the mass accretion rate. [Peterson et al., 2003]

Last but not least we want to consider one more effect which shall be in the main
focus of the rest of this thesis. We have already shown earlier, that the temperature
in the outer regions of cooling flow clusters are much hotter then the already cooled
(and still cooling) inner parts. Therefore energy should be transported inwards via
thermal conduction. The question how much this process can influence a cooling
flow and how magnetic fields come into play will be discussed and evaluated in this
thesis. The next two subsections go into details of micro-physics and explain how
conduction works (without and also with a magnetic field). In subsection 2.3 we
discuss the implications on clusters and compare our thoughts to observations.
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2 Thermal conduction and magnetic fields

2.1 Isotropic thermal conduction

So let us start with the very basics of thermal conductivity. According to [Spitzer,
1956] the effect of heat conduction can be written as the heat flux

~Q = −κ∇T (2.1.1)

which consists of the temperature gradient and the conduction coefficient κ. We
assume a Lorentz gas, which means according to [McGraw-Hill Companies, 2013],
that we keep the ions fixed (mion >> me) and neglect interactions between elec-
trons. For this assumption we can calculate the conduction coefficient for so called
Spitzer conductivity:

κSp = 20

(
2

π

)3/2
(kBTe)

5/2 kB

m
1/2
e e4Z ln Λ

(2.1.2)

With Z the average proton number of the plasma and the Coulomb logarithm
ln Λ. It is very important, that the conductivity depends strongly on the electron
temperature. Therefore we can assume a reasonable effect for example in the cores
of big clusters, where the plasma reaches temperatures up to about 108K.

For a real gas, the conductivity will be a factor times this conductivity:

κ = δ · κSp (2.1.3)

This factor has been calculated by [Spitzer and Härm, 1953] and is highly depen-
dent on the average proton number of the plasma. δ = 0.225 for a pure proton
electron plasma and rises up close to 1 for very big Z.

In the literature one can find various ways how to calculate a mean nucleus count,
however there seems not to be one clear definition. Since we only need an estimate
it is not important to really distinguish between different methods. Anyway we
will need the mean molecular weight, so let us mention two ways to estimate a
mean value for Z.
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2.1 Isotropic thermal conduction

For plasmas of our interest we assume full ionization. We can easily derive the
mean molecular weight and infer an approximate nucleus count from it. Let X
be the hydrogen mass fraction and Y the helium mass fraction. We assume the
contribution of heavier elements is negligible, so we have

X + Y = 1 (2.1.4)

For fully ionized hydrogen we get 2 particles per proton mass and 3/4 particles
per proton mass for helium (1 nucleus and 2 electrons)8. Therefore the number
density of hydrogen / helium in our plasma is

nH =
2

mp

Xρ nHe =
3

4mp

Y ρ (2.1.5)

So in total we have the number density of

n =
ρ

4mp

· (8X + 3Y ) (2.1.6)

Plugging in Y from eq. 2.1.4 we get

n =
ρ

4mp

· (5X + 3) (2.1.7)

Defining the mean molecular weight through ρ = n ·µ and assuming the hydrogen
mass fraction being X = 0.76, we get in total

µ = mp ·
4mp

(5X + 3)
= mp · 0.588 (2.1.8)

Therefore we can estimate a mean nuclear count as

Z ∼ 1

0.588
≈ 1.7 (2.1.9)

8We assume mH = mp = mn
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Another possibility is to use the approach described in [Spitzer and Härm, 1953]:

Z =

∑
i

niZ
2
i

ne
(2.1.10)

where we sum over all contributing ions in the plasma. Since we need ion number
densities now, we have to redefine them like

nH+ =
1

mp

Xρ nHe2+ =
1

4mp

Y ρ (2.1.11)

Furthermore we get electrons from both types of atoms. We can then write the
electron number density as

ne =

(
1

mp

X +
2

4mp

Y

)
ρ (2.1.12)

Plugging these values into equation 2.1.10 we get

Z ≈ 1.136 (2.1.13)

From the order of magnitude we gain from these two approaches, we get δ ≈ 0.3

by taking the tabulated values from [Spitzer, 1956] .

When used for cosmological simulations one often assumes a pure hydrogen plasma.
A typical used value for κ is then e.g. given by [Sarazin, 1986]

(2.1.14)
κ = 1.31 · neλekB

(
kBTe
me

)1/2

= 4.6 · 1013

(
Te

108K

)5/2
40

ln Λ

erg

s cm K

with the electron number density ne and the mean free path of the electrons λe.
Since the particles mass enters in the denominator, we can infer, that electrons
give a much bigger contribution to heat conduction than protons. This makes
totally sense, since lighter particles have higher velocities at the same temperature
and can be accelerated much easier. This increases the amount of collisions in an
given time drastically. Consequently only the values for electrons are considered
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2.1 Isotropic thermal conduction

in the formula. Therefore we will from now on omit the index e in our equations.
We neglect any dependency of the Coulomb logarithm on temperature and elec-
tron density and plug in ln Λ = 37.8 for typical plasmas of our concern, which is
a fairly good approximation. More precise calculations for different collision types
(e.g. electron-electron or electron-proton) can be found in [Huba, 2011].
What remains is the strong dependence on temperature to the power of 5/2.

Furthermore we need to apply an important correction to equation 2.1.14. So far
we assumed, that the typical length scale of the temperature gradient lT = T/|∇T |
would be always much bigger than the mean free path. However for very low den-
sity plasmas one cannot expect a good conductivity even if the temperature rises
very much. [Cowie and McKee, 1977] have calculated the saturated heat flux for
this case as

Qsat = 0.4nekBT

(
2kBT

πm

)1/2

(2.1.15)

Interpolating between these findings and the common Spitzer conduction coeffi-
cient we get the corrected heat flux as

Qtot =
κ · T

lT + 4.2λ

∇T
|∇T |

(2.1.16)

Alternatively we can just redefine the conduction coefficient as

κ =
κSp

1 + 4.2λ/lT
(2.1.17)

A discussion about this saturation effect and why Spitzer conduction is applicable
can be also found in [Rosner and Tucker, 1989].
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2 THERMAL CONDUCTION AND MAGNETIC FIELDS

2.2 Anisotropic thermal conduction

Now that we have seen the equations for general heat conduction, we add magnetic
fields to the picture. As already mentioned in the last subsection, thermal con-
duction is basically due to Coulomb collisions of charged particles. Except these
collisions, particles were so far allowed to move freely in the plasma. However in
the presence of a magnetic field, the movement perpendicular to the field lines is
restricted: The electrons will move in spirals around the field lines. The frequency
of the circular motion is called larmor- or gyrofrequency:

ωg =
eB

mec
(2.2.1)

To see, how this affects the capability of the electrons to transport energy we
will present some phenomenological ideas and scaling relations following [Frank-
Kamenezki, 1967].
At first we will present some thoughts, how general diffusion is affected by mag-
netic fields. Due to the similar microscopic origin we can then infer the same
relations to hold also for thermal conduction. We will show the exact relation
between diffusion- and conduction coefficients later in this section.

At first we need the connection between mean free path and collision time via
the particle’s velocity:

λ ≈ vτ (2.2.2)

A typical diffusion coefficient of units cm2 s−1 can be defined as

D ≈ λv ≈ v2τ ≈ λ2

τ
(2.2.3)

Since the movement parallel to the magnetic field are not affected, the diffusion
along the field lines should not be affected:

D‖ = D (2.2.4)

We assume that movement of particles perpendicular to magnetic field lines can
only be done by jumps between cyclotron trajectories, which gives us a diffusion
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2.2 Anisotropic thermal conduction

coefficient like
D⊥ ≈

v2

ω2
gτ
≈ lv

w2
gτ

2
(2.2.5)

Therefore the relation between the two coefficients is about

D⊥
D‖
≈ 1

ω2
gτ

2
∝ B−2 (2.2.6)

This is however only valid if ωgτ >> 1, which we will check soon for a typical
intra cluster medium. In other words, the gyroradius has to be much smaller than
the mean free path. Which makes totally sense, if we want the magnetic field to
impose a real restriction onto the electrons movement. If we get in the regime of
ωgτ ∼ 1 we have to change the relation in order to ensure D⊥ ≤ D‖:

D⊥
D‖
≈ 1

1 + ω2
gτ

2
(2.2.7)

To evaluate this relation we need the collision time or the corresponding frequency

1

τ
= ν =

ωpl
nλ3

D

(2.2.8)

with the plasma frequency

ωpl =

√
4πnee2

me

(2.2.9)

and the Debye length

λD =

√
kBT

4πnee2
(2.2.10)

Plugging these relations into eq. 2.2.8, we get

ν =
16π2c e3√me n

2
e

(kBT )3/2B
≈ 171.4

n2
e

T 3/2

cm6K3/2

s
(2.2.11)
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To check the order of magnitude of the relation between perpendicular and parallel
diffusion coefficient, we plug in typical values of the following variables (for galaxy
clusters):

• B = 10−6G

• T = 107K

• n = 10−3 cm−3

Equation 2.2.6 gives us then a factor of D⊥
D‖
≈ 10−28 which means, that conduction

perpendicular to the magnetic field will be extremely suppressed.
Additionally [Rosner and Tucker, 1989] derive a criterion for the minimum mag-
netic field which is needed for anisotropic conduction:

(2.2.12)
B & Bcrit = 1.6 · 10−11

( n

10−4 cm−3

)2/3
(

T

108 K

)−1/6(
ln Λ

20

)1/3

G

≈ 9.2 · 10−11
( n

10−3 cm−3

)2/3
(

T

108 K

)−1/6

G

As we will see later in our cluster simulations (please see section 5), this condition
is in general fulfilled in all of the ICM.

These relations are however only a rough estimate. From experiments the empir-
ical knowledge was gained, that perpendicular diffusion is additionally overlayed
with some kind of turbulence which is extremely difficult to describe.9 However
their experiments show, that the scaling with the magnetic field effectively changes
from B−2 to B−1, which leads us to so called Bohm diffusion. Without going into
detail here, we just try to construct a scaling relation for this kind of behaviour,
similar to the calculations above:

D⊥ ≈
v2

ωg
≈ kBTc

eB
(2.2.13)

Assuming that the electrons move with their thermal speed v ≈
√
kBT/m. This

is again only a very rough estimate since plasma instabilities will also play a role

9One example where this plays an important role are Tokamak fusion reactors.
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here. Neglecting any further influence, we get in total

D⊥
D‖
≈ 1

ωgτ
(2.2.14)

which allows a much stronger diffusion orthogonal to the magnetic field lines.

As already mentioned, the conduction coefficients should scale similar to the dif-
fusion coefficients we just discussed. We can prove this through some easy scaling
relations starting with the ideal gas law

pV = NkBT (2.2.15)

Assuming a more or less constant density we can infer

∇p = nkB∇T (2.2.16)

Knowing that the source of a heat flux corresponds to the time evolution of pressure
we can write using equation 2.1.1

∂p

∂t
∼ ∇ ·Q → nkB

∂T

∂t
∼ ∇ · (κ∇T ) (2.2.17)

Taking the typical length and timescales instead the derivatives we get

κ ∼ l2

τ
· nkB ∼ D · nkB (2.2.18)

where we can identify the diffusion coefficient D. According to this relation, the
two coefficients scale similarly and we can therefore use the derived equations for
an implementation of anisotropic thermal conduction.
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A more detailed analysis of anisotropic diffusion and therefore conduction can
be found for example in [Golant et al., 1980]. Since we have already seen from
simple scaling relations, that conduction perpendicular to magnetic fields will be
extremely suppressed, we are not dependent on the exact relation to the parallel
component. It is however important, that Golant et al. come to similar results in
terms of proportionality:

• Eq. (9.17): D⊥/D‖ ∝ B−2 like our equation 2.2.6

• Eq. (9.37): κ⊥ ∝ D⊥ · n is exactly our equation 2.2.18, since they pull
the kB out of the definition of D

For highly tangled magnetic fields [Pistinner and Shaviv, 1996] discussed, if the
coherence length should take over for the mean free path instead of the gyroradius.
However they come to the conclusion, that this assumption is wrong. This matches
the considerations of [Rosner and Tucker, 1989], who come to the conclusion, that
tangled magnetic fields to not supress thermal conduction very strongly, despite
general believe. Their results state a reduction factor of 〈cos δθ〉2 which is an
averaging over the local angles between magnetic field lines and the temperature
gradient. We will briefly analyse this behaviour for totally random magnetic field
configurations in section 4.3.1.

Summing up, we can in general say, that thermal conduction perpendicular to
magnetic fields lines with reasonable field strengths is nearly totally suppressed.
If we come into a regime, where we need to apply scaling relations regarding the
magnetic fields, we have seen that κ⊥/κ‖ can scale like something between B−2

and B−1.
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2.3 Implications on cluster cooling flows

Having learned about the details of thermal conduction as an isolated process,
the question is now, how does this influence our picture of cooling flows in galaxy
clusters.

In figure 1 we have seen, that the temperature profiles of clusters show strong
temperature gradients, especially near their center. Since basic (isotropic) ther-
mal conduction only requires the existence of such gradients, it will definitely
occur. That aside, it is important to determine if the process is strong enough to
play a role in the whole picture!

Let us have a look back at equation 2.1.14. If thermal conduction behaves like
ideal Spitzer conduction, we see, that it is proportional to the electron density as
well as on temperature. Although it is true, that the ICM has in general fairly low
densities, we have already seen, that the temperatures in the ICM can be quite
high. Since κ is proportional to T 5/2 we can expect thermal conduction to be
important at least in hotter regions of a cluster.

Since Spitzer conduction is calculated for an idealised plasma, conduction in real-
ity will probably be a bit less effective than in the Spitzer case. Additionally we
have argued in the last subsection, that magnetic fields suppress the transport of
energy perpendicular to the field lines. Overall, this results in a certain suppres-
sion factor, which we have to apply onto Spitzer conductivity.
A derivation of a typical suppression factor can be found in [Narayan and Medvedev,
2001]. For details see also [Rechester and Rosenbluth, 1978] and [Chandran and
Cowley, 1998]. At first they derive, that the effective conduction should be at
least a factor 100 less than Spitzer conduction, even for chaotic magnetic fields
for which a slightly higher effect is claimed. If this were the case, we could imme-
diately forgot about thermal conduction with magnetic fields having any effects
on gas dynamics in galaxy clusters. However [Narayan and Medvedev, 2001] ar-
gue further, that in presence of very strong turbulence the picture changes again,
but this time in favour of conductivity. They claim, that the effective conduction
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coefficient can be nearly as strong as Spitzer conduction. As a final value they give

κ =
κsp
3

(2.3.1)

which can be seen as conduction being effective only in one of three spatial dimen-
sions due to the magnetic field.
Considering these calculations there exists no final answer yet. [Loeb, 2002] for
example claims, that conduction must be suppressed by κ ≤ 0.15 · κsp.

We already stated, that if strong enough, thermal conduction could be the heating
mechanism which helps us to stabilize cooling flows and solve the observational
problems. Since conduction has to be added to the energy equation of whatever
cooling flow model one assumes, it is hard to determine if this is really possible.
Therefore we will dedicate the rest of this thesis to discuss a numerical implementa-
tion of anisotropic thermal conduction and the analysis of cosmological simulations
with the new code.

But before we come to that, we want to show one prominent example for sup-
pressed conduction by magnetic fields: We have already shown, that magnetic
fields in clusters exists and that they are usually strong enough to strongly sup-
press thermal conduction. We want to further motivate this statement through
observational evidence:

Observers often find so called cold fronts in galaxy clusters, for example in
Abell 2142 (for details please see [Owers et al., 2009] and [Owers et al.,
2011]). There are different characteristics of cold fronts which hold evidence
for anisotropic thermal conduction. Basically they are regions with continuous
pressure (→ ∇p = 0) where the temperature suddenly drops typically by a factor
of 2 (→ ∇T 6= 0). This surface brightness discontinuity is observed very well.

At first one thought of the cold front as a merger shock. Temperature measure-
ments however lead to the believe of a contact discontinuity between hot, diffuse
and colder, denser gas. The front presents itself as a very sharp feature, which is
in general narrower than 2 kpc. This is less than the typical mean free path of an
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electron in these regions.

For this feature to be stable enough to be common in many galaxy clusters, ther-
mal conduction has to be strongly suppressed across the cold front. Otherwise
it would wipe out the temperature gradient pretty fast. Since the two separated
regions intrinsically have a constant temperature, thermal conduction is indeed
working along the front smoothing the temperature profile inside each part. This
is exactly the kind of anisotropy which can be explained by magnetic fields as we
argued before.
The two different regions of a cold front probably consist out of gas of different
subclusters with a different magnetic structure, which does not mix (or at least
very slow). Gas motion then tends to even increase the temperature gradients and
align the magnetic field lines more along the cold front. Also tangled magnetic
field lines can lead to a similar result. [Fabian, 2002, Sarazin, 2008, Komarov et al.,
2013]

Many groups have already considered thermal conduction as possible heating
mechanism and the outcomes cover the full range of possibilities. For further
reading we want to give some short examples for different opinions:

• [Binney and Cowie, 1981]: Thermal conduction is important and has to be
suppressed below 1% of the Spitzer value.

• [Bregman and David, 1989]: Thermal conduction does not solve the problems
we have.

• [Rosner and Tucker, 1989]: Tangled magnetic fields do not supress thermal
conduction so much, that it can be ignored. It plays an important role to
when it comes to cooling flows but thermal conduction alone is not sufficient
to solve the cold gas problem.

• [Fabian, 2002], [Peterson et al., 2003]: Thermal conduction plays a role but
needs to be combined with other processes for a sufficiently big effect.
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• [Zakamska and Narayan, 2003]: Thermal conduction can be assumed to be
suppressed to a value of about 30% of Spitzer conduction. It is essential
for thermal stability in clusters. Some clusters need an additional source of
heat, but thermal conduction is always an important factor and a sufficient
component to match models and observations for several galaxy clusters.

• [Voigt and Fabian, 2004]: Conduction of the order of the Spitzer value can
offset cooling in regions with T ≥ 5 keV . However mass deposition rates from
spectral information does not match expectations from radiative cooling,
therefore another process is additionally needed. For example turbulent heat
diffusion could be the key.

• [Fabian et al., 2006]: Conduction needs to be suppressed by at least a factor
100 to allow filaments observed in the soft X-ray to be long lived.

Before we come to a description of our numerical schemes, we finish this section
with a short excursion on magnetic fields themselves and their detection, since
their structure and order of magnitude will a play crucial role in our cosmological
simulations.
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2.4 Short excursion: Detection of magnetic fields

Now that we have talked about magnetic fields, we want to give a brief overview on
detection techniques of magnetic fields. For more detailed information see for ex-
ample [Soker and Sarazin, 1990], [Kronberg, 1994], [Soker, 1997] and [Soker, 2010].

The existence of magnetic fields can be easily proved by radio observations. As
already mentioned, identifying synchrotron radiation is a sufficiently strong evi-
dence for magnetic fields and relativistic electrons. However we can not determine
the small scale structure of the field lines by these observations for cosmological
applications.10 Furthermore a lot of galaxies and galaxy clusters are radio silent
with respect to synchrotron radiation and we need other methods to determine
the properties of magnetic fields, which are pretty complicated. Therefore we will
only shortly present two possibilities in the following:

1. Observing the Zeeman splitting of emission lines

2. Using the Faraday rotation measure

The first method is not very successful for galaxy cluster observations since the ob-
served lines are smeared out by a lot of other processes, dominated by the Doppler
effect. Therefore Zeeman splitting is usually not visible any more and we can ne-
glect this method here.11

The Faraday effect describes the interaction between a magnetic field and light
in a medium: An electromagnetic wave enters a plasma, which leads to a change
of the polarization plane due to interaction of free charged particles with the wave.
The so called rotation measure RM is then defined as the rotation of the light’s
polarization plane over the observed wavelength squared. It is related to the mag-
netic field via an integral over the line of sight:12

χ

λ2
= RM = 8.1 · 105

∫
ne ~B · ~dl

rad

m2
(2.4.1)

10For example the magnetic field of the sun can be studied pretty well using synchrotron radia-
tion, because we get a much higher resolution for such a small distance.

11Zeeman splitting can be used for example to determine magnetic fields of nearby molecular
clouds.

12So RM is proportional to the magnetic field component along the propagation direction of the
observed light.
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2 THERMAL CONDUCTION AND MAGNETIC FIELDS

Typical values measured are RM = 102 − 104 rad/m2.
This approach has again two important limitations: We can determine only the
integral over the line of sight, therefore we get only some kind of mean magnetic
field where anti-parallel parts cancel each other out. Therefore the result can be
seen as a lower limit. Furthermore the integral is not just over B, but involves
also the electron number density. Therefore we need additional measurements to
get information about the densities to infer proper results for the magnetic fields.

For NGC 1275 [Taylor et al., 2006] even find values for the rotation measure
between 6500 and 7500 rad/m2. They estimate the electron number density as
ne ≈ 0.31/cm3 and assume a relevant path length for the magnetic region of 2kpc.
Applying an additional factor of

√
3 to account for the one-dimensionality of the

method, this leads to magnetic fields of about 25µG.

Therefore the magnetic pressure can be comparable or even bigger then ther-
mal pressure in some regions of clusters. One example where this is confirmed is
Hydra A ([Kronberg, 1994], [Soker, 2010]; for a radio map see figure 10). This
happens typically in regions r > 10 kpc. Therefore magnetic fields are not only
important for conduction but also influence hydrodynamics strongly as a pressure
source. Farther out from the center the gas pressure dominates again on large
scales. At the cooling radius one can estimate the pressure fraction as

PB
Pgas

= 5.9 · 10−4

(
B

1µG

)2 ( n

3 · 103cm−3

)−1
(

T

7 · 107K

)−1

(2.4.2)

Inside this region reconnection of magnetic field lines is efficient. Equipartition
of magnetic and gas pressure at r = rB leads to a typical energy output of
1042 − 1043 erg/s in a region of at least 1 kpc. This depends on the tempera-
ture of the gas as well as on the net accretion rate Ṁ of the cooling flow:

Ėrec ≈ 1 · 1043

(
T (rB)

1 · 107K

)(
Ṁ(rg)

100M�yr−1

)
erg/s (2.4.3)

The energy output goes mostly into heating and ionization of the surrounding gas
and also accelerates the non thermal particles which leads to the diffuse radio emis-
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2.4 Short excursion: Detection of magnetic fields

Figure 10: Total intensity distribution of radio observations of Hydra A
(3C 218). One can very well see the two radio lobes and the outflowing jets of the
object. For the rotation measure values between −1000 and +3300 radians/m2

are measured for the northern lobe, while the southern lobe seems to have stronger
values. The plot is taken from [Taylor et al., 1990].
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2 THERMAL CONDUCTION AND MAGNETIC FIELDS

sion observers find for example in NGC 1275 in the Perseus cluster (see section
1.2 for details). However the output energy is still much less, than is cooled away
in X-ray. Therefore this can not work as a single balancing process, as we have
already stated earlier.

Since the infall of gas will provide a mostly radial magnetic field on large scales,
it is the radial component which will be probably reduced at most. Therefore the
magnetic field becomes more isotropic within rB. However this does not tell us
anything about the small scale structure of a typical cluster magnetic field. It is
still very difficult to get reliable results about small scale properties.
One proposition are for example the so called flux loops which would suppress
buoyancy and stabilize clouds against gravitational collapse as well as moving
cool, high density blops against disruption.
A typical geometry is shown in figure 11. As one can see, there would be hardly
any connection from the outer to the inner parts of the cluster, since the loops
are to short to connect gas over the whole cooling region and beyond. Therefore
inward thermal conduction would be totally suppressed without reconnection of
magnetic field lines. This presents the problem, that it is very hard to construct
a self consistent magnetic field which suffices all our requirements.
On the other hand [Pistinner and Shaviv, 1996] argue, that flux loops would be
stretched by the inward flow and break at some point. This would allow reconnec-
tion and prevent suppression of thermal conduction.
Additionally [Rosner and Tucker, 1989] argue, that besides the mentioned stability
issues magnetic bubbles are unlikely because of the lack of a convincing generation
mechanism. Furthermore they pose the question, how the observed homogeneous
temperature distributions could be formed with such a magnetic field configura-
tion.
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2.4 Short excursion: Detection of magnetic fields

Figure 11:
Upper Panel: Magnetic flux loops with magnetic fields inside each loop (like drawn
on the left for clarity). There is no conduction from outer to inner regions.
Lower Panel: A magnetic structure which allows radial conduction. Magnetic
fields are very strong in near the center, even for strongly tangled field structures
(lower left). [Soker, 2010]
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2 THERMAL CONDUCTION AND MAGNETIC FIELDS

The last thing we want to mention because we will test for it later, is the inferred
total structure of the magnetic field lines in many models. [Soker, 1997] state that,
due to conservation of magnetic flux, the radial and the tangential components
should scale like

Br ∝ r−2 (2.4.4)

Bt ∝ (r · vin)−1 (2.4.5)

with the infall velocity of the gas vin. Our results regarding these relations will be
shown in section 5.2.

But for now let us come back to the problem we want to solve: We want to
extensively test the implications of thermal conduction onto cluster dynamics, in-
cluding the influence of magnetic fields. Since we can not do this analytically we
have to consider a numerical code including all the physical processes and models
we need. For this we want to implement anisotropic conduction into the SPH code
GADGET-3. In the next section we review the basics about SPH and afterwards
discuss in detail the numerical formulation of thermal conduction, tests and finally
the analysis of some cluster simulations.

43



2.4 Short excursion: Detection of magnetic fields
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3 SMOOTHED PARTICLE HYDRODYNAMICS

3 Smoothed Particle Hydrodynamics

In the following section we will present one of the common numerical schemes
to perform hydrodynamic simulations, which is called Smoothed Particle
Hydrodynamics.

In this brief overview of the basics we will follow the review articles of [Monaghan,
1992], [Dolag et al., 2008a][Springel, 2010] and mainly [Price, 2012]. The pur-
pose is, to give the reader a basic understanding how SPH codes and discretizing
equations in SPH work. For our simulations we are using the latest version of
GADGET-3. Details about the last publicly available version (GADGET-2) can
be found for example in [Springel, 2005a], [Springel, 2005b]. Regarding the imple-
mentation of MHD please see [Dolag and Stasyszyn, 2009].

In this and all following sections we will use always the following nomenclature:

• i will denote the index of the particle for which we are calculating a quantity

• j and k will always stand for summation indices over other particles (usually
neighbouring to i, but we will indicate that in the upper summation boundary
with a Nngb)

• α and β will be used to indicate components of vectors or matrices. We will
in some parts use the Einstein sum convention for these indices13

3.1 Lagrangian derivation of SPH equations

SPH uses fictive particles to model fluid dynamics. Let us start with the computa-
tion of a very basic quantity of fluids: the density. In figure 12 one can see different
approaches, how to calculate density. Overlaying the particles with a fixed grid,
one could simply divide the total mass of particles in a cell by the cell volume.
The next step to improve the result could be, not to take a grid but a local volume
around each particle. Further improving the latter by weighting the neighbouring
particles by their distance, one arrives at the SPH approach.

13I.e. summing over all twice occurring indices
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3.1 Lagrangian derivation of SPH equations

Figure 12: Different ways to estimate the density: Count mass in a volume around
each particles via a fixed grid, a local volume or a smoothed local volume. [Price,
2012]

Written in a formula, the third approach looks like

ρ (~x) =

Nngb∑
j=1

mjW (~x− ~xj, h) (3.1.1)

where W is the function, with unit of an inverse volume, determining the weights
applied to the neighbour particles. We call W the kernel. h is a parameter which
determines the support radius of W , further called smoothing length. Additionally
the particle spacing plays a role here.
Conservation of total mass gives us one basic condition on the choice of W :∫

V

d~x′ W (~x′ − ~xj, h) = 1 (3.1.2)

Obviously the density estimate depends strongly on a good choice of the kernel,
therefore we can define some more conditions how a suitable kernel function should
look like:

• The kernel should be positive and monotonically decreasing, so that nearby
particles have the biggest effect in the calculation.

• At least the first two derivatives of W should be smooth.

• The kernel should be symmetric with respect to particle spacing, i.e. it
should only depend on the absolute value of the distance vector |~xi − ~xj|.
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3 SMOOTHED PARTICLE HYDRODYNAMICS

• It should contain a central flat plateau to be insensitive to distance fluctua-
tions of nearby particles.

• To save computation time the kernel should only involve a certain number
of neighbours and be smoothly truncated at some point (i.e. it should have
a finite support radius and therefore not involve all other particles but only
the nearest neighbours).

A natural and easy choice which fulfils the first four conditions is the Gaussian
function. The fifth condition is however strongly violated, because the Gaussian
has an infinite domain. Since particles far away would not give big contributions
(as requested by the first condition), one could simply truncate a Gaussian at
some point, which would however destroy the smoothness. This makes a Gaussian
a good choice by the strictly needed conditions, however not a very clever one. We
will later in section 3.3 go into more detail about possible choices for the kernel
function and their quality. Let us for the moment assume we have found a function
which suits our needs and see, how we can proceed.

We still have to define the smoothing length appropriately. There are several
strategies for this. A natural choice would be to relate the smoothing length to
the number density of particles:

h (~x) ∝ n (~x)−1/d (3.1.3)

with d the amount of spatial dimensions we consider. Since n itself is related to
the density which depends on h, we have to calculate h and ρ iteratively at the
same time. Assigning individual smoothing lengths to each particle, this gives us
two equations of the form

ρi =

Nngb∑
j=1

mjW (~xi − ~xj, hi) (3.1.4)

hi = η

(
mi

ρi

)1/d

(3.1.5)

The next step is to build a fully conservative scheme for (magneto-)hydrodynamics

47



3.1 Lagrangian derivation of SPH equations

equations with this formalism.14 We start with the the Lagrangian of the system,
which is dependent on particle velocities and specific internal energies:

L = T − V =
∑
j

mj

(
1

2
v2
j − uj

)
(3.1.6)

By applying the principle of the least action we directly get the Euler-Lagrange
equations for each particle i:

d

dt

(
∂L

∂~vi

)
− ∂L

∂~xi
=

d

dt
(mi~vi) +

∑
j

mj
∂uj
∂ρj

∣∣∣∣
s

∂ρj
∂~xi

= 0 (3.1.7)

assuming a constant entropy s.15 To calculate the derivative of the specific internal
energy we have to consider basic thermodynamics. Transforming the first law to
specific quantities,16 we get:

du =
∂u

∂s

∣∣∣∣
ρ

ds+
∂u

∂ρ

∣∣∣∣
s

dρ = Tds+
p

ρ2
dρ (3.1.8)

We get the density gradient by differentiating equation 3.1.4:

∂ρj
∂~xi

=
1

Ωj

Nngb∑
k=1

mk
∂Wjk

∂~xi
(δij − δik) (3.1.9)

with Ωj accounting for the density dependence of the smoothing length h. For
simplicity we will from here on neglect this and simply set Ω = 1. Here we
introduced the short notation for the kernel Wij = W (|~xij| , hi) = Wji.
Plugging these relations together into equation 3.1.7 and canceling one sum with
the Dirac δ functions, we get the equation of motion

d~vi
dt

= −
Nngb∑
j=1

mj

(
pi
ρ2
i

− pj
ρ2
j

)
∇iWij (3.1.10)

14In this subsection we will restrict ourselves to pure hydrodynamics. We will come to MHD in
subsection 3.4.

15Constant entropy equals no dissipation.
16Therefore dividing by mass.
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3 SMOOTHED PARTICLE HYDRODYNAMICS

The energy equation in absence of dissipation can be derived using again the
density estimate (eq. 3.1.4) and the first law of thermodynamics (eq. 3.1.8):

dui
dt

=
pi
ρ2
i

dρi
dt

=
pi
ρ2
i

Nngb∑
j=1

mj (~vj − ~vi) · ∇iWij (3.1.11)

Before we go more into technical details about SPH discretizations, we want to
briefly discuss the conservation properties of the formulation we just derived.

Total linear momentum conservation

d

dt

∑
i

mi~vi = −
∑
i

mi

∑
j

mj

(
pi
ρ2
i

− pj
ρ2
j

)
∇iWij = 0 (3.1.12)

because of the antisymmetry of the kernel gradient: Since the kernel by construc-
tion depends only on the distance of two particles and the smoothing length, it is
symmetric under particle exchange for constant smoothing lengths. Therefore we
have an antisymmetric gradient of the kernel. For individual smoothing lengths
we get a more complicated picture. Without proving this in detail we state, that
the equation mentioned above still holds in this case. Additionally one often uses
symmetrized kernel derivatives in SPH equations to use both smoothing lengths,
which simplifies these kind of considerations.

Total angular momentum conservation

d

dt

∑
i

~xi ×mi~vi = −
∑
i

mi

∑
j

mj

(
pi
ρ2
i

− pj
ρ2
j

)
~xi ×∇iWij = 0 (3.1.13)

using

~xi ×∇iWij = ~xi × (~xi − ~xj)W ′
ij = − (~xi × ~xj)W ′

ij = (~xj × ~xi)W ′
ij (3.1.14)

with W ′
ij being the derivative of Wij by it’s argument ~xij.
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3.1 Lagrangian derivation of SPH equations

Total energy conservation
Since the Lagrangian does not depend explicitly on time, the total energy is simply
given by the Hamiltonian

H =
∑
i

~vi ·
∂L

∂~vi
− L =

∑
i

mi

(
1

2
v2
i + ui

)
(3.1.15)

which equals the kinetic plus the internal energy. Plugging in the equation of
motion and the energy equation we derived earlier, we can easily show energy
conservation with the same antisymmetry arguments as before.

(3.1.16)

dE

dt
=
∑
i

mi

(
~vi ·

~vi
dt

+
dui
dt

)
= −

∑
i

mi

∑
j

mj

[
pi
ρ2
i

~vj +
pj
ρ2
j

~vi

]
· ∇iWij

= 0

For further applications we want to define the entropy function A through the
equation of state for an ideal gas:

A(s) =
p

ργ
(3.1.17)

Many SPH codes use this quantity as the central evolved variable in addition to
density. This is called Density-Entropy SPH. The evolution of A is related to the
dissipation of internal energy through

dA

dt
=
γ − 1

ργ−1

(
du

dt
− p

ρ2

dρ

dt

)
=
γ − 1

ργ−1

du

dt

∣∣∣∣
diss

(3.1.18)

The thermal energy can be calculated via A as

u =
A

γ − 1
ργ−1 (3.1.19)

So much for a derivation via the Lagrangian. The next step is, to show how we
can in general write equations as SPH discretizations. Furthermore we will see,
that a formal derivation will lead to the same results as the Lagrangian approach.
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3.2 Interpolation formulas

A formal SPH derivation usually starts with the identity

A (~x) =

∫
d~x′ A (~x′) δ (~x− ~x′) (3.2.1)

for a general variable A. Approximating the delta function by the kernel and
neglecting terms of order h2 and higher, we get

(3.2.2)
A (~x) ≈

∫
d~x′ρ (~x′)

A (~x′)

ρ (~x′)
W (~x− ~x′, h)

≈
Nngb∑
j=1

mj
Aj
ρj
W (~x− ~xj, h)

Plugging in for example the density, this reproduces exactly our heuristic approxi-
mation from equation 3.1.4. An estimation for the derivative can be simply made,
by taking the derivative of the integral formula before going to the discrete formu-
lation:

∇Ai =

Nngb∑
j=1

mj
Aj
ρj
∇Wij (3.2.3)

If A is a vector quantity all vector derivatives can be taken analogously by pulling
the operator into the sum and applying it onto the kernel.

Using these estimation formulas onto the equations we derived in the last sec-
tion, we can reproduce the usual equations of hydrodynamics which proves the
quality of the estimates. Taking for example the time derivative of the density
estimate 3.1.4 we get the continuity equation:

(3.2.4)

dρi
dt

=

Nngb∑
j=1

mb (~vi − ~vj) · ∇iWij

= ~vi ·
Nngb∑
j=1

mj

ρj
ρj∇iWij −

Nngb∑
j=1

mj

ρj
(ρj~vj) · ∇iWij

≈ ~vi · ∇ρ−∇ · (ρ~v)i = −ρi (∇ · ~v)i
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3.2 Interpolation formulas

From equation 3.1.11 we get directly

du

dt
= −p

ρ
∇ · ~v (3.2.5)

Coming from kernel interpolation theory it is clear, that these interpolation formu-
las are not unique. Performing a more detailed Taylor expansion for some generic
value A, we see directly that we can improve the estimation by subtracting the
first error term:

∇A ≈
Nngb∑
j=1

mj
Aj − Ai
ρj

∇iWij ≈ ∇A− A∇1 (3.2.6)

Another approach is to use an inverse product rule before discretizing:

∇A =
1

ρ
[∇ (ρA)− A∇ρ] ≈ 1

ρi

Nngb∑
j=1

mj (Aj − Ai)∇iWij (3.2.7)

which can be further improved by using for example:

∇A = ρ

[
A

ρ2
∇ρ+∇A

ρ

]
≈ ρi

Nngb∑
j=1

mj

(
Ai
ρ2
i

+
Aj
ρ2
j

)
∇iWij (3.2.8)

Please note, that the last two estimates have totally different symmetry properties
with respect to exchange of particles i and j in each summand. Which interpola-
tion formula has to be taken for the best outcome therefore differs in each case.

These formulas can be further generalized by replacing ρ with a general variable
Φ. Similar estimates can be derived again for vector quantities.
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Without going more into detail, we want to finish this section with estimates for
second derivatives. Here we can follow a similar approach by starting with a simple
estimate and subtracting the first error term for improvement:

∆A ≈
Nngb∑
j=1

mj
Aj
ρj
∇2
iWij (3.2.9)

∆A ≈
Nngb∑
j=1

mj

ρj
(Aj − Ai)∇2

iWij (3.2.10)

Similar formulas apply again for vector quantities.

Of course there is much more to say about SPH. However it is not the scope
of this thesis, to give a complete overview but only provide the reader with basic
knowledge to understand they way of SPH discretizations. This is necessary to
understand our derivation of the conduction equation later in section 4 For further
reading the interested reader may consult for example the review article of [Price,
2012].

Having all these tools we will now analyse the quality of these estimates for dif-
ferent choices of kernels in the next subsection. We will not show a full error
estimate for different interpolation formulas but rather come back to the choice
of a suitable kernel and discuss general errors coming from this choice. Detailed
error estimations can be found for example in [Price, 2012].
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3.3 Different kernels and their characteristics

At the beginning of section 3 we defined a kernel function and imposed several
restrictions to the choice of this function. A first idea was to use a function similar
to a Gaussian, but with a compact support.

One possible choice to fulfil these needs are the so called B-splines, which can
be generated by the Fourier transform17

Mn(x, h) =
1

2π

∞∫
−∞

dk

[
sin (kh/2)

kh/2

]2

cos (kx) (3.3.1)

Mn has the nice property, that it approximates the Gaussian with increasing ac-
curacy for bigger n. Since it has continuous derivatives up to the order n− 2 only
choices with n ≥ 4 are interesting for a kernel function. The easiest choice for
n = 4 is called the cubic spline (since it is a polynomial of order 3). Using this
function we can define the kernel as

W (|~xij| , h) =
1

hd
w(q) (3.3.2)

w(q) = σ


1
4

(2− q)3 − (1− q)3 0 ≤ q < 1

1
4

(2− q)3 1 ≤ q < 2

0 q ≥ 2

(3.3.3)

with q := |~xij| /h and a normalisation constant σ which is defined (depending on
the dimensionality of the problem) as

σ =


2
3

in 1D

10
7π

in 2D

1
π

in 3D

(3.3.4)

Although the cubic spline can be calculated very fast due to it’s simply polyno-
mial representation it is however only a crude approximation to the Gaussian and
as we will show does not perform very good. Sticking to B-splines usually the
17Taken from [Price, 2012].
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quintic spline is taken for more accurate, though computationally more expensive,
estimates:

w(q) = σ


(3− q)5 − 6 (2− q)5 + 15 (1− q)5 0 ≤ q < 1

(3− q)5 − 6 (2− q)5 1 ≤ q < 2

(3− q)5 2 ≤ q < 3

0 q ≥ 3

(3.3.5)

with

σ =


1
24

in 1D

96
1199π

in 2D

1
20π

in 3D

(3.3.6)

Before we come to more advanced kernel functions, let us at first show what
we mean by more accurate results comparing those two splines. We start with
computing an estimate (with the most basic formula we derived earlier) for a
generic quantity of particle i and expand the interpolation formula into a Taylor
series:

Ai ≈
Nngb∑
j=1

mj · Aj
ρj

Wij (3.3.7)

= Ai

Nngb∑
j=1

mj

ρj
Wij +∇Ai ·

Nngb∑
j=1

mj

ρj
(~xj − ~xi)Wij +O

(
h2
)

(3.3.8)

For this estimate to be exact up to second order in h, we get two conditions:

Nngb∑
j=1

mj

ρj
Wij ≈ 1 (3.3.9)

Nngb∑
j=1

mj

ρj
(~xj − ~xi)Wij ≈ 0 (3.3.10)

The second conditions is relatively easy fulfilled for reasonably symmetric particle
distributions while the first condition depends strongly on the ratio of the smooth-
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ing length h to the particle spacing dx. For most of the possible values, already
the cubic kernel gives a good agreement for this condition. For comparison see the
black lines in figure 13 and 14, where we have plotted equation 3.3.9 for the cubic
and quintic kernel for the one dimensional case.

Figure 13: Plotted are the normalisation conditions for the cubic spline kernel in
one dimension against the smoothing length over the particle spacing. The kernel
normalisation (eq. 3.3.9) is very good fulfilled, the first derivative (eq. 3.3.11) is
still ok, but the errors for the second derivative (eq. 3.3.12) are very high.

However we do not only have these kind of conditions for the kernel itself, but also
for estimates of the first and second derivatives. For a full derivation see again
[Price, 2012].
The red lines in the plots represent the normalisation condition for the first deriva-
tive:

Nngb∑
j=1

mj

ρj
(~xj − ~xi)α∇β

iWij ≈ δαβ (3.3.11)
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with α and β being the components of the vectors. Here we can already see, that
the quintic kernel performs in general much better for estimates of first derivatives.
The errors on this condition are already roughly a factor 10 smaller, which makes
the quintic kernel a way better choice for estimating derivatives.

Figure 14: Plotted are the normalisation conditions for the quintic spline kernel
in one dimension against the smoothing length over the particle spacing. The
normalisation condition for the kernel itself (eq. 3.3.9) and it’s first derivative (eq.
3.3.11) are very good. The second derivative (eq. 3.3.12) still shows visible errors,
but much less than for the cubic spline kernel.

We see a similar behaviour for the normalisation condition for second derivatives,
however we still get quite big errors even for the quintic kernel here. The corre-
sponding equation is given as

1

2

Nngb∑
j=1

mj

ρj
(~xj − ~xi)α (~xj − ~xi)β ∆Wij ≈ δαβ (3.3.12)
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Further analysis shows, that this large error comes basically from the second deriva-
tive of the kernel. Therefore we will need to be very careful, when writing down
the conduction equation for SPH since it contains second derivatives!

As a choice for more advanced kernels we want to mention the Wendland functions.
They exist also in different orders with varying computational cost and accuracy.
Especially interesting is the Wendland c6 function which is defined as a kernel by
[Dehnen and Aly, 2012] as

w(q) = σ

(1− q)7 · (1 + 7q + 19q2 + 21q3) 0 ≤ q < 1

0 q ≥ 1
(3.3.13)

with σ = 55/32 for a 1D problem and

w(q) = σ

(1− q)8 · (1 + 8q + 25q2 + 32q3) 0 ≤ q < 1

0 q ≥ 1
(3.3.14)

with σ = 78/7π for 2D and σ = 1365/64π for 3D. Please note, that this definition
is for a support radius of 1h. The implementation in GADGET is however done for
a support radius of 3.3h to allow about 295 neighbours to be taken into account.
For comparison the cubic kernel uses about 64 and the quintic 216 neighbours in
GADGET. As one can see, this kernel is a polynomial of much higher order and
therefore more expensive to calculate. We checked the same three criteria also for
this Wendland c6 kernel (see figure 15) and see, that this function performs a bit
worse than the quintic kernel for big particle spacings and a bit better for small
ones. The results are in general comparable.
The real advantage of the Wendland functions lies in another property which we
have not discussed so far. If one wants to increase the quality of an estimate
one would probably intuitively just increase the amount of neighbours taken into
account for each interpolation. With the spline kernels this will however result very
fast in the clumping of particles. The Wendland kernels however can support much
higher neighbour numbers without producing a paring instability. For a much more
detailed view on this problem, kernel comparisons in general and further refinement
we refer to [Dehnen and Aly, 2012].
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Figure 15: Plotted are the normalisation conditions for the Wendland c6 kernel in
one dimension against the smoothing length over the particle spacing. The results
are comparable to the quintic spline kernel (fig. 14). Only the errors for the second
derivative change a lot depending on the value for h/dx.

59



3.4 MHD equations in SPH

3.4 MHD equations in SPH

After talking about basic hydrodynamics in SPH and basic kernel properties we
still have to mention how to implement magnetic fields into the code in order to
come to anisotropic thermal conduction later. Again we will just give a short
motivation for the basic equations. Details can be found as general derivation in
[Price, 2012] or specific for GADGET in [Dolag and Stasyszyn, 2009].

So let us start with one of the basic equations we have to consider: the induction
equation, which tells us the evolution of a magnetic field. We combine Ampere’s
law, Faraday’s law with the Lorentz force to get an equation which contains only
the magnetic field and the velocity field:

∂t ~B = ∇×
[
~v × ~B − η∇× ~B

]
(3.4.1)

with the electric resistance η. We will consider only ideal MHD, so the second
term drops out. We can rewrite the first term and apply ∇ · ~B = 0 to get

∂t ~B =
(
~B · ∇

)
~v − ~B (∇ · ~v)− (~v · ∇) ~B (3.4.2)

Combining the left hand side with the last term of the right hand side we get the
total time derivative of the magnetic field as

d

dt
~B =

(
~B · ∇

)
~v − ~B (∇ · ~v) (3.4.3)

Using the continuity equation we can write this in the even simpler form

d

dt

(
~B

ρ

)
=

(
~B

ρ
· ∇

)
~v (3.4.4)

Applying the discretization with subtraction of the first error term we get

d

dt

(
~Bi

ρi

)
= −

Nngb∑
j=1

mj (~vi − ~vj)
~Bi

ρ2
i

· ∇iWij (3.4.5)
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3 SMOOTHED PARTICLE HYDRODYNAMICS

In addition to this new equation we have to modify our Lagrangian and add a
magnetic pressure term. Consequently equation 3.1.6 transforms to:

L =
∑
j

mj

(
1

2
v2
j − uj −

1

2µ0

B2
j

ρj

)
(3.4.6)

Unfortunately we can not write the magnetic field nor it’s time derivative directly
in terms of particle coordinates, so we can not simply write down the Euler La-
grange equations like we did before in the pure hydrodynamics case. So we have
to take the more general approach of using the variational principle in order to
derive the equation of motion. We will not present the calculations in full detail
here and simply give the result:18

dvαi
dt

=

Nngb∑
j=1

mj

[
Sαβi
ρ2
i

+
Sαβj
ρ2
j

]
∇β
iWij (3.4.7)

with the MHD stress tensor

Sαβ = −
(
p+

1

2µ0

B2

)
δαβ +

1

µ0

BαBβ (3.4.8)

which contains the hydrodynamical pressure as well as the magnetic pressure.
More details on the derivation and further calculations can again been found in
[Price, 2012].

Regarding conservation laws we see, that the total linear momentum is still con-
served, however not the total angular momentum. Additional we can see, that
the total energy is conserved when we write down the modified Hamiltonian and
derive the energy evolution like we did before for the hydrodynamics case.

With these comments we want to finish our very brief overview concerning the
derivation of the SPMHD19 equations, which is certainly not complete. There is a
lot more to say about MHD in particular and SPH in general and we refer again
to the mentioned papers and further references for all the details.

18Written component wise and using the Einstein sum convention.
19Smoothed Particle MagnetoHydroDynamics
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Now we have all the tools we need to approach the question, which will be the
topic for the next section: How to implement thermal conduction in an SPH code
like GADGET?
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4 THERMAL CONDUCTION IN GADGET

4 Thermal conduction in GADGET

Knowing the basics of how to transform physics into SPH equations, we can now
start describing an implementation for thermal conduction. We will start with
the original implementation of isotropic conduction in GADGET. After that, we
present different approaches to treat anisotropic thermal conduction which we will
evaluate using some test cases afterwards.

4.1 Isotropic implementation

To discretize the conduction equation for the isotropic case we follow [Cleary and
Monaghan, 1999] and mostly [Jubelgas et al., 2004]. Using the heat flux we de-
scribed earlier (equation 2.1.1), we infer a change of internal energy over time
as

du

dt
= −1

ρ
∇ · ~Q =

1

ρ
∇ · (κ∇T ) (4.1.1)

At first we rewrite the right hand side using the inverse product rule of differenti-
ation:

κ∇T = ∇ (κT )− T∇κ =
1

2
[∇ (κT )− T∇κ+ κ∇T ] (4.1.2)

Applying the divergence onto this term, we get

∇ · (κ∇T ) =
1

2
[∆ (κT )− T∆κ+ κ∆T ] (4.1.3)

This formulation has the advantage, that we can directly discretize the laplacians
for which we need only one SPH loop instead of two for gradient and then diver-
gence. This increases not only the code’s speed, but can also provide us with an
opportunity to reduce errors in the estimation. As already mentioned in section
3.3, the estimates of second derivatives in SPH are not very exact. This is mostly
due to the involved second derivatives of the kernel. To avoid that problem we
use another estimate for the laplacian, which involves only first kernel derivatives.
To derive this for some arbitrary variable Y , we start with the Taylor expansion
around ~xiusing ~xij= ~xj- ~xi:

Y (~xj)− Y (~xi) = ∇ Y |~xi · ~xij +
1

2

∑
αβ

∂2Y

∂xα∂xβ

∣∣∣∣
~xi

· (~xij)α (~xij)β +O
(
(~xij)

3) (4.1.4)
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4.1 Isotropic implementation

We multiply both sides by ~xij ·∇iWij

|~xij |2
and integrate the equation over d3~xj. Inspect-

ing the different parts above individually, we can easily see, that the following
holds for the first order error term:∫

~xij
~xij · ∇iWij

|~xij|2
d3~xj = 0 (4.1.5)

Since the kernel derivative is antisymmetric20 the integrand in total is antisym-
metric and the integration results in zero. Please note, that we are not talking
about symmetry in exchange of particles i and j here, but rather about having an
even integrand with the respect to the integration variable ~xj.
The second order error term on the right side results in∫

(~xij)α (~xij)β
~xij · ∇iWij

|~xij|2
d3~xj = δαβ (4.1.6)

For α 6= β we get an expression similar to 4.1.5 and the integral vanishes.
However for α = β we have a total symmetric integrand and therefore the integral
is unequal to zero. Due to normalisation of the kernel, the integral will then simply
give one.21

Combining these findings we get∫
(Y (~xj)− Y (~xi))

~xij · ∇iWij

|~xij|2
d3~xj =

1

2

∂2Y

∂xα∂xβ

∣∣∣∣
~xi

δαβ (4.1.7)

The right hand side is equal to 2 · ∆Y |~xi . Therefore we can infer an estimate for
the laplacian:

∆Yi = 2
∑
j

mj

ρj
(Yj − Yi)

~xij · ∇iWij

|~xij|2
(4.1.8)

Plugging this estimate in eq. 4.1.1 and using eq. 4.1.3, we get the energy change
for the i-th particle as

(4.1.9)
dui
dt

= − 1

ρi

∑
j

mj

ρj
[κjTj − κiTi − Ti (κj − κi) + κi (Tj − Ti)]

~xij · ∇iWij

|~xij|2

20The kernel itself is symmetric, for details see all the kernel properties in section 3.1.
21This can also been shown by partial integration. In section 4.2.3 we will present similar but
slightly more complicated calculations which also contain such integrals. Detailed calculation
for some of them can be found in appendix B.
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4 THERMAL CONDUCTION IN GADGET

The expression in brackets can be rewritten to (κi + κj) (Tj − Ti). According to
[Cleary and Monaghan, 1999] we further replace

κi + κj
2

→ κij =
2κiκj
κi + κj

(4.1.10)

to ensure a correct behaviour of our implementation at discontinuities of κ between
two particle,s due to symmetrization. Using the relation between entropy22 and
internal energy / temperature with an isochoric approximation:

A =
γ − 1

ργ−1
· u (4.1.11)

T =
µ

kB
· A · ργ−1 (4.1.12)

we get

dAi
dt

=
2µ

kB

γ − 1

ργ−1
i

∑
j

mjκij
ρiρj

(
Ajρ

γ−1
j − Aiργ−1

i

) ~xij · ∇iWij

|~xij|2
(4.1.13)

Since we use an entropy-density formulation of SPH it makes sense to write every
equation here in terms of A. In the code we use the specific internal energy during
the calculations and update the particles’ entropies afterwards. We can do that,
since thermal conduction is located in an isolated module which therefore only
deals with internal energies.

To actually apply this equation for a given timestep we can use basically any
arbitrary integrator. In the original paper, [Jubelgas et al., 2004] used a simple
finite difference scheme:

miu
′
i = miui + ∆ti

∑
j

Eij (4.1.14)

with the pairwise energy exchange Eij which is the right hand side of equation
4.1.13 times mi. Since this formulation can violate energy conservation when indi-

22Please note that A is only a function of the entropy per unit mass s which we introduced in
section 3.1
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4.1 Isotropic implementation

vidual timesteps for all particles are used, we need to rewrite this to for example:

miu
′
i = miui +

1

2

∑
jk

∆tj (δij − δjk)Ejk (4.1.15)

In practise one loops over the active particles and applies an energy change to both
interacting particles, where the other is also active or not. This recovers energy
conservation explicitly during each exchange.

Additionally it is useful, to take a symmetrized version of the kernel gradient,
to combine the smoothing lengths of both particles, i and j.
[Jubelgas et al., 2004] further find, that the accuracy of their results for a basic
test problem increases, if they use a smoothed version of the entropy instead of the
entropy itself, calculated in a previous SPH loop. They get the best results with
a mixed formulation, using a smoothed version of Aj and a non smoothed Ai.
This can however be avoided for a more complex integration scheme. In the current
implementation of isotropic thermal conduction in GADGET we use the conjugate
gradient method implemented by Springel et al. like it is described by [Petkova
and Springel, 2009] for radiative transfer. Since the conjugate gradient is an im-
plicit scheme, it needs internally an additional SPH loop, but in return we gain
arbitrarily accurate results23 depending on the iteration count without having to
smooth the variables beforehand. A description of the conjugate gradient method
and how to apply it to equation 4.1.13 can be found in appendix A.

We want to mention one more remark on this. In the iteration of the conju-
gate gradient we will evolve the internal energy. Depending on what we use to
determine κ, a constant value (for test cases) or something proportional to Spitzer
conduction, we need to write out the formula for the coefficient and perform the
derivation of the conjugate gradient formalism in appendix A using this additional
temperature dependence. In the current code this is however neglected, κ is as-
sumed to be fixed during the iterations of one timestep. As we will see from the
later test cases in section 4.3, this will not change the quality of the estimate
visibly.

23Except of numerical noise and errors due to Taylor approximations of course.
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4 THERMAL CONDUCTION IN GADGET

4.2 Anisotropic implementation

The next step is, to implement our thoughts on anisotropic thermal conduction
from section 2.2 into the existing SPH code. In table 1 we show an overview over
the different methods, we discuss in the next three subsections.

Identifier Description
1a Change conduction coefficient. Precalculate energy gradient

once.
1b Change conduction coefficient. Recalculate energy gradient

in each iteration step.
2 Distinguish between conduction along and perpendicular the

magnetic field. Split up calculation of energy gradient and
divergence.

3a Distinguish between conduction along and perpendicular the
magnetic field. Fully anisotropic approximation in one SPH
loop.

3b Distinguish between conduction along and perpendicular the
magnetic field. Isotropised approximation in one SPH loop.

Table 1: Summing up the different implementation ideas with identifier numbers
for further reference. The numbers are according to the subsection 4.2.X where
we derive and discuss this approach.

4.2.1 An easy idea

As we discussed earlier, we want to have a (nearly) fully suppressed conduction
perpendicular to magnetic field lines but an unchanged transport along the field.
The simplest approach to embed these constraints (with full suppression) in an
equation is, to weight the conduction coefficient in equation 4.1.1 with the angle
between temperature gradient and magnetic field:

κ′ = κ · ∇T · B̂
|∇T |

= κ · cos θ (4.2.1)

with the normalized magnetic field vector B̂ =
~B

| ~B| .
This modification can be easily implemented into equation 4.1.13 by pre-calculating
the temperature gradient in a different SPH loop and applying the corresponding
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4.2 Anisotropic implementation

factors onto each κ. Instead of the temperature gradient we can also use the gra-
dient of the specific internal energy, since we wanted to evolve u anyway. Using
equation 4.1.11 we get the energy gradient by calculating

∇ui =
1

(γ − 1) ρi

∑
j

mj

(
Ajρ

γ−1
j − Aiργ−1

i

)
∇iWij (4.2.2)

To be absolutely correct we need to recalculate κ in each iteration step of the
solver. Since this would have a drastic impact on the simulation’s performance,24

we will compare the outcome with the one of calculating the gradient only once
per timestep and particle.

As we have already argued in section 4.1 neglecting the temperature dependence
of κ itself will not have any impact on our results. Since we do not expect the
temperature gradient to change it’s direction drastically during the iterations, we
will not get a bigger error in κ′ than we already have in κ and can therefore neglect
this recalculation. We will prove this expectation in our first test case in section
4.3.1.

4.2.2 The split up approach

The second and more complicated approach we want to discuss, is, to take equa-
tion 4.2.1 and also change the direction of the heat flux to be along the magnetic
field lines. One reason to consider this more complicated approach is, that this
allows us to additionally implement, how strong we want to suppress the heat flow
perpendicular to the magnetic field related to the field’s strength.

So we distinguish between a κ parallel the magnetic field and one perpendicu-
lar to it. Writing the perpendicular part as the total flux minus the parallel part,
the conduction equation looks like

du

dt
=

1

ρ
∇ ·
[
κ‖

(
B̂ · ∇T

)
B̂ + κ⊥

(
∇T −

(
B̂ · ∇T

)
B̂
)]

(4.2.3)

24Because we would need always an additional loop in between.
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4 THERMAL CONDUCTION IN GADGET

If the two conduction constants were the same, we would consistently regain the
isotropic implementation discussed in section 4.1.
As next step we reshuffle the terms and write the equation as one part parallel to
the magnetic field lines and one part parallel to the temperature gradient:

du

dt
=

1

ρ
∇ ·
[(
κ‖ − κ⊥

) (
B̂ · ∇T

)
B̂ + κ⊥∇T

]
(4.2.4)

From section 2.2 we know that for cluster simulations κ⊥ � κ‖. Therefore we can
approximate the first part with κ‖ − κ⊥ ≈ κ‖.
However we can not simply neglect the second term along the temperature gra-
dient. Comparing the absolute values of the two terms we see, that except of
κ⊥ � κ‖ the first term contains a cos θ which can be arbitrarily small and make
both terms comparable in magnitude. If the magnetic field and the energy gradi-
ent are almost totally perpendicular, the second term dominates the equation and
can therefore not be neglected. It has to be seen later, if this case is important for
our cluster simulations or not.

Now we can transform equation 4.2.4 to SPH formalism. The second term can
be handled similar to the isotropic implementation just with a different coefficient.
For details how to handle this part we refer back to section 4.1. Here we discuss
only on the first term.

We want to consider the case of splitting up the equation into two SPH loops:
One for the temperature gradient and one for the divergence. [Jubelgas et al.,
2004] already argued, that this resembles still an effective second derivative of the
kernel which gives rise to a big error, as we have already shown earlier. However
we have seen that we get much better results with modern kernels, even for second
derivatives and therefore want to test, if this approach can lead now to good results.

To conserve energy explicitly we need a divergence estimate which is antisymmet-
ric under exchange of i and j. We have already shown such interpolation formulas
in section 3.2.
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Consider a simplified version of our equation for some general value ~A: ∇· ~A
ρi

. Then
we can estimate

∇ · ~A
ρi

=
∑
j

mj

(
~Ai
ρ2
i

+
~Aj
ρ2
j

)
· ∇iWij (4.2.5)

To check the explicit conservation we have a look at the impact of particle j on
particle i and vice versa. Please note, that we need to multiply eq. 4.2.5 with mi,
since we need to conserve the real internal energy and not specific internal energy.

∆j→i = mimj

(
~Ai
ρ2
i

+
~Aj
ρ2
j

)
· ∇iWij (4.2.6)

Using ∇iWij = −∇jWij we get25

∆j→i + ∆i→j = 0 (4.2.7)

Using this estimate for the divergence, the first part of equation 4.2.4 looks like
the following:

(4.2.8)

dui
dt

∣∣∣∣
1st

=
∑
j

mj


(
κB cos θ |∇T | B̂

)
j

ρ2
j

+

(
κB cos θ |∇T | B̂

)
i

ρ2
i

 · ∇iWij

With equation 4.1.11 we can again rewrite the equation to internal energies instead
of temperatures. Therefore we get

dui
dt

∣∣∣∣
1st

=
∑
j

mj

[
κBjB̂j + κBiB̂i

]
· ∇iWij (4.2.9)

With the coefficient

κB =
(
κ‖ − κ⊥

)
· µ (γ − 1)

kb

cos θ |∇u|
ρ2

(4.2.10)

25For further details please review section 3.1.
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Also substituting

κT = κ⊥ ·
µ (γ − 1)

kb
(4.2.11)

we get in total

dui
dt

=
∑
j

mj

[(
κBjB̂j + κBiB̂i

)
+

2κT ij
ρiρj

(uj − ui)
~xij

|~xij|2

]
· ∇iWij (4.2.12)

At this point we can think again about the calculation of the energy gradient. As-
suming the first term dominates, then the energy gradient has basically replaced
the energy as variable of the integration algorithm. Therefore we need to recal-
culate it in each iteration step, for the algorithm to converge correctly. Since the
recalculation needs fully updated energies (or rather entropies) for each particle,
we need an additional SPH loop to calculate the energy gradient of each particle
in each iteration step of the conjugate gradient solver. In contrast to the last
subsection we do not have any choice here.

Additionally we want to ensure, that energy flows in the correct direction. From a
thermodynamical point of view (2nd law of thermodynamics), this is a very crucial
constraint. Considering our approach, we can easily see, that this will not always
be fulfilled. So let us start with an easy example, just to check whether we have
the correct overall sign in equation 4.2.12: We consider the effect of a particle j on
another particle i. We choose

• xj > xi, yj = yi, zj = zi

• uj > ui but overall ∇uj ≈ ∇ui ∝ êx

• B̂j = B̂i and such, that ∇u · B̂ > 0

• mj = mi and ρj = ρi

A schematic drawing is shown in figure 16.
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4.2 Anisotropic implementation

Figure 16: Schematic drawing to check, if heat flows in the right direction for a
test setup.

With this setup we want heat to be flowing from particle j onto particle i. The
brackets in equation 4.2.12 are in total positive. The first summand is positive
as we can check by plugging in our preconditions. The second summand his also
positive, since [Jubelgas et al., 2004] already checked that for the isotropic imple-
mentation. We can write the kernel derivative as

∇iWij ∝ −
∂w(r)

∂r
x̂ij (4.2.13)

Which points in positive x-direction since the kernel as a function of distance r is
per definition monotonically decreasing and x̂ij = êx. Therefore in total heat flows
in the left direction in this case. This is consistent with energy transport from j

to i.
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4 THERMAL CONDUCTION IN GADGET

One can however easily think of particle setups which will result in a non-physical
heat flow. We want to provide two examples here:

• Consider a setup, where two particles have a similar temperature gradient
(just not opposite ones!) but also have the same internal energy. One would
expect a heat flow to occur in this scenario because of the existence of a
gradient, but not between the two particles with same temperature. Nev-
ertheless our implementation will exactly produce this kind of transport of
energy. One can argue, that this effect won’t be a problem, since this just
mimics the transport of energy from the real heat source via all particles in
between.

• Another setup is also interesting, not depending on the internal energy of two
particles but simply on the component of conduction perpendicular to the
temperature gradient. We naturally get such components, since we aligned
the heat flow with the magnetic field. This heat flow is therefore per con-
struction not correct from a macroscopic point of view. However, as we will
see in our test in the next subsection, looking at the whole picture this should
not be much of a problem.

Similar to what has been done in [Sharma and Hammett, 2007] we also thought
about implementing an additional limiter, to preserve the monotonicity of our heat
flux. The idea is basically to suppress any non physical transport similar to one
of the above mentioned cases.
However this flux limiter only worsens (or even totally dismantles) our results in
all of the test cases. Therefore we run all of our simulations without this kind of
artificial limiter.

4.2.3 A fully consistent numerical scheme

We want to develop one further scheme which uses the same approach as the one
before, but needs only one SPH loop for all calculations, just like isotropic conduc-
tion does. So we will start over with equation 4.2.4 and try to find a scheme which
covers all the mixed derivatives we encounter in this formula. Please note that
we will again neglect any temperature dependence of κ, as we did in the previous
sections.
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4.2 Anisotropic implementation

For the following derivation we will follow the example of [Petkova and Springel,
2009], who derived an SPH scheme for a similar diffusion equation regarding ra-
diative transfer.

To avoid confusion we want to mention the following conventions again:

• Latin indices like i, j and k denote particles.

• Greek indices like α, β denote components of tensors.

• Bold variables like A are tensors.

Before we start discretizing the modified conduction equation, we have to find
a better estimate for mixed second derivatives. The derivation will at first be
similar to what we showed for isotropic conduction in section 4.1, but will get more
complicated since we also need mixed derivatives now. For the sake of a better
understanding we will repeat the necessary parts, even if we already provided parts
of these calculations earlier.
At first we take an arbitrary quantity Q at ~xj, which we expand around ~xi:

Q (~xj) ≈ Q (~xi) + ∇Q|~xi ~xij +
1

2

∑
αβ

∂2Q

∂xα∂xβ

∣∣∣∣
~xi

(~xij)α (~xij)β +O
(
(~xij)

3) (4.2.14)

Then we multiply both sides by
(~xij)γ

|~xij |2
∂Wij

∂(~xi)δ
and integrate over

∫
d3~xj.

We will further need the kernel derivative expressed as

∂Wij

∂ (~xi)δ
= −W ′

ij

(~xij)δ
|~xij|

(4.2.15)

which we have used already before (see equation 3.1.14).
Let us at first have a look at the first order error term. We can immediately see,
that we get ∫

d3~xj
(~xij)α (~xij)γ

|~xij|2
·
(
−

(~xij)δ
|~xij|

W ′
ij

)
= 0 (4.2.16)

since for all possibilities of α, γ and δ there will always be at least one component,
where the integral vanishes because of an antisymmetric integrand. All these in-
dices go from 1 to 3, so there will be always one component where we have an
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odd amount of ~xij. The denominator and W ′
ij are even with respect to ~xj, so the

integral in total will vanish.

The next step is to calculate the integrals of the second order error term which we
substitute as

Tαβγδ =

∫
d3~xj

(~xij)α (~xij)β (~xij)γ (~xij)δ

|~xij|3
·W ′

ij (4.2.17)

Here we have to distinguish between several cases. Calculations show that

Tαβγδ =



−3
5

if α = β = γ = δ

−1
5

if α = β 6= γ = δ

−1
5

if α = γ 6= β = δ

−1
5

if α = δ 6= β = γ

0 else

(4.2.18)

So basically T is only non zero, if we have two pairs of indices. These calculations
are shown in detail in appendix B.
Plugging all this back into the modified equation 4.2.14, we get:

2

∫
d3~xj

Q (~xj)−Q (~xi)

|~xij|2
(~xij)γ

∂Wij

∂ (~xi)δ
= −

∑
αβ

Tαβγδ
∂2Q

∂xα∂xβ

∣∣∣∣
~xi

(4.2.19)

To infer a general behaviour we have a look at this equation for example with
γ = δ = 0:

Term0,0 =
3

5

∂2Q

∂2x0

∣∣∣∣
~xi

+
1

5

∂2Q

∂2x1

∣∣∣∣
~xi

+
1

5

∂2Q

∂2x2

∣∣∣∣
~xi

(4.2.20)

Since we want to infer an approximation for second order mixed derivatives of Q,
we will have to linearly combine terms for different choices of α and β. We see,
that we get

∂2Q

∂x2
0

= 2 · Term0,0 −
1

2
· Term1,1 −

1

2
· Term2,2 (4.2.21)
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and cyclic permutation for other second derivatives. We can get a similar formula
for mixed derivatives. Consider for example

Term0,1 = −1

5

∂2Q

∂x0∂x1

∣∣∣∣
~xi

− 1

5

∂2Q

∂x1∂x0

∣∣∣∣
~xi

(4.2.22)

We could of course put those two parts together, but it is better to keep them
separated to explicitly indicate the symmetry. This makes things easier, when we
try to reassemble everything.
From this example we get directly

∂2Q

∂x0∂x1

=
5

4
· Term0,1 +

5

4
· Term1,0 (4.2.23)

and cyclic permutations.
Now we have approximations for all types of second order differentiations. To make
the following calculations easier, it is extremely required, that we find a formulation
which contains all our results so far. Luckily we will never need isolated derivatives
of some scalar Q but we will always have a double sum over tensor components and
second derivatives (of the tensor or another scalar). We can then plug everything
together for those two cases:

∑
α,β

∂2 (Qi)αβ
∂xα∂xβ

= 2

∫
d3~xj

~x ᵀ
ij

[
Q̃j − Q̃i

]
∇iWij

|~xij|2
(4.2.24)

∑
α,β

(Qi)αβ
∂2Ti

∂xα∂xβ
= 2

∫
d3~xj

~x ᵀ
ijQ̃i [Tj − Ti]∇iWij

|~xij|2
(4.2.25)

with the substituted tensor

Q̃ =
5

2
Q− 1

2
tr (Q) 1 (4.2.26)

This is a very compact and neat formulation. Since we already mentioned in the
beginning, that parts of the derivation up to this point are similar to what has been
done by [Jubelgas et al., 2004], we can use their outcome to check this formula for
consistency.
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Consider Q to be a scalar, or better Q = Q · 1. Then we get

Q̃ =
5

2
·Q · 1− 1

2
·Q · 3 · 1 = Q · 1 (4.2.27)

Plugging this into either of the estimates above, we get exactly the result we ob-
tained earlier for the isotropic implementation, where we only needed non-mixed
second derivatives: equation 4.1.7.

Before we further analyse the properties of these approximation formulas, let us
at first review our basic equation and show, how we can apply them.
Similar to our last approach we consider only the part of equation 4.2.4 parallel to
the magnetic field. The term conducting along the temperature gradient can be
handled like in the isotropic case.
We start with writing the equation component wise:

du

dt

∣∣∣∣
1st

=
1

ρ
∇ ·
[(
κ‖ − κ⊥

) (
B̂ · ∇T

)
B̂
]

(4.2.28)

=
1

ρ

∑
α,β

∂

∂xα

[(
κ‖ − κ⊥

)
B̂αB̂β

∂

∂xβ
T

]
(4.2.29)

Furthermore we define the components of a tensor A as

Aαβ :=
(
κ‖ − κ⊥

)
B̂αB̂β (4.2.30)

to make the following calculations easier understandable.
The next step is to write the equation only in terms of mixed second derivatives.
Again we have done something similar for the isotropic case.

du

dt

∣∣∣∣
1st

=
1

2ρ

∑
α,β

(
∂2AαβT

∂xα∂xβ
− T ∂2Aαβ

∂xα∂xβ
+ Aαβ

∂2T

∂xα∂xβ

)
(4.2.31)

This equality can be shown most simply by a backwards calculation:

∂2AαβT

∂xα∂xβ
= T

∂2Aαβ
∂xα∂xβ

+ Aαβ
∂2T

∂xα∂xβ
+
∂Aαβ
∂xα

∂T

∂xβ
+
∂Aαβ
∂xβ

∂T

∂xα
(4.2.32)
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Using ∑
α,β

∂Aαβ
∂xα

∂T

∂xβ
+
∂Aαβ
∂xβ

∂T

∂xα
= 2

∑
α,β

∂Aαβ
∂xα

∂T

∂xβ
(4.2.33)

and plugging all back in, we get

du

dt

∣∣∣∣
1st

=
1

2ρ

∑
α,β

(
2Aαβ

∂2T

∂xα∂xβ
+ 2

∂Aαβ
∂xα

∂T

∂xβ

)
(4.2.34)

which is equal to equation 4.2.29.

Now we can use the equations 4.2.24 and 4.2.25 to estimate the second deriva-
tives in equation 4.2.31. We get for particle i :

(4.2.35)

dui
dt

∣∣∣∣
1st

=
1

ρi

∫
d3~xj

~x ᵀ
ij


(
ÃjTj − ÃiTi

)
− Ti

(
Ãj − Ãi

)
+ Ãi (Tj − Ti)

|~xij|2

∇iWij

Re factoring the terms leads us to a more compact expression:

dui
dt

∣∣∣∣
1st

=
1

ρi

∫
d3~xj ~x

ᵀ
ij


(
Ãj + Ãi

)
(Tj − Ti)

|~xij|2

∇iWij (4.2.36)

Now we discretize the integral and get

dui
dt

∣∣∣∣
1st

=
1

ρi

Nngb∑
j=1

mj

ρj
· ~x ᵀ

ij


(
Ãj + Ãi

)
(Tj − Ti)

|~xij|2

∇iWij (4.2.37)

Except of unit conversion we have now reached our goal, to write down one equa-
tion with one single SPH loop to discretize our anisotropic formulation of conduc-
tion. We can see one good property of this equation right away:
We managed to get again the term (Tj − Ti), like we did in the isotropic conduc-
tion case. This ensures, that we have only conduction if the temperatures of two
particles differ (not like with our last approach, where this was not clear at first
sight). Furthermore we have seen, that this type of equation can be used well with
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the conjugate gradient solver.

Still we could have a problem with this approximation formula. To ensure the
correct flow of internal energy from hot to cold (according to the second law of
thermodynamics) we need the tensor

(
Ãj + Ãi

)
to be positive definite. However

from the definition of a variable with tilde (equation 4.2.26) we see immediately,
that this tensor does not necessarily fulfil this condition. For a very anisotropic
setup we can get heat flow in the wrong direction. Furthermore this could lead
to numerical instabilities, which has to be further investigated later. To fix this
we have basically two options, which are both artificial and therefore make the
approximation overall slightly worse

1. Implement a limiter in the code, which checks for non physical heat flows
and removes them, like already mentioned in subsection 4.2.2.

2. Change the tensor to a more isotropic version, which is always positive defi-
nite.

Since it is more straight forward and computationally way cheaper, we decided to
further follow [Petkova and Springel, 2009] and go for the second option:

We want to add an isotropic component to the anisotropic tensor in order to
prevent temperature flowing from cold to warm regions. We already have a pure
isotropic component, which was however proportional to κ⊥ and it is not clear,
if this is already sufficient to do the job. We will therefore not forget about this
fully anisotropic formulation, but further investigate it’s behaviour in our tests
and cluster simulations in the next sections.

Adding another isotropic component we could replace the tensor Ã by

Ã→ αÃ +
1

3
(1− α) tr

(
Ã
)

1 (4.2.38)

Calculations show, that we need to set α ≥ 2
5
. We use the minimum value to

hopefully prevent a big error in the estimate. This leads to Ã → A, which is
computationally very good, since we have to compute A anyway for each particle.
We call this formulation the isotropised discretization.
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It can be easily seen, that A itself is positive definite. Diagonalising leads to

diag (A) ∝ diag
(
B̂ ⊗ B̂

)
=

 0 0 0

0 0 0

0 0 1

 (4.2.39)

How to write these two equations in order to use the conjugate gradient solver can
again been found in appendix A.

Now that we have calculated two more ways of discretizing anisotropic conduc-
tion, let us sum up our options in the next subsection before we come to test
simulations of the different implementations.

4.2.4 Summary and expectations for the different schemes

In the last few subsections we presented several approaches to implement anisotropic
thermal conduction into the SPH code.
At first we had the idea to modify only the conduction coefficient and weight it
with the projection of the temperature gradient onto the magnetic field. We have
seen that it could make a difference to recalculate the temperature gradient in
each iteration step, or just leave it fixed during the integration per timestep. With
this easy approach we could only fully suppress conduction perpendicular to the
magnetic field all the time, regardless of the magnetic field strength.

After that we argued, that perhaps this would not be sufficient, but that we had
to perform conduction directly along the magnetic field lines. So we split up the
conduction into parts parallel and perpendicular to the magnetic field and assigned
different coefficients to both parts. Rewriting the equation we got one term along
the magnetic field lines and one isotropic term along the temperature gradient. We
mentioned, that usually only the part along the magnetic field lines should play a
role, although we left the possibility open to include a suppressed perpendicular
part.
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Identifier Description Pros Cons
1a Change conduction coeffi-

cient. Precalculate energy
gradient once.

Uses existing
code without big
changes.

Allows only full
suppression.

1b Change conduction coeffi-
cient. Recalculate energy
gradient in each iteration
step.

Uses existing
code without big
changes.

Allows only full
suppression.

2 Distinguish between con-
duction along and perpen-
dicular the magnetic field.
Split up calculation of en-
ergy gradient and diver-
gence.

Allows a sup-
pression factor.

Computationally
expensive and
possibly wrong
heatflux.

3a Distinguish between con-
duction along and perpen-
dicular the magnetic field.
Fully anisotropic approxi-
mation in one SPH loop.

Allows a sup-
pression factor.

Possibly wrong
heatflux.

3b Distinguish between con-
duction along and perpen-
dicular the magnetic field.
Isotropised approximation
in one SPH loop.

Allows a sup-
pression factor.

Slightly wrong
solutions.

Table 2: Summing up the different implementation ideas with identifier numbers
for further reference. The numbers are according to the subsection 4.2.X where
we described this approach. Added advantages and disadvantages for each entry.
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4.2 Anisotropic implementation

For this approach we presented two basic approximations: In the first one we split
up the gradient and the divergence part and formulated the equations using two
SPH loops.
Afterwards we derived a new formulation which needs only one loop and discussed
the properties of the solution. We added a modified version which ensures heat
flow in the right direction to the cost of estimation errors.

A short list including identifiers for each approach, which we will need for ref-
erence in the next section) can be found in table 2.

In section 4.1 we mentioned the modification account for a saturation effect when
the density of the gas is very low. We should be able to combine this modifica-
tion with all of our implementation types without running into problems. The
modification combines the mean free path with the typical length scale of the tem-
perature gradient. Perhaps we need to further combine this with the gyro radius,
however this is not clear at the moment.

The next step is, to take the implementations of our various approaches in GADGET
and try to judge, which ones are usable for cosmological simulations by perform-
ing several tests. Furthermore we use this opportunity to analyse and discuss the
properties, advantages and disadvantages of each implementation type.
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4.3 Tests for the code

As a next step we carry out several tests for the different implementations, we pre-
sented earlier. We use rather simple test cases, where we can verify the behaviour
analytically, before we apply it to a real problem like galaxy clusters.
For all of the following tests we use initial conditions with "glass like" particle
distributions26 and therefore rule out any alignment effects which can arise by the
definition of a grid. Even if the test setups could be done in one or two dimensions,
we carry out the whole simulation in 3D to make sure everything works for our
final cosmological simulations later on.
We always use the Wendland c6 kernel, for details please see section 3.3.
Furthermore we run the simulations with gas only and disable any accelerations on
the SPH particles which would come from self-gravity or the hydrodynamics equa-
tion of motion. With this approach we ensure, that hydrodynamical properties
like the density and the internal energy are computed correctly in their respective
SPH loops, but we evolve only the conduction equation to thoroughly test the
behaviour of our implementations.
In the next subsections we will always start by describing a test case and trying
to derive an analytic solution. As we will point out later, we will only be able
to derive an analytic solution for a constant conduction coefficient, which we will
enforce in our code for the test problems.
Afterwards we show the behaviour of the existing code (i.e. isotropic conduction)
with a reference run and further present our results with the new anisotropic ap-
proaches. We will indicate the different implementations by using the identifiers
we defined in table 2. For each test we will always show the different results at
the same simulation time, to be able to properly compare the outcomes.

4.3.1 Temperature step problem

For the beginning we reproduce the first test from [Jubelgas et al., 2004] and modify
it, so that we can apply it to the new anisotropic conduction implementation.
The basic idea is, to set up a temperature step and let the particles exchange heat
energy. We fix the particle positions (and also the magnetic field, which we will

26A random field of particles but with a fixed density.
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later add) and therefore only evolve the conduction equation.27 Also considering
a fixed conduction coefficient instead of Spitzer conduction we can pull the κ out
of the divergence and get

du

dt
=
κ

ρ
∆T (4.3.1)

This simplified conduction equation can be solved analytically (depending on the
initial conditions) and therefore we can then compare this analytical solution to
the results of the code. We assume a gas with constant density and use

u = cv · T (4.3.2)

with the specific heat capacity cv. We can rewrite equation 4.3.1 to

du

dt
= α ·∆u (4.3.3)

with the so called thermal diffusivity α = κ
cvρ

= const. α is simply a diffusion
coefficient, as we have already discussed them in the analytic part before (section
2.2).
For this temperature step problem it is sufficient to solve the equation in only one
dimension. The more general solution can be easily inferred later and basically
differs only in some factors. We follow [Jubelgas et al., 2004] and [Landau and
Lifschitz, 2007], to solve this equation through Fourier transformation:

u(t, x) =

∞∫
−∞

uk(t)e
ikx dk

2π
(4.3.4)

uk(t) =

∞∫
−∞

u(t, x)e−ikx dx (4.3.5)

Equation 4.3.3 expressed in Fourier space looks like

duk(t)

dt
= −αk2uk(t) (4.3.6)

27For this we can use the NO_ACCEL switch in GADGET.
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with the simple solution
uk(t) = uk0e

−αk2t (4.3.7)

Using u(t = 0, x) = u0(x) we can express the unknown coefficient in terms of the
initial condition in real space:

uk0 =

∞∫
−∞

u0(x′)e−ikx
′
dx′ (4.3.8)

Now we plug this result back into the reverse Fourier transformation (eq. 4.3.4)
and get

u(t, x) =

∞∫
−∞

dx′
∞∫

−∞

dk

2π
u0(x′)e−αk

2teik(x−x′) (4.3.9)

At first we perform the integration over dk. For this we rewrite the exponentials
completing the square to bring them into the typical gaussian form, which is easy
to integrate. So we use:

− αk2t− ik(x− x′) = −αt
[
k − i(x− x′)

2αt

]2

− (x− x′)2

4αt
(4.3.10)

and perform the Gaussian integral like

∞∫
−∞

dy e−βy
2

=

√
π

β
(4.3.11)

Therefore we get in total

u(t, x) =
1

2
√
παt

∞∫
−∞

dx′ u0(x′) exp

(
−(x− x′)2

4αt

)
(4.3.12)

So far concerning the general solution, at this point we need to plug in the specific
initial conditions of our problem. For the temperature step they can be defined as

u0(x′) =

u0 − ∆u
2

for x′ < xm

u0 + ∆u
2

for x′ > xm
(4.3.13)
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with xm being the position of the temperature step.
Plugging this into equation 4.3.12 we get two integrals to perform:

u(t, x) =
1

2
√
απt

 xm∫
−∞

dx′
(
u0 −

∆u

2

)
e−y

2

+

∞∫
xm

dx′
(
u0 +

∆u

2

)
e−y

2

 (4.3.14)

where we substituted y ≡ y(x′) =
√

(x−x′)2
4αt

.
We split this expression into two parts: One which is multiplied by u0 and one
which is multiplied by ∆u/2. The u0 term can be simply integrated using again the
formula for the Gaussian integral (equation 4.3.11), which results in 2

√
απt · u0.

For a little consistence check consider ∆u = 0 then we get u(t, x) = u0, which
is what we would expect for a isothermal region without any other effects than
thermal conduction.

The second term, with ∆u, is a bit more sophisticated to integrate. The first
step is to extend the boundaries of second integral to the total space and plug in
again the solution for the total integral:

(4.3.15)

∞∫
xm

dx′
∆u

2
e−y

2

=

∞∫
−∞

dx′
∆u

2
e−y

2 −
xm∫
−∞

dx′
∆u

2
e−y

2

=
√
απt∆u−

xm∫
−∞

dx′
∆u

2
e−y

2

The remaining integral is the same as in 4.3.14, therefore we get

u|2nd =
∆u

2
·

1− 1√
απt

xm∫
−∞

dx′ e−y
2

 (4.3.16)

To be able to perform the final integration we again split the integral up into two
integrals starting at zero and rewrite them to integrals over dy. We get

u|2nd =
∆u

2

1− 2√
π


∞∫

0

dy e−y
2 −

x−xm
2
√
αt∫

0

dy e−y
2


 (4.3.17)
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Now the remaining integrals both fulfil exactly the definition for the error func-
tion28 and we can write the expression as:

u|2nd =
∆u

2

[
1−

(
erf(∞)− erf

(
x− xm
2
√
αt

))]
= erf

(
x− xm
2
√
αt

)
(4.3.18)

using erf(∞) = 1. Now we can plug this all back in into equation 4.3.14 and we
get as result

u(t, x) = u0 +
∆u

2
· erf

(
x− xm
2
√
αt

)
(4.3.19)

Now we cross check our calculations with the existing code of isotropic conduction.
The result is shown in fig. 17. The outcome from the SPH particles (black points)
matches very well with the analytic solution we just derived (green line). There-
fore we see, that the existing implementation works even for sudden temperature
jumps.

Figure 17: First conduction test: One dimensional temperature step without mag-
netic field. The green line is the analytical solution (eq. 4.3.19), the black dots
are SPH particles. Both solutions match up very well.

28For details please see [Bronstein et al., 2008].
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The next step is, to include a magnetic field into the test problem to check the
new anisotropic implementation. For simplicity we keep the magnetic field fixed.29

We introduce a homogeneous field in direction (x, y, z) =
(

1√
2
, 1√

2
, 0
)
. Hence we

get an angle of 45◦ between the ~B-field and the energy gradient, which is in our
setup parallel to the x-axis.

With this we can check each of the implementations we discussed in section 4.2.
At first we start with the easiest approach, only modifying the conduction coef-
ficient by a factor of cos 6

(
~B,∇T

)
. As can be seen in figure 18 the simulation

reproduces very well the result we derived in analytically. This is not surprising,
since the modified code is basically only the isotropic implementation plus the
projection factor and we have already seen in figure 17, that the old code produces
good results for this particular test problem. We get this result already for the
implementation 1a, so we can assume recalculating the energy gradient in each
step produces the same result. Nevertheless we carried out this simulation, too,
to successfully verify our expectations.

Now we test our second, more complex approach, where we split up the calcu-
lations into two SPH loops, as described in section 4.2.2. Now we can compare
the simulation to the analytic solution with an effective κ′ = κ · cos2 6

(
~B,∇T

)
.

One cosine comes from the scalar product in the construction of this approach,
the other one is the de-projection from the magnetic field onto the temperature
gradient. As can be seen in figure 19, this requires some more discussion.
We see immediately, that this implementation does not ideally reproduce the ana-
lytic solution. Especially near the discontinuity in the middle, the result is far off.
Exactly in the middle of the plot we see, that the particles have still more or less
their initial temperature, hence nearly no conduction was carried out. Or rather
conduction was carried out, but all the energy transports cancelled each other
out. At least the net energy transport follows the second law of thermodynamics
everywhere. A bit away from the temperature step, we see that our simulations
reproduce the solution again pretty well. Around x = 47 and x = 53 there are

29Otherwise we would not be able to write down an analytic solution so easily.
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Figure 18: Temperature step with a homogeneous magnetic field. The magnetic
field lines enclose an angle of 45◦ with the x-axis. Here we checked the imple-
mentation approach 1a (see table 2). Type 1b gives us exactly the same result.
Plotted is again the analytic solution in green and the SPH particles in black. As
before these match up very well.

little broad bumps in the result, which we unfortunately can not explain.
The whole result is symmetric, as the initial setup suggested. We get more scatter
than in our previous runs, which is probably related to the wrong behaviour of
the solution. Furthermore the quadratic kernel derivative can be a reason for this
outcome.
At this point it is not yet clear, if the algorithm is simply wrong or just has prob-
lems with discontinuities in the temperature. Therefore we will have to further
investigate it’s behaviour with other tests.
To check for the convergence behaviour in this case, we let the simulation run for
a much longer time. A plot for a 100 times later snapshot is shown in figure 20.
As we see, the result converges more and more towards the analytic solution. The
temperature values at the initial discontinuity do not stay unchanged and start to
approach their final values. Induced through the initial error we see oscillations in
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Figure 19: Temperature step with a homogeneous magnetic field. The magnetic
field lines enclose an angle of 45◦ with the x-axis. Here we checked the implemen-
tation approach 2 (see table 2). Plotted is again the analytic solution in green
and the SPH particles in black. We see, that the algorithm follows the analytic
solution farther out from the step itself, however the discontinuity seems to be a
big problem.

the temperature profile with decreasing amplitude the farther we go away from the
center. The oscillations are expected to damp even more as the simulation pro-
gresses in time, so that the temperature will reach the final state of u = 1500 erg/g

at some point. Since the error function in the solution becomes rather flat for late
times we expect the errors to be present for a rather long period, though. Still this
is a rather good result, since the errors get damped away instead of being stable
or even growing.

In section 4.2.2 we briefly mentioned the possibility of a flux limiter, which ensure
energy transport in the correct direction. However we stated, that we would not
further pursue this idea. The reason for this can be seen in figure 21: With the flux
limiter we get even worse results, than without. There is more scatter all around
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Figure 20: The same simulation as figure 19 at a hundred times later time. We
see, that the solution further converges to the analytic result, however we get more
and more oscillations due to the error at the initial temperature step.

the analytic solution and surprisingly we get particles from the warm region which
heat up even more. But this is exactly the behaviour we wanted to prevent, by
applying the flux limiter. This shows us, that it is not a very good decision to add
such strong artificial constraints into a difficult numerical formula.
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Figure 21: Simulation again with implementation type 2, but now with a flux
limiter to ensure energy transport only from warm to cold regions. Although we
can still recognize the basic shape of the solution, this basically destroys the whole
solution. Therefore we give up on the idea of such a limiter.
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Let us now come to the third implementation we derived, or rather the two vari-
ations with a fully anisotropic setup and a more isotropised variation. We fit the
results again to the same modified analytic solution as before.
The fist possibility (3a) is plotted in figure 22. This implementation can reproduce
the analytic solution quite well, however we get more scatter than in the previous
runs. It is yet still not clear, what the origin for this noise exactly is, but for a cos-
mological simulation this won’t matter too much since thermal conduction is not
the dominating effect anyway. Probably it due to the fact, that this formulation
does not ensure a positive definite transport matrix, which induces errors into the
conjugate gradient solver. However we see, that for a 45◦ magnetic field, we do
not really need an artificial isotropisation.

Figure 22: The temperature step problem, simulated with implementation type
3a. We see quite some scatter, but the simulation reproduces the analytic solution
well.

In figure 23 we show the latter case of a more isotropised formulation. It was
clear from the beginning, that we would never get the exact analytic result, since
the isotropisation was artificially added into the numerics. As we can see here,
our result is not to far off the real solution. In contrast to the full anisotropic
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formulation we get less scatter since the anisotropic part of the equation is mixed
with an isotropic component and therefore has a weaker effect.

Figure 23: Same as the previous plots, now simulated with implementation type
3b. As expected, the simulation produces a result which is a little off the analytic
solution, although the general shape matches very well.
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So far we have run all tests with a magnetic field 45◦ to the temperature gradient.
To exclude the arbitrariness of this choice and to study some more properties of
the different implementations, we want to carry out the tests also with two other
setups:

• A magnetic field along the temperature gradient to check if the isotropic case
can be recovered with the new code with sufficient accuracy.

• The other extreme case of a magnetic field perpendicular to the temper-
ature gradient to see, if the different implementations really recover total
suppression of heat flux as we demanded in the beginning.

To shorten this discussion and make comparisons easier we have always combined
all four runs into one figure extended over two pages. In fig. 24 we show the results
for a parallel magnetic field.
As expected the simple approach reproduces the result exactly, since we did not
change the numerical approach. So it recovers exactly the isotropic case.
The split-up approach and the fully anisotropic case of the final implementation
show exactly the same result: The analytic solution is recovered very good, how-
ever there is again noise in the plot. It is very good, that we do not see any strange
behaviour for implementation type 2 here any more, like we did for the diagonal
magnetic field setup. Therefore the error we see in figure 19 is at least not only
due to the discontinuity, but is strongly induced by the conduction component
perpendicular to the temperature gradient. We expect to see a error dominated
picture for the perpendicular magnetic field.
The isotropised run shows again less scatter, however the result is again a bit off
the analytic solution.
In total these results are all fairly good in recovering the isotropic case.

In figure 25 we show similar plots for a magnetic field perpendicular to the tem-
perature gradient. From our preconditions we expect no conduction in this case,
so the initial conditions should be stable except numerical noise.
The simplest implementation already shows some noise, which leads to conduction.
But the state is not much evolved yet. Over time this error will progress more to
outer parts and grow with increasing speed.
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The split up approach shows less real progression of the initial state, however
it presents more noise around. Warm particles get partially even hotter, which is
not very good, even if it is just noise.
For the implementation type 3a we see a rather stable solution as expected. We
encounter again the regime, where the anisotropy is strong enough for heat to
flow in the wrong direction. We expected that behaviour and this was why we
implemented also the isotropised variation.
This approach can by construction not show a stable solution: The anisotropic
part may be suppressed, but the isotropic part continues to work independent of
the magnetic field. So we get in total less conduction, but still a clearly non van-
ishing component.
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Type 1a/b

Type 2

Figure 24: To be continued on the next page.
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Type 3a

Type 3b

Figure 24: Temperature step problem with a magnetic field parallel to the tem-
perature gradient. Comparison plots for all four implementations.
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Type 1a/b

Type 2

Figure 25: To be continued on the next page.
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Type 3a

Type 3b

Figure 25: Temperature step problem with a magnetic field perpendicular to the
temperature gradient. Comparison plots for all four implementations.
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Finally we want to test what happens for a random chaotic magnetic field. In
section 2.3 we have shown several opinions, how much a chaotic magnetic field
should be overall suppress thermal conduction. Here we want to give an estimate
for the suppression factor using our different implementations. We fit a factor of
the conduction coefficient in the analytic solution to the SPH data points. Please
note, that this result is not totally reliable, since we used a totally random mag-
netic field without ensuring ∇ · ~B = 0. Still we should get a fairly good estimate.
Another comparison plot for this setup is shown in figure 26. We see the typical
behaviour of the different implementations, as thoroughly discussed earlier. For
the suppression factor due to the random magnetic field we get different results
lying roughly between 0.3 and 0.44, depending which approach we trust most. An
easy justification for these results can be given like in the following:

We set up a random distribution of values for the angle between the magnetic
field and the temperature gradient. Assuming a temperature gradient for example

in x-direction, we see that we are in fact interested in the distribution of |
~B·∇T |
| ~B||∇T | ,

since we should not care whether the magnetic field is either parallel or anti-parallel
to the gradient. The mean vector for all magnetic fields is with respect to this
variable is then (1; 1; 1), which leads to a factor of 1/

√
3 for the scalar product.

In implementation type 1a/b we have only this scalar product as a weighting
factor, therefore we expect a mean conductivity of κ′ ≈ κ/

√
3, which is slightly

higher than what the simulation shows us.
The other approaches contain effectively the scalar product squared, due to back
projection onto the temperature gradient for comparison. This leads to a factor
of 1/3, which matches with the simulations’ outcome. Furthermore one often as-
sumes a suppression factor of about 1/3 (e.g. [Dolag et al., 2004], [Zakamska and
Narayan, 2003] and references therein) to mimic anisotropic conduction with an
isotropic code. This assumption is hereby justified by our results. Furthermore
this matches the assumptions by [Rosner and Tucker, 1989], which we presented
in section 2.4.
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Type 1a/b

Type 2

Figure 26: To be continued on the next page.
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Type 3a

Type 3b

Figure 26: Temperature step problem with a totally random (not source free)
magnetic field. Shown are comparison plots for all four implementations.
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4.3.2 Sinusoidal temperature variation

Since the temperature step test contained an artificial discontinuity, we want to
test the code also with a similar setup but taking a smooth temperature distribu-
tion. Like [Cleary and Monaghan, 1999] we decided to take a sinusoidal tempera-
ture distribution at t = 0 which has one main advantage in comparison to other
smooth setups: The analytic solution can be calculated without any numerics and
is therefore well suited for comparison.

At first we derive the analytic solution for the initial conditions:

u0(x′) = u0 · sin (kx) (4.3.20)

with a generic wavenumber k. We plug this equation again into the last general
step of the previous calculation, eq. 4.3.12 and get

u(t, x) =
u0

2
√
παt

∞∫
−∞

dx′ sin (kx′) exp

(
−(x− x′)2

4αt

)
(4.3.21)

We use the Eulerian formula to express the sine as two exponentials:

sin (kx′) =
1

2i

(
eikx

′ − e−ikx′
)

(4.3.22)

To solve the integral we will complete the square to be able to perform the standard
Gaussian integration. The whole exponent can be written as

± ikx′ − (x− x′)2

4αt

=− 1

4αt

[
x′

2 − 2 (x± i2αkt)x′ + x2
]

=− 1

4αt

[
(x′ − x∓ i2αkt)2 ∓ i4αktx+ 4α2k2t2

]
=− (x′ − x∓ i2αkt)2

4αt
± ikx− αk2t (4.3.23)
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Therefore we get the two integrals, which differ only in some signs, (using eq.
4.3.11)

(4.3.24)±e±ikxe−αk2t
∞∫

−∞

dx′ exp

(
−(x′ − x∓ i2αkt)2

4αt

)
= ±e±ikxe−αk2t

√
π · 4αt

Proof, that equation 4.3.11 is also valid for a complex exponent is presented in
appendix C.

Summing up the two integrals and multiplying the result by the prefactor of equa-
tion 4.3.21 we get the final result:

u(t, x) = u0 sin (kx) e−αk
2t (4.3.25)

To cover a wide range of wave like initial conditions30 we will specify two cases:

1. Half a wave inside a box with zero boundary conditions

2. A full wave (with constant offset to prevent negative energies) with periodic
boundary conditions

For the first case we need to modify our calculations from above such, that the
integral boundaries are be set to the box boundaries. So we can restart the cal-
culations at eq. 4.3.24. We need again rules of complex integration to get to the
following result31

± e±ikxe−αk2t
√
παt

[
erf
(
L− x∓ i2αkt√

4αt

)
− erf

(
−x∓ i2αkt√

4αt

)]
(4.3.26)

Multiplying the prefactor we skipped and summing up the two terms we get in
total

(4.3.27)
u(t, x) =

u0

4i
e−αk

2t

·
∑
±

±e±ikx
[
erf
(
L− x∓ i2αkt√

4αt

)
− erf

(
−x∓ i2αkt√

4αt

)]
30Without considering superpositions of different waves.
31As we prove in appendix C a simple integration, without special consideration of complex
parts, like in section 4.3.1 is sufficient.
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With the box size L. The integration details can be found in appendix C.

Despite the appearance of the remaining terms this expression is pure real for
the domain of definition x ∈ [0, L]. Instead if showing this for the common case,
we simply checked it for all of our example calculations. As we did with the previ-
ous test, we will at first run simulations with the existing isotropic implementation,
to verify the code and our analytic derivation before we come to the second case.
We set up a half sine wave with an initial amplitude of 1000 erg/g in our box
and zero outside. The evolution of the temperature distribution taken at some
arbitrary snapshot is plotted in figure 27.

Figure 27: Test with half sinusoidal wave in temperature and zero boundary condi-
tions without magnetic field. The green line is the analytical solution (eq. 4.3.28),
the black dots are SPH particles. In the middle part the simulation agrees very well
with the analytic solution. The outer part is not as reliable, since SPH estimates
are not very exact at the boundaries.
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The simulation and the analytical solution match up pretty well, except when
it comes near to the box boundaries. Since there are no more particles outside
the initial sine wave, the SPH approximations (for example for the density) break
down and we get a result slightly off the real solution. This is expected and has
nothing to do with the quality of the implementation, since it simply shows just
an intrinsic property of SPH calculations themselves. Similar to the last section
we used again a periodic setup in the y and z directions.32

For the second case we just need to add the effect of a constant offset to equation
4.3.25. This offset can be simply added to the result33, as we have seen by the
calculations in section 4.3.1. Therefore we get the following result:

u(t, x) = u1 + u0 sin
(

2π
x

L

)
e−4π2αt/L2

(4.3.28)

We chose u1 = 1500 erg/g and again u0 = 1000 erg/g. The resulting plot compar-
ing simulation outcome and solution is shown in figure 28.

In comparison to the last setup we have no boundaries with missing particles,
so we get a very good match up between the simulation and the analytic solution.

Now that we know, that the isotropic implementation reproduces the result of
our calculations, we can redo the tests with magnetic fields included. We will
however only carry on with the second test setup, to prevent confusion because
of the errors we found in the first case. We compare the simulations to similar
modified analytic solutions, as we did for the temperature step:

• κ′ = κ · cos 6
(
~B,∇T

)
for implementation type 1a/b

• κ′ = κ · cos2 6
(
~B,∇T

)
for the others

At first we put in a magnetic field of arbitrary strength parallel to the x-axis. Since
the magnetic field is then exactly parallel to the temperature gradient, we expect
the anisotropic implementations to reproduce the same findings we just presented
32Actually we use periodicity in all three spatial directions and expand the numerical box in
x-direction around the sine wave, to mimic non periodicity.

33Only for periodic boundary conditions!
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Figure 28: Test with full sinusoidal wave in temperature and periodic boundary
conditions without magnetic field. The green line is the analytical solution (eq.
4.3.28), the black dots are SPH particles. We get even less scatter for this smooth
setup as we had with the temperature step earlier. Both solutions match up so well,
that one can hardly see the SPH particles plotted behind the analytic solution.
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for the isotropic run. The results are shown in a combined plot in figure 29.
As previously with the temperature step distribution we get full agreement of the
simulation outcomes to the analytic solution for all implementations except the
isotropised run. It is expected to give a slightly wrong solution, like in previous
runs.
As we can see, when we compare figure 29 to the plots in fig. 24, we get much less
scatter for a smooth initial setup in comparison to a discontinuity.

As a next step we include again a magnetic field parallel to (1; 1; 0). As expected
from the temperature step tests, we get again a good agreement for the simple
approach of implementation type 1a and 1b.
Before we had some problems with the split up approach, getting not such good
matchups near a discontinuity. As predicted in section 4.3.1, we get perfectly good
results for a smooth setup. We do not see any discrepancy nor is there much scat-
ter. As further tests with much steeper gradients in the setup show, this behavior
stays consistent, as long as there are enough particles to resolve the slope of the
temperature distribution.
Similarly we do not get any noise for the remaining two runs. The fully anisotropic
implementation 3a fits the analytic solution perfectly while the isotropised run
shows again the expected offset.

Finally we rerun the same test but with a magnetic field in y-direction, there-
fore we expect the temperature distribution to be more or less stable. In figure 31
we see nearly no noise in all of our four runs and except of the obvious error in the
isotropised run (due to isotropic component, as before) we find very good matches
with our predictions. It is interesting to see, that we do not see any heat being
transported in the wrong direction with the implementation type 3a, as we had it
for the temperature step problem. Probably we just do not see any wrong conduc-
tion here since the temperature gradients are not as steep as for the discontinuity
before.
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Type 1a/b

Type 2

Figure 29: To be continued on the next page.
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Type 3a

Type 3b

Figure 29: Test with full sinusoidal wave like temperature distribution and peri-
odic boundary conditions with magnetic field parallel to the temperature gradient.
Comparison plots for all four implementations.
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Type 1a/b

Type 2

Figure 30: To be continued on the next page.
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Type 3a

Type 3b

Figure 30: Test with full sinusoidal wave like temperature distribution and periodic
boundary conditions with magnetic field 45◦ between x- and y-axis. Comparison
plots for all four implementations.
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Type 1a/b

Type 2

Figure 31: To be continued on the next page.
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Type 3a

Type 3b

Figure 31: For completeness the same sinusoidal setup with periodic boundaries.
This time including a perpendicular magnetic field. Comparison plots for all four
implementations.
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4.3.3 Hot gas sphere

As next step we test how the code behaves for a more complex scenario. Similiar
to the second test from [Jubelgas et al., 2004] we set up a sphere of hot gas. We
use spherical symmetric initial conditions for the internal energy in the form of

u0(r) = u0e
−βr (4.3.29)

First we run the test again without any magnetic field. Similiar to the derivation
of the solution of the 1D test, we start with the conduction equation with constant
conduction coefficient and fixed particles. The calculations are except constants
the same, so we can start with a modified version of equation 4.3.12:

u(t, x) =
1(

2
√
παt
)3

∞∫
−∞

dx′
∞∫

−∞

dy′
∞∫

−∞

dz′ u0(~x′) exp

(
−(~x− ~x′)2

4αt

)
(4.3.30)

Plugging in the initial conditions (eq. 4.3.29) we have a three dimensional integral
over an exponentially damped gaussian. This integral is however not easy to solve
so we have to rely on numerical integration methods. To preserve the quality of
the solution and to be able to verify the simulation results with it, we will use an
existing implementation for the numerical integrator. Since we utilise IDL for our
plotting routines it is convenient to use the provided integration solver int_3d.
To prove, that the code and the integrator produce the same results, we run the
test at first again without any magnetic field, hence isotropic conduction. The
results from the simulation as well as from the numerically integrated equation
4.3.30 are shown in figure 32. The simulation result and the analytical solution
match up pretty well. Slight differences occur because of the numerical integration
(especially the choice of integration boundaries) in the analytic solution as well as
because of the resolution of the simulation. The bin sizes are strictly limited by
the amount of particles in the simulation.

Now we include a homogeneous magnetic field pointing in x-direction. The calcu-
lation of a analytical solution is even more complicated as before. One would have
to start the calculation from the beginning with the modified conduction equation
and recalculate the Fourier transformations. Unfortunately a Cartesian approach
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Figure 32: 3D conduction test: Temperature map of a hot gas bubble without
a magnetic field. The plots show a slice through the middle of the bubble. The
left image shows the simulation results while the right one displays the numerical
integration of the analytic solution.

as well as using spherical coordinates leads to non converging integrals. Therefore
we can only analyse our code’s results qualitatively.

At first we run the code with implementation 1a. The result at the same time as
the last plot is shown in fig. 33.
Since the implementation should suppress energy transport perpendicular to the
magnetic field, we would expect to have a higher transport and therefore smooth-
ing in x-direction than in y- and z-direction. In the plot we see however a totally
contradictory behavior. The implementation of type 1b does not lead to any bet-
ter results, therefore we can hereby rule out the approach of just reducing the
conduction strength via the direction of the magnetic field.
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Figure 33: Hot gas bubble with a homogeneous magnetic field in positive x-
direction using implementation type 1a. Plotted is only the simulation result.
The results are totally contradictory to our expectations and therefore rule out
the approach.

The test using implementation type 2 (figure 34) leads qualitatively to the ex-
pected result. The range of temperatures is also consistent with our expectations.
Since we do not only change the direction of the energy transport but also decrease
the efficiency, the peak temperature should still be higher than in the run without
magnetic field in figure 32. A comparison to figure 33 is not useful, since the total
behavior of the implementation there is incorrect.

Running the same test with approach 3a (figure 35) we get a similar result. The
orientation of the ellipsoidal temperature distribution is correct, and we get sim-
ilar values for |x| > 5cm. Only the central peak is much lower in this run, these
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Figure 34: Hot gas bubble with a homogeneous magnetic field in positive x-
direction using implementation type 2. Plotted is only the simulation result. The
overall behavior is as expected.

particles have given more energy away than before. It is not clear, which of these
results is the better one.

For the isotropised run (figure 36) we get, overall lower temperature values and a
much more circle like ellipsoidal structure in the central region. This matches our
expectations, since we added an artificial isotropic component to the conduction.
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Figure 35: Hot gas bubble with a homogeneous magnetic field in positive x-
direction using implementation type 3a. Plotted is only the simulation result.
The overall behavior is comparable to figure 34.
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Figure 36: Hot gas bubble with a homogeneous magnetic field in positive x-
direction using implementation type 3b. Plotted is only the simulation result.
In comparison to figure 35 the temperature is overall lower and the anisotropy is
less present.
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4.4 Summing up the test results

In the last section we have presented several ideas, how to implement anisotropic
thermal conduction and thoroughly tested the approaches with different tempera-
ture and magnetic field setups. Before we finally come to cosmological simulations
with the new code, we want to sum up our findings so far and try to decide, which
implementation(s) we use for further runs.

Implementation type 1a/b:

We have seen in all tests, that for the approach of only weighting the conduc-
tion coefficient with the projection of temperature gradient and magnetic field, it
does not make a difference if we recalculate this projection in each iteration step
of the conjugate gradient solver, or not. Therefore 1a and 1b are equal and to
save computation time we can neglect the recalculation.
In the hot sphere test we have seen, that this approach does not produce the ex-
pected result at all. It generated an anisotropy, but in the wrong spatial direction.
It is not clear to us why this happened, but nevertheless this rules out the ap-
proach.
Except of this strong criterion we could anyway use this approach only in a very
limited way, since it does not allow us to implement, how much we want to sup-
press conduction perpendicular to the magnetic field: It assumes always a total
suppression, which is probably sufficient for galaxy clusters. However one would
need be careful when it comes to other applications.

Implementation type 2:

We have seen that although the split approach gives us always more or less the
expected solution, it has several limitations and problems on it’s own:
The temperature step test in comparison to the sinusoidal setup revealed, that
this approach has a serious problem with discontinuities in the temperature dis-
tribution. The outcome is in general not to bad, however we can not guarantee
for temperature to be transported only from warm to cold regions. This leads not
only to wrong physical results but also creates a lot of noise in the simulation out-
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comes, since the conjugate gradient is not designed to work properly under these
circumstances.
Additionally this approach uses two SPH loops, which limits it’s use to high order
kernels only. Otherwise we would see much bigger errors and a lot more noise.
Besides that, this approach is numerically highly inefficient (about twice the com-
putation time as the other implementations), so it is not very wise to continue
using it since we found better alternatives.

Implementation type 3a/b:

These two implementations show promising results and it is very hard to judge,
which one is better. The tests we did totally confirm our thoughts in section 4.2.3:
If the setup is not extremely anisotropic we get very good results with the fully
anisotropic approach (1a). For the temperature step test where we aligned the
magnetic field totally perpendicular to the temperature gradient, we saw heat flux
in the wrong direction similar to implementation type 2. Still in general the results
looked better with approach 3a. And without the discontinuity we could not see
this kind of wrong behaviour at all, which makes this implementation probably
the best overall choice.
The isotropised version (3b) did never not show this kind of wrong transport of
heat, however it could never reproduce the analytic solutions of our tests exactly
due to the fact that we added an artificial isotropic term into the numerics. It is
also because of that, that this implementation violates one of our prerequisites:
to be able to fully suppress conduction perpendicular to magnetic fields (except
of numerical noise of course). The isotropic component will always conduct heat,
which makes total suppression impossible.
Both types show noise in the presence of discontinuities in the temperature dis-
tribution, however they reproduce the analytic solution very well. So they are
the most favoured approach so far. It is hard to decide, which one is the better
approach, since both have their advantages and disadvantages and all the errors
we saw for them are only on a very small scale when it comes to cosmological dy-
namics. Therefore we will run our cluster simulations with both implementations
and try to further judge from the outcome of these simulations.
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5 Application to Galaxy Clusters

In this section we describe an existing set of cluster simulations, which we use
for resimulations with various setups. We analyse the effects of our anisotropic
conduction implementation in section 5.2 and discuss the influence of cooling, star
formation and supernova feedback onto the simulation.
Afterwards we conclude by comparing our results to cosmological simulations in-
cluding anisotropic conduction carried out by other groups in section 5.3.

5.1 Sample clusters from the Dianoga set

Resimulating a cosmological box from the Dianoga set, we are able to start with
reference runs without thermal conduction and compare the outcome to existing
simulations. Afterwards we can study the effects of isotropic as well as anisotropic
thermal conduction.

The Dianoga set consists out of several galaxy clusters with massesM > 1015M�/h.
A sample of 20 of these clusters is mentioned for the first time in the PhD thesis
of [Bonafede, 2010] and further analysed in [Bonafede et al., 2011].

Following [Bonafede et al., 2011], we carry out our simulations with a ΛCMD34

cosmological model using:

• Ωm = 0.24: the cosmic matter density

• Ωb = 0.04: the baryonic content

• ΩΛ = 0.76: the vacuum energy density (cosmological constant)

• h = 0.72: the Hubble parameter (H0 = h · 100 km/(sMpc))

The initial power spectrum for density fluctuations is set up as P (k) ∝ k0.96 using
σ8 = 0.8 as amplitude on the scale of 8 Mpc/h.

34A cosmological constant and a cold dark matter component. For details see for example
[Schneider, 2008].
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We start with a cosmological box which produces one of the smaller Dianoga cluster
in order to be able to run more simulations using different settings with moderate
computational cost. Knowing that a smaller cluster may not be hot enough to show
drastic differences between different conduction implementations35, it provides us
at least with the opportunity to see, if the code produces reasonable results. For
further reference please note, that the initial conditions we choose are identified
by the id g1574117. This particular box is not treated in [Bonafede et al., 2011],
but we will still be able to see, if our results in general fit their outcomes.

In the initial conditions gas particles are put in a box with side length of about
40 Mpc. Around this, there is a bigger box of length 1 Gpc with dark matter parti-
cles using varying resolution, to make sure that the evolution of the cluster is done
correctly but to save computation time in the outskirts of the box.36 This means,
that the mass of the dark matter particles is increased outwards in three discrete
steps. The different resolution steps and the gas particles are shown in figure 37.
This cosmological box contains about 3.8·106 dark matter and 8.6·105 gas particles.

Having defined the initial conditions we describe the results of our different simu-
lations in the next subsections.

35Since the conduction coefficient is proportional to T 5/2.
36In the ΛCDM cosmological model gravitational interaction of dark matter is expected to domi-
nate the structure formation process. Therefore gas has to be put only in the region of interest,
where we know that a structure forms by dark matter only runs.
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Figure 37: Plotted are all the particles in the initial conditions for the cosmo-
logical box g1574117. The green area in the center displays the high resolution
gas particles (m = 1.56 · 108 M�), where we expect the cluster to form. The red
particles are dark matter particles with good resolution (m = 8.44 · 108 M�) The
other colors indicate dark matter particles with resolution decreasing outwards.
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5.2 Comparison runs with different settings

Having picked and described the initial conditions of the cosmological box we want
to simulate, we start with a reference run in which we do not include thermal con-
duction and neither radiative cooling nor star formation and feedback in order to
check, if our code produces reasonable results with this basic configuration. Then
we discuss the effects of our different conduction implementations. In subsection
5.2.3 we will include cooling into the picture, to see how this changes the evolution
of the magnetic fields and the temperature distribution of the cluster.
Since we need magnetic fields for the anisotropic conduction we include MHD in
all of our simulations. The effects of the current MHD implementation onto clus-
ter evolution (and of course test problems) is described for example in [Dolag and
Stasyszyn, 2009], therefore we will not discuss this any further in this thesis.

5.2.1 Analysing a non-conductive run

For the beginning we have a short look at the evolution of the gas in the cosmo-
logical box, which is plotted in figure 38. These six snapshots range from redshift
z = 3.42 to the present universe, i.e. z = 0.37 Plotted is a mixture of density and
temperature using the ray-tracing plotting routine Splotch ([Dolag et al., 2008b]).
We can clearly see a cluster evolve in the region with gas particles, but these plots
can hardly be used for a quantitative analysis.

Using the SUBFIND module in GADGET ([Springel et al., 2001]), we can auto-
matically identify structures in the run and get virial radii and masses. Depend-
ing on the used definition38 we get an output of rvir ≈ (1.3− 2.0)Mpc/h and
Mvir ≈ (1.8− 2.8) 1015M�. One example for the definition is given by [Peterson
and Fabian, 2006] as the radius where the density is equal to two hundred times
the critical density:

rvir = 200 · 3 H2

8πG
(5.2.1)

37he simulation is started at redshift 70.
38The virial radius is defined at a point of a certain density, which is a factor (which can vary)
times the mean or the critical density. Depending on the used definition one gets different
results for the virial radius and all derived quantities.
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3.42 1.33 0.78

0.47 0.21 0.0

Figure 38: Evolution of g1574117 of the Dianoga sample without cooling, star
formation and conduction. Plotted are 6 different snapshots at redshifts given by
the blue numbers. Color coded is the internal energy, the intensity is determined
by the density. The shown box has a side length of 40 Mpc. The plots have been
made using Splotch. [Dolag et al., 2008b]
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using the Hubble parameter at redshift z

H

H0

=

√
Ωm (1 + z)3 + 1− Ωm (5.2.2)

which gives typical virial radii in the range from 1 to 3 Mpc for observed clusters.
Therefore our outcomes are right on average.

Compared to most of the clusters in [Bonafede et al., 2011] we produce a compa-
rable virial mass but slightly smaller radius. Still our values fit well enough in the
picture to exclude big errors.

As a next step we have a closer look on the magnetic fields and the tempera-
ture distribution in this simulation before we rerun it with thermal conduction
enabled.

As initial magnetic field we set up a homogeneous distribution described by

~Binit ≈

 1.2 · 10−8

0

0

 Gauss (5.2.3)

We will not have any closer look at the detailed evolution of the magnetic field,
but rather analyse the outcome at redshift z = 0. For a qualitative overview we
have plotted the magnetic field squared over the whole gas region and a zoom in
on the central part of the cluster in figure 39. This is a measure of the magnetic
pressure which is defined as

pB =
~B2

8π
(5.2.4)

We can identify several hotspots in the gas with magnetic field strengths up to
B = 10−5 Gauss. This matches the observations discussed in section 1.2 very well.
The center of the galaxy cluster, which we define via a maximum in the density,
contains the strongest magnetic fields in the whole box, since the gas fell down in
the potential well dragging magnetic field lines with it and therefore increasing the
overall field strengths. The other maxima probably refer to satellite structures,
which we will not further investigate here.
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5 APPLICATION TO GALAXY CLUSTERS

Figure 39: Magnetic pressure map of the cosmological box g1574117 simulated
with only basic physics (i.e. no conduction, cooling etc.). Shown is the whole gas
in the box and a zoom in the central region.
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Please note, that we have used a simple binning algorithm, to generate these maps.
Instead of using a fixed slice through the temperature map we kept the number of
particles for the averaging process fixed, in order to guarantee reasonable outcomes
in high as well as low density regions. Please note that we do not perform a proper
SPH averaging39, but calculate rather a simple arithmetic mean. This explains,
why we see a grained picture especially in the zoom plot. However it provides us
with the opportunity to identify small scale structure, which could be washed out
by proper SPH smoothing.
In section 2.4 we showed two predictions for the shape of the magnetic fields in a
cluster: a power law for both the radial magnetic fields and the tangential com-
ponent times the inflow velocity. In figure 40 we plotted these quantities for the
central part of g1574117 and fitted the two powers laws onto the data points (green
lines). We see immediately, that the radial magnetic field component scales indeed
as Br ∝ r−2. We fitted only the inner part until 2 Mpc/h, since this is the central
region which we can identify as the cluster without any satellites.
For the tangential component of the magnetic field we do not see the predicted
power law Bt ∝ (r · vin)−1 matching at all.

Now let us analyse the properties of the temperature distribution. In figure 41
we show a similar map plot, as for the magnetic pressure above (fig. 39). We see,
that the two main regions with high magnetic pressure contain mostly hot gas.
However the temperature distribution shows a smoother picture in comparison to
the rather isolated magnetic field maxima. The cluster center contains tempera-
tures up to 108K which matches observations very well (please see section 1 for
details).

39I.e. weighting the neighbours with the smoothing kernel while summing over their values.
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5 APPLICATION TO GALAXY CLUSTERS

Figure 40: A more quantitative analysis of the magnetic fields in the central region
of g1574117.
Left we plotted the radial magnetic field strength against the distance from the
center and fitted the predicted behaviour onto the curve in green.
The right plot shows the tangential magnetic field times the inflow velocity against
the distance from the center of the cluster. Again we plotted the expected be-
haviour in green.
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Figure 41: Temperature map of the cosmological box g1574117 simulated with
only basic physics. Shown is the whole gas in the box and again a zoom in the
central region.
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Since this heat map is only a very qualitative plot, we investigate the temperature
profile further, by having a closer look at the radial distribution shown in figure
42. For low radii the temperature rises to a peak value of 2 · 107 K from which it
starts dropping. This is consistent with existing adiabatic simulations by [Jubelgas
et al., 2004].

Figure 42: Radial temperature distribution of g1574117. The plot shows very well
the expected behaviour, details are discussed in section 5.2.1.

Additionally the temperature should drop by about 1/3 at the virial radius, which
means we expect a temperature of T ≈ 5 · 106 K at a radius of r ≈ 1.5 Mpc/h.
The plotted curve shows this behaviour, therefore we conclude that the simulation
has produced a successful result.
For a review of measured temperature profiles (amongst others) of clusters versus
typical simulation results please see [Borgani et al., 2008]. A comparison with
figure 11 in this paper shows, that our results reproduce the expected behaviour
pretty well.
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5.2 Comparison runs with different settings

Our temperature curve shows an increasing amount of scatter the farther we go
out from the cluster center. As we did before with the magnetic field analysis we
limit ourself for the inner 2 Mpc/h for reliable results.

In section 2.4 we discussed, that the magnetic pressure should be comparable or
even bigger than the thermal pressure in some regions of clusters. To investigate
this we define the two ratios

βkin = pkin
pmag

= nkBT
B2/8π

βtherm = ptherm
pmag

= ρv2/2
B2/8π

(5.2.5)

In figure 43 we plotted the radial dependence of these ratios as well as the magnetic
pressure compared to the thermal and the kinetic pressure over the whole box.
We see that the magnetic pressure is much lower than the kinetic and the thermal
pressure in most regions of the box at z = 0. Only in some parts we get a magnetic
pressure which exceeds the kinetic component slightly and becomes comparable
to the thermal one. Therefore we conclude, that the magnetic field evolution is
indeed relevant but in general not dominant for the overall dynamics of the cluster
gas.
The analysis of earlier snapshots40 shows, that this result is stable during the
evolution of the cluster. Only in the very beginning we have a way lesser magnetic
component which is biased due to our choice for the initial magnetic field.

40We do not present earlier snapshots here, since they provide hardly any more information.
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5 APPLICATION TO GALAXY CLUSTERS

Figure 43: Comparison of the magnetic pressure and the thermal/kinetic pressure
for g1574117. Black dots are the values for all particles, while the red stars show
indicate the mean values. The green lines indicate, where the plotted pressure
components are equal. We see that the magnetic field is in general not the driving
factor for the dynamic evolution of the gas, since the magnetic pressure is nearly
everywhere smaller than the other two components.
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5.2.2 Changes due to different conduction implementations

Let us now compare these results to the outcome of simulations with different
conduction implementations enabled. These will be

• Isotropic conduction with 1/3·κSp as an overall suppression to mimic anisotropic
conduction like we argued at the end of section 4.3.1.

• Anisotropic conduction implementation type 3a: the fully anisotropic ap-
proach consistent formulated in one SPH loop. We got overall much better
test results with this formulation, than by using implementation type 1 and
2, therefore we will not use these two approaches any further.

• The similar approach 3b where we isotropised the equations of 3a to prevent
non physical heat flow to cost of a total suppression of energy transport
perpendicular to magnetic fields.

In section 4.2.4 we mentioned, that we could include a physically calculated sup-
pression factor into these implementations instead of assuming a total one. Details
how this factor has to be calculated can be found in section 2.2. From our findings
about the magnetic field strengths in the last subsection we see immediately, that
this suppression will be always close enough to zero, due to it’s dependence on
the magnetic field, that it would not make any difference to include the proper
calculation here. Therefore we will not show any comparison plots regarding this
factor and always consider fully suppressed transport of heat orthogonal to mag-
netic field lines.

The most interesting part is certainly the change of temperatures due to the dif-
ferent conduction schemes.
At first we have a look at the zoomed in temperature maps of all four runs shown
in figure 44. We see only very slight differences between those plots. Either this
cluster is simply not massive enough to show very different results or our binning
algorithm just can not resolve these differences well enough.
To get quantitatively useful results we will have to investigate the radial temper-
ature profiles instead. These are shown in a comparison plot in figure 45, which
shows us the different behaviours of the implementations much better.
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(a) No conduction

(b) 1/3 · κSp conduction

Figure 44: To be continued on the next page.
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(c) Full anisotropic conduction

(d) Isotropised conduction

Figure 44: Temperature maps of the central region of g1574117 with four different
conduction settings. We can see only very slight differences between the four plots
probably due to the map-making algorithm we chose.
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Figure 45: Plotted are the radial temperature distributions of all four runs without
cooling and star formation. The lower plot is a zoom in into the very central region
of the cluster. One can see clearly the order of the different approaches regarding
the net energy transport i.e. how strong conduction is statistically suppressed in
each scheme.
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However one has to keep in mind, that this galaxy cluster is neither spherical sym-
metric nor homogeneous. Therefore the radial averaging eliminates the footprint
of most substructures in the core part and produces a lot of scatter farther out
from the center.
In the upper plot we see, that all four conduction settings produce a similar radial
temperature distribution at z = 0. The net cluster dynamics are not influenced
that much, since all the features in the plot stay consistent for all implementations.
We can clearly identify how strong the net energy transport of each approach is:

No cond. < Full anisotropic cond. < 1/3 Spitzer cond. < Isotropised cond.

The bigger the net conduction the hotter are the inner parts and cooler are the
outer parts of the cluster. This behaviour is consistent with the findings of [Jubel-
gas et al., 2004]. The turnaround point at which the gas gets colder instead of
hotter is about the virial radius r = rvir.
Let us shortly repeat the problem we wanted to solve with our simulations: Cool-
ing flow models usually result in very high mass deposition rates which lead to
expectations of a lot of cold gas in the cluster center. Since observers do not find
that much cold gas, we were looking for an additional process which could work
against the cooling flow, i.e. heat up the gas in the inner cluster part. With inner
parts we do not mean only the very center here, but a more expanded region per-
haps up to the virial radius. This is exactly the effect thermal conduction has in
our simulations. But we see only a very small impact in this simulation, which is
probably not sufficient to offset the cooling flow alone.
Naturally we get less net conduction with an anisotropic implementation, which
even lowers the effectiveness of the process. However an anisotropic conduction
should prevent a complete washing out of detailed structure in the temperature
distribution as is found with an isotropic implementation (see for example [Dolag
et al., 2004]). Unfortunately we did not see much change in the substructure of
our temperature maps in figure 44 probably due to our map making algorithm and
the cluster being not very hot in the inner region.

But before we jump to final conclusions we have to include radiative cooling,
star formation and feedback in our simulations, like we will discuss in the next
subsection.
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5.2.3 Adding radiative cooling, star formation and supernova feedback

Now that we compared the effects of different conduction implementations onto
adiabatic simulations, we want to include radiative cooling, star formation and
supernova feedback into the picture.41 For a clear identification, we will refer to
these runs as "with cooling".
We will discuss the difference between non conductive runs with and without these
settings. This has the advantage, that the effect of anisotropic conduction in sim-
ulations with cooling can be better analysed separately. Unfortunately we ran
into some numerical problems with the existing code, when combining cooling and
isotropic conduction. Therefore we will not be able to present this properly in this
thesis due to time limitations. Instead we refer to our paper [Arth et al., 2013] (in
prep.), where we will discuss this.
In figure 46 we plotted the temperature map from the non conductive run before
and as comparison the outcome of the simulation with cooling. One can see that
a lot of particles with temperature of about 104 K are blown outwards of the
compact structure of the cluster and it’s satellites. Overall the temperature distri-
bution is less peaked in the cluster core but shows rather big isothermal regions.
The outer parts of the gas distribution are up to a factor of 10 hotter.

For more quantitative results we have a look at the radial temperature distribu-
tion, which is shown in figure 47. We plotted again the temperature distribution
up to r = 4 Mpc as well as a zoom in into the cluster’s central region.
This plot agrees with our analysis of the temperature map in the matter, that
the gas in the outskirts of the cluster has gotten much hotter and more or less
isothermal. What looked as a less peaked core temperature in the less resolved
map above, is described by a slightly higher maximal temperature in combination
with a more expanded cool core region, as we can see in the zoom plot. This
matches again pretty well with the findings of [Jubelgas et al., 2004].
Compared to how much difference thermal conduction made in the last subsection,
we see a bigger influence of cooling, star formation and supernova feedback here.
Still the combination with conduction could change the picture again quite a bit.

41Details on the cooling model will be given later in this subsection.
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(a) No cooling or star formation

(b) Cooling and star formation

Figure 46: Again the temperature map of the box g1574117 showing simulations
with and without cooling. Both runs have been carried out without thermal con-
duction.
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Figure 47: Plotted is the radial temperature distribution for the cluster in box
g1574117. The two curves compare the non conductive runs with and without
cooling, star formation and feedback. The lower plot shows a zoom in of the very
central region.
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Now let us have a look at the magnetic field. In figure 48 we plotted the ra-
dial magnetic field component again with and without cooling.

Figure 48: This plot shows the radial component of the magnetic field again as a
comparison of non conductive runs with and without cooling.

We see immediately that we get much higher radial magnetic fields in the cool-
ing run than before. The little plateau at small radii (r ≤ 0.2 Mpc/h) is lost,
instead the peak rises up to the order of 10−5 Gauss. This matches the predicted
behaviour of Br ∝ r−2 much better than former results in section 5.2.1.
Additionally the peaks we saw earlier are now damped and nearly not visible any
more. The overall distribution is now much more homogeneous and shows less
scatter.

Now that we have a run which includes radiative cooling, we can do some fur-
ther analysis on this. In section 1.1 we defined the cooling radius as the radius,
where the cooling time equals the age of the universe. The cooling time can be
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5 APPLICATION TO GALAXY CLUSTERS

calculated via equation 1.1.5. It is dependent on the temperature and the number
density. Additionally we need the cooling function for this calculation. To cal-
culate the cooling function, like it is used in our code, is rather complicated and
goes beyond the scope of this thesis. A detailed description can be found in [Katz
et al., 1996].
However for the purpose of showing how this can be done, we try to use the values
we can approximately read off of figure 2, which is the high temperature branch
of the curve. Therefore we should get at least some reasonable results for the
inner region of the cluster. Considering a primordial distribution of hydrogen and
helium only, we approximate the plotted curved as

Λ = 4.75 · 10−24 erg cm
3

s
·

1 for T ≤ 2 · 106 K(
T

2·106 K

)0.361 else
(5.2.6)

Plugging everything together, we get a relation of the cooling time with the radius
as is shown in figure 49.
We marked the condition of the cooling time being equal to the Hubble time and
also the first radius where this condition is reached. As one can see we can not
really define one precise cooling radius since we still have a lot of fast cooling gas
even beyond this point. It is not very surprising that such a large area of different
cooling times at different radii is covered, since the cluster is not very homogeneous
as we have seen for example in the temperature map plots.
We see, that the cluster core cools extremely fast as well as some other structures
in the ICM which can probably be identified as galaxies.
A more detailed analysis of this plot is not reliable, since we used a very approxi-
mative cooling function to generate it, where we totally omitted the behaviour of
cooling in low temperature regions.

At this point we would like to present further analysis of cooling runs with different
conduction implementations. As already mentioned we have to omit this here and
refer to [Arth et al., 2013] (in prep.), where we will discuss this.
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Figure 49: Plotted is the cooling time versus the radius for the inner part of
the cosmological box g1574117. The blue horizontal line marks the age of the
universe, i.e. the Hubble time, while the green vertical line shows the first radius
where t = tH is reached.
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5.3 Comparison to existing simulations with grid codes

Having done some analysis of our new conduction implementations on a cosmolog-
ical box, we want to compare our results briefly to those of other groups simulating
galaxy clusters with grid codes. We will in particular give some reference to exem-
plary papers about simulations done with ATHENA ([Stone et al., 2008]), FLASH
([Fryxell et al., 2000]) and ENZO ([Bryan and Norman, 1997]).

In general we see, that anisotropic thermal conduction is usually implemented
using the same basic approach as we did: aligning the energy transport with the
magnetic field lines and eventually calculate a suppression factor perpendicular to
the field. Furthermore the grid code implementations have the same problem con-
cerning non physical heat flux, as we did. A solution how this is handled is given
in [Sharma and Hammett, 2007] using a heat flux limiter to preserve monotonicity.

Let us start with the results obtained with the ATHENA code. As an exam-
ple we refer to the work of [Parrish and Stone, 2005], [Bogdanović et al., 2009]
and [Avara et al., 2013]. These papers cover a lot of detailed analysis of various
properties of the ICM, which we did not discuss in our analysis. An example
would be the extensive studies of plasma instabilities, like the magnetothermal
instability (MTI) or the heat flux buoyancy instability (HBI), and their effect on
the magnetic field structure and therefore the efficiency of thermal conduction.
The mentioned works show that these instabilities are indeed very crucial for the
evolution of the magnetic structure in a cluster. [Avara et al., 2013] present 2D
simulations to analyse the development and influence of the instabilities separately.
However we will not discuss this any further in this thesis.
Additionally the initial choice of the magnetic field’s shape seems to have a ma-
jor influence. [Bogdanović et al., 2009] find, that the resulting cluster can either
develop a rather isothermal core or show a catastrophical collapse. Intermediate
results are also shown, mostly strongly dependent on the initial conditions. There-
fore our results might be strongly biased by the choice of a homogeneous magnetic
field in our initial conditions. In total they find, that thermal conduction slows
down the cooling process, but can not prevent it.

149



5.3 Comparison to existing simulations with grid codes

In the paper of [Ruszkowski et al., 2011] the recent work using FLASH is pre-
sented. Again there are studies regarding the growth and influence of plasma
instabilities. Similar to our results they find, that radiative cooling has in general
a much bigger impact on the temperature distribution of a cluster than thermal
conduction. Their simulation result in much hotter central cluster regions, than
ours do. Therefore they find a flattening of the inner temperature profile when
including conduction, while we find an increase of internal energy. Conduction
also offsets cooling a bit, but it is according to this paper not a solution to stop it
completely.
Additionally they find an amplification of the magnetic field when including ra-
diative cooling which matches our results very well.

Regarding the most recent work with ENZO on this topic, [Vazza et al., 2010]
show many radial temperature distributions for different cluster runs. The overall
shape matches our results pretty well, and we see that features like the bumps we
got in our results are common to most clusters but very individual. Therefore they
are probably not worth to be investigated any further.

[Smith et al., 2013] present the latest cluster simulations with ENZO with fo-
cus on thermal conduction. In contrast to the other papers we mentioned, they
used only an isotropic implementation but varied the effectiveness of the transport
between total suppression and full Spitzer conduction. They find decreasing tem-
peratures with increasing conduction coefficient up to r = 3 · r200, while we saw
this behaviour only for r & rvir. They agree with the previously presented works
in the fact, that thermal conduction delays the cooling catastrophy but can not
stop it totally.

Summing up, we see that our results are overall consistent with the existing anal-
yses of the effects of anisotropic thermal conduction in cluster evolution. We
conclude that a lot more work has to be done, to further study various aspects of
the ICM in our simulations.
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6 Conclusion and Outlook

In this thesis we derived several approaches for implementations of anisotropic
thermal conduction into the SPH code GADGET 3. We presented the numerical
derivations and discussed the quality of the approaches by using several rather easy
test cases. We managed to derive a fully anisotropic conduction scheme as well as
a modified version to preserve monotonicity of the heat flux. Afterwards we pre-
sented simulations of a cosmological box and analysed the effect of the new schemes
compared to isotropic conduction and non conductive runs onto the temperature
distribution as well as the evolution of the magnetic fields. We also included a
discussion of the effects of cooling, star formation and supernova feedback.
We found that anisotropic conduction has a very similar effect onto our cluster
as the isotropic implementation with a corresponding suppression factor.Thermal
conduction can delay the cooling of the cluster’s core a bit but not completely
offset a cooling flow. Therefore we conclude, that thermal conduction alone can
not solve the cooling flow problem and prevent gas to cool more and more over
time.
However we simulated only one cosmological box, therefore we have no statistics
to verify our results. Only a comparison with grid code simulations shows that
our results are consistent with recent work about this topic. Nevertheless we have
to carry out more simulations and especially study, how anisotropic conduction
influences the evolution of bigger clusters. There we should see a much bigger
effect to analyse the properties of anisotropic heat conduction in more details.
Additionally we will need to perform much more detailed analyses regarding for
example the time evolution of the core temperature and the influence of plasma
instabilities.
Furthermore we want to mention, that there are also other applications for our
newly developed numerical scheme, which are interesting to study: On the one
hand we have rather similar simulations of cooling flows regarding elliptical galax-
ies instead of clusters ([Binney and Cowie, 1981]). On the other hand there are a
lot of completely different topics like the interaction of supernova remnant shocks
with interstellar clouds as they are presented in [Orlando et al., 2008].
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A THE CONJUGATE GRADIENT METHOD

Appendix A The Conjugate Gradient Method

Isotropic formulation

As mentioned in section 4.1, we want to solve equation 4.1.13 with the conjugate
gradient method. For detailed information about the mathematical properties of
the integrator please see [Saad, 2000]. In the following derivation we basically
follow [Petkova and Springel, 2009].
For simplicity we use a formulation with specific internal energy:

dui
dt

=
µ (γ − 1)

kB

∑
j

κijmj

ρiρj

~xij · ∇iWij

|~xij|2
(ui − uj) (A.1)

At first we need to discretize the timestep in this equation, by using

dui
dt
→ ∆ui

∆t
=
un+1
i − uni

∆t
(A.2)

where the super-index denotes to which timestep the variables belong to. We
factor all the constants on the right side together into one variable aij. Then we
get

un+1
i = uni +

∑
j

aij
(
un+1
i − un+1

j

)
(A.3)

Which we can rewrite into a matrix - vector multiplication of the form

A · ~x = ~b (A.4)

by defining:

• The constant vector bi := uni

• The solution vector xj := un+1
j

• And the constant matrix Aij := δij

(
1−

∑
k

aik

)
+ aij

A and ~b are known, so we need to invert the matrix to get the result. Since the
matrix’ dimension is the number of particles squared, this inversion is computa-
tionally not feasible. However we can use the fact, that the A is a very sparse

A1



matrix, since for each particle (line number) we take only the energy transfer from
and to the direct neighbours (column number) into account. Therefore we do not
even need to do the full conjugate gradient method, but we can use it as an itera-
tive method which will converge quite fast to a viable approximation of the correct
solution. As our tests show, usually two or three iterations give already sufficiently
accurate results.

For the algorithm to succeed, we have a few conditions on the matrix A: It needs
to be real, symmetric and positive definite. We have no imaginary units in our
equations, so the first condition is always fulfilled. The symmetry can be easily
checked, since a is already symmetric.42 Physically this corresponds to the con-
servation of energy which should anyway be either fulfilled right away or enforced
by symmetrization.

The positive definiteness can be argued like the following: In the continuous limit
the matrix becomes diagonal. Positive definite for a symmetric and real matrix
means that the eigenvalues are positive. In this case this corresponds to heat being
transported only in the correct direction along the temperature gradient and not
in both. This should also be fulfilled, however to check the general matrix A for
positive definiteness is not possible analytically.
As we see in the more general derivation in section 4.2.3 the full equation can be
written with a 3x3 matrix for each particle pair, which has to be positive definite
then. In the case of isotropic conduction this matrix is simply the unit matrix,
therefore positive definiteness is automatically given.

Considering all these properties, we can solve this equation with the implicit con-
jugate gradient method. Written in pseudo code the algorithm looks like following:

42Please note, that we would have to consider the real internal energy, hence the above equation
multiplied by mi.
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A THE CONJUGATE GRADIENT METHOD

r_0 = b − A x_0
p_0 = r_0
for ( k=0; true ; k++) {

a_k = r_k^t r_k / (p_k^t A p_k)
x_k+1 = x_k + a_k p_k
r_k+1 = r_k − a_k A p_k
i f ( r_k+1 smal l enough )
return x_k+1

c_k = r_k+1^t r_k+1 / ( r_k^t r_k)
p_k+1 = r_k+1 + c_k p_k

}

Indices are an indicator for the iteration step and ^t indicates transposition. The
pseudo code is basically taken from [Saad, 2000] page 191.

Anisotropic formulation: The split up approach

For the more complicated approach of equation 4.2.12 we have to reconsider how
to build up the matrix. Again we can look at the magnetic field term isolated, the
other one is handled like the isotropic implementation above. Plugging in all the
short hand notation we had in section 4.2 and discretizing similar to before, we
get the following:43

(A.5)

un+1
i = uni +

µ (γ − 1) ∆t

kB

·
∑
j

mj

[
κj
ρ3
j

(
B̂j ·

∑
k

mk

(
un+1
k − un+1

j

)
∇jWjk

)
B̂j

+
κi
ρ3
i

(
B̂i ·

∑
k

mk

(
un+1
k − un+1

i

)
∇iWik

)
B̂i

]
· ∇iWij

To translate this equation into the form matrix times vector we need some inter-
mediate steps which however resemble, what we did before. We will formulate

43We omit the index B of all κ to avoid confusion with the particle index
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the two sums as the product with two matrices and later combine them (due to
associativity) to one final matrix.
At first we have a look at the first term with the inner sum and abbreviate all the
constants:∑

k

mkκj
ρ3
j

(
un+1
k − un+1

j

) (
B̂j · ∇jWjk

)
B̂j =

∑
k

bjk
(
un+1
k − un+1

j

)
(A.6)

Then we can define the matrix

Bjk = bjk − δjk
∑
l

bjl (A.7)

for which holds, that∑
k

bjk
(
un+1
k − un+1

j

)
=
∑
k

Bjku
n+1
k =: vn+1

j (A.8)

We can identify this term in equation A.5 a second time for j → i. Now we
calculate analogously for the outer sum over j. Plugging in equation A.8 we get

(A.9)

µ (γ − 1) ∆t

kB

∑
j

mj

(
vn+1
j + vn+1

i

)
∇iWij

=
∑
j

aij
(
vn+1
j + vn+1

i

)
=
∑
j

Aijv
n+1
j

with
Aij = aij + δij

∑
m

aim (A.10)

At last we need to collect the remaining un+1
i which gives an additional δik and we

subtract our previous findings to combine everything to one single matrix:

(A.11)

Cik = δik −
∑
j

AijBjk

= δik +
∑
j

[
δij
∑
m

aim + aij

][
δjk
∑
l

bjl − bjk

]
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For which holds, that ∑
k

Ciku
n+1
k = uni (A.12)

Now we can check the properties of this matrix C. To verify the symmetry under
exchange of i and k, we multiply the brackets out and check the resulting four
terms independently in the j-sum:

1.
∑
j

δij
∑
m

aim · δjk
∑
l

bjl = δik
∑
m

aim
∑
l

bil

is symmetric because of the delta function �

2. −
∑
j

δij
∑
m

aim · bjk = −
∑
m

aim · bik

has no defined symmetry, since the density and the magnetic field in b are
not symmetrized and the kernel derivative in a changes �

3.
∑
j

aij · δjk
∑
l

bjl = aik ·
∑
l

bkl

has no defined symmetry. a is antisymmetric, however the kernel derivative
in b changes �

4. −
∑
j

aij · bjk

has no defined symmetry, since the kernel in a as well as in b change �

So we can leave out the first term in the sum and also the δ function before the
sum for further checks. Since we do not see a term wise symmetry in the terms
2-4, we sum them again up and try to find an overall behaviour. Renaming the
summation indices and plugging in a and b we get

(A.13)

∑
j

(−aijbik + aikbkj − aijbjk)

=
µ (γ − 1) ∆t

kB

∑
j

[
−mjmkκi

ρ3
i

(
B̂i · ∇iWik

)(
B̂i · ∇iWij

)
+
mkmjκk

ρ3
k

(
B̂k · ∇kWkj

)(
B̂k · ∇iWik

)
−mjmkκj

ρ3
j

(
B̂j · ∇jWjk

)(
B̂j · ∇iWij

)]
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We can ignore the masses again, since we would have to multiply the whole equa-
tion bymi anyway and each term contains all three mass terms. After we exchange
i↔ k, we see that:

• The new term 1 matches up the old term 2

• The new term 2 matches up the old term 1

• The new term 3 matches up the old term 3

Therefore the matrix in total is symmetric and valid for the algorithm. The matrix
should also be positive definite, due to the same argument as before. But this time
we really cannot check this analytically. However we presented some thoughts on
this matter from a physical point of view in section 4.2, where we argue that the
positive definiteness should be fulfilled.

Final anisotropic formulation

Now we can come to the last approach we discussed (section 4.2.3) and show how
to write equation 4.2.37 in conjugate gradient formalism. As we have already
stated in the corresponding subsection, this is very similar to the isotropic case.
Nevertheless we will show the full solution for the sake completeness.
Discretizing the timestep we get for the part along the magnetic field lines

un+1
i = uni +

Nngb∑
j=1

cij
(
un+1
i − un+1

j

)
(A.14)

with

cij = −(γ − 1)µ

kB
· mj∆t

ρiρj
·
~x ᵀ
ij

|~xij|2
(
Ãi + Ãj

)
∇iWij (A.15)
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We can then write this as the matrix equation

C · ~x = ~b (A.16)

with:

• Cij := δij (1−
∑

k cik) + cij

• xj := un+1
j

• bi := uni

Finally we have to check again the conditions for the conjugate gradient method
to work properly:
We see, that the total energy is conserved since Ã and therefore c and C are
symmetric.
For the isotropised version we get the same equations just without the tilde above
each A.
We argued about positive definiteness already in section 4.2.3: The fully anisotropic
formulation can violate this condition which can lead to non-physical heat flows as
well as numerical instabilities since the method in principle requires it to be given.
The isotropised version is constructed such, that in definitely fulfils positive defi-
niteness.
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B THE SECOND ORDER ERROR TERM

Appendix B The second order error term

In this appendix we want to present the detailed calculations for the second order
error term in the Taylor approximation of section 4.2.3. We will evaluate all the
different cases of equation 4.2.17 depending on the different possibilities for the
four indices:

Tαβγδ =

∫
d3~xj

(~xij)α (~xij)β (~xij)γ (~xij)δ

|~xij|3
·W ′

ij (B.1)

We distinguish between the following three cases, which we will address one after
another:

1. At least three indices are unequal

2. All indices are equal

3. The indices form two pairs, e.g. α = β and γ = δ

1. At least three indices are unequal

If at least three of the four indices are unequal, then there is at least one integration
where the integrand contains only a single ~xij component. Since the denominator
and W ′

ij are even functions with respect to ~xj, the integrand for this component is
in total an odd function which will vanish when integrating over the whole (sym-
metric!) domain. Therefore the whole integral is equal to zero.

2. All indices are equal

If all indices are equal, we start the calculations with substituting the integration
variable ~xj → ~xij without further implications on the integration. Then equation
4.2.17 simplifies to

Tα =

∫
d3~xij

(~xij)
4
α

|~xij|3
·W ′

ij (B.2)

Using a short hand notation Tα := Tαααα.
Since W ′

ij is only dependent on |~xij| we go over to spherical coordinates for ~xij.
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We can arbitrarily choose the rotation of our coordinate system. For simplicity we
let (~xij)α be along the z-axis of the coordinate system. This gives us

Tα =

∫
dr

∫
dφ

∫
dθ r2 sin θ · (r cos θ)4 · W

′(r)

r3
(B.3)

We can easily perform the φ and θ integrations and get

(B.4)
Tα = 2π

[
−1

5
cos5 θ

]π
0

∫
dr r3W ′(r)

=
4π

5

∫
dr r3W ′(r)

Next we perform a partial integration, where the boundary term vanishes, since
the kernel is monotonically decreasing towards zero. It remains:

Tα = −12π

5

∫
dr r2W (r) (B.5)

For further calculations we can either choose a proper normalised kernel, like the
Gaussian given by [Price, 2012], to integrate this equation or we stay with the
general W and instead reconsider the normalisation condition of the kernel given
by equation 3.1.2: ∫

V

d~xij W (~xij) = 1 (B.6)

Translating this equation into spherical coordinates and evaluating the φ and θ

integrations we get for every kernel:∫
dr r3W ′(r) =

1

4π
(B.7)

Therefore the overall result for this case is:

Tα = −3

5
(B.8)
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3. The indices form two pairs

This last case can be calculated pretty similar, except that we have to chose two
indices, which have to be unequal, here. We take α = 1 and β = 3. Again written
in a spherical coordinate system we get

Tαβ =

∫
dr

∫
dφ

∫
dθ r2 sin θ · (r sin θ cosφ)2 · (r cos θ)2 · W

′(r)

r3
(B.9)

Using our results from the r- integration before we get

Tαβ =

∫
dr r3W ′(r)︸ ︷︷ ︸
− 3

4π

∫
dφ cos2 φ︸ ︷︷ ︸

π

∫
dθ sin3 θ cos2 θ︸ ︷︷ ︸

4
15

= −1

5
(B.10)

Putting everything together we arrive at the result stated in eq. 4.2.18:

Tαβγδ =



−3
5

if α = β = γ = δ

−1
5

if α = β 6= γ = δ

−1
5

if α = γ 6= β = δ

−1
5

if α = δ 6= β = γ

0 else

(B.11)
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C COMPLEX INTEGRATION

Appendix C Complex integration

In section 4.3.2 we used some integrations of Gaussian (or Gaussian like) integrals
with complex exponents. In this appendix we want to provide the complex inte-
gration including all details of the calculations.
The first integral we want to solve is the following complex Gaussian:

∞∫
−∞

dx e−(x+iy)2 = ? (C.1)

For the special case y = y0 = const. In other words, we want to prove, that
equation 4.3.11 holds also for a complex exponent.
The main tool which we will use is the so called Residue theorem [Bronstein
et al., 2008].

Let Γ be a closed curve in complex space and Res (f, ak) the residue of f at ak,
then it holds that

∮
Γ

f(z)dz = 2πi
∑

Res (f, ak)

With the sum over all poles ak enclosed by Γ.

Since the Gaussian has no residua, the right side simply vanishes and we can
replace any integration path in the complex plane by another one with the same
start and endpoint. To evaluate the given integral we chose the following path44,
which we illustrate in figure 50:

∞∫
−∞

dx e−(x+iy)2 =

0∫
y0

d(iy) e−z
2
∣∣∣
x=−∞

+

∞∫
−∞

dx e−z
2
∣∣∣
y=0

+

y0∫
0

d(iy) e−z
2
∣∣∣
x=∞

(C.2)

Using that
e−z

2
∣∣∣
x=±∞

= e−(x+iy)2
∣∣∣
x=±∞

= 0 (C.3)

44The additional i in the integrations along the imaginary axis comes from the fact, that the
complex plane is defined as x− iy-plane.
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Figure 50: Alternative path for the integration in the complex plane. Instead of
integrating the red way, we take the green one, which is equivalent due to the
residual theorem. The three parts of this way correspond to the three terms in
equation C.2.

we see, that only the integration along the real axis with imaginary part equal to
zero remains and we see that equation 4.3.11 can indeed be used.

Otherwise for finite integral boundaries the calculation differs quite a bit.
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C COMPLEX INTEGRATION

We integrate a general integral of the form

b∫
a

dx e−
(x−c−id)2

f = ? (C.4)

We will use the same kind of alternative path as before shown in figure 50 except
that the integration boundaries of the second part are now finite. Therefore we
will get error functions instead of the results of Gaussian integrals.
We start with the substitution:

x− c√
f
→ x (C.5)

and integrate

√
f

b−c√
f∫

a−c√
f

dx exp

[
−
(
x− i d√

f

)2
]

= ? (C.6)

Now we split the integral into the three shown paths. At first we integrate along
the imaginary axis:

(C.7)

√
f

0∫
− d√

f

d(iy) e−(x+iy)2
∣∣∣
x=a−c√

f

=
√
f

a−c√
f∫

a−c√
f
−i d√

f

dy e−y
2

=
√
f


a−c√
f∫

0

dy e−y
2 −

a−c√
f
−i d√

f∫
0

dy e−y
2


=

√
πf

2

[
erf
(
a− c√
f

)
− erf

(
a− c√
f
− i d√

f

)]
The next integral is along the real axis:

√
f

b−c√
f∫

a−c√
f

dx e−(x−iy)2
∣∣∣
y=0

=

√
πf

2

[
erf
(
b− c√
f

)
− erf

(
a− c√
f

)]
(C.8)
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And the integral back along the imaginary axis:

(C.9)

√
f

− d√
f∫

0

d(iy) e−(x+iy)2
∣∣∣
x= b−c√

f

=

√
πf

2

[
erf
(
b− c√
f
− i d√

f

)
− erf

(
b− c√
f

)]
In total we get the result

(C.10)
b∫

a

dx e−
(x−c−id)2

f =

√
πf

2

[
erf
(
b− c√
f
− i d√

f

)
− erf

(
a− c√
f
− i d√

f

)]

Which is exactly the same, as if we had integrated without using the complex
plane.45

45For details about the error function please see the integrations in section 4.3.1.

C4



Acknowledgement

I want to take this opportunity to thank my family, friends and colleagues who
have given me the possibility and helped me to come this far.

First of all thank you very much Harald for your support not only during this
Masters project but for all the years since I attended your lectures for the first
time in my Bachelor studies. Without your help and constant encouragement I
would not be here right now.
Thank you Klaus for giving me so much support with my numerical work and the
possibility to always show up in your office to ask a lot of questions.
Thanks a lot Alex for this great year and especially all the good advice you have
given me. It was (and still is) a great pleasure to work with you.

Furthermore a big thanks to my parents and grandparents for the financial support
they have given me.
Finally a special thanks goes to my friends Marco Häuser and Ralph Müller who
always had time for me to annoy them with calculations and all the problems I
encountered during my work. Thanks a lot Marco for taking so much time to read
this whole thesis and give me a lot of useful comments.

Also thanks to my other colleagues and friends for all the useful discussions we
had.





Declaration of academic integrity

I hereby declare that this thesis is my own work and that I have not used any
sources and aids other than those stated in the thesis.

München, September 11, 2013

Alexander Arth


	Galaxy Clusters and cooling flows
	Physics of the ICM
	The Perseus cluster in different wavebands
	Possible solutions of the cooling flow problem

	Thermal conduction and magnetic fields
	Isotropic thermal conduction
	Anisotropic thermal conduction
	Implications on cluster cooling flows
	Short excursion: Detection of magnetic fields

	Smoothed Particle Hydrodynamics
	Lagrangian derivation of SPH equations
	Interpolation formulas
	Different kernels and their characteristics
	MHD equations in SPH

	Thermal conduction in GADGET
	Isotropic implementation
	Anisotropic implementation
	An easy idea
	The split up approach
	A fully consistent numerical scheme
	Summary and expectations for the different schemes

	Tests for the code
	Temperature step problem
	Sinusoidal temperature variation
	Hot gas sphere

	Summing up the test results

	Application to Galaxy Clusters
	Sample clusters from the Dianoga set
	Comparison runs with different settings
	Analysing a non-conductive run
	Changes due to different conduction implementations
	Adding radiative cooling, star formation and supernova feedback

	Comparison to existing simulations with grid codes

	Conclusion and Outlook
	List of figures
	Sources
	Appendix The Conjugate Gradient Method
	Appendix The second order error term
	Appendix Complex integration

