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geboren in Baden-Baden

betreut von

Dr. Klaus Dolag

München, den 31.07.2017





Contents

1 Introduction: Why study galaxy clusters? 1

2 Theoretical Foundations 3
2.1 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 The Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Critical Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Cosmic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Hubble Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Physics of Galaxy Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Dark Matter (DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Intra Cluster Medium (ICM) . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Stellar Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Black Holes, Active Galactic Nuclei (AGN) . . . . . . . . . . . . . . 14

2.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Creating Scaling Relations 17
3.1 Galaxy Clusters in Magneticum . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Mass Scaling Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Mass - Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Mass - Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Mass - SZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Mass - Velocity Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Mass - Richness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 In - Depth look at Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 SMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Summary 31

Acknowledgements 33

Bibliography 36

Selbstständigkeitserklärung 37



iv



Chapter 1

Introduction: Why study galaxy
clusters?

The hierarchical model of structure formation in the universe assumes matter to collapse
in small regions first, which accumulate themselves and form bigger and bigger structures.
This results in so called self similarity, which can indeed be observed. In the primordial
universe however, it was not possible for baryonic matter to retain bound states and there-
fore collapse. The universe was extremely hot and dense, causing high energy photons to
destroy electro magnetic bonds. Dark matter, on the other hand, interacts only gravitation-
ally, thus being able to maintain and grow density fluctuations. The pattern of dark matter
overdensities was determined by quantum fluctuations that in a time of extremely fast ex-
pansion of space (called inflation) froze out, because the space expanded much faster than
light speed, giving matter no opportunity to reach thermal equilibrium. These overdensi-
ties are the seeds for the filament structure, which later forms from gravitational collapse
as we know from dark matter simulations. Since the universe cooled while expanding, the
number density of high energy photons became small enough to enable barionic structure
growth. These structures formed in the already existing potential wells of dark matter,
because the principle of maximum entropy wants everything to be in the lowest possible
energy state. Galaxy clusters are the largest astronomical structures in the universe that
had time to collapse and virialize. Standing between astrophysics and cosmology, they play
a very special role. They allow us to measure several properties. Sunyaev Zeldovic effect,
X-ray and optical observations, gravitational lensing and velocity dispersion being few of
them. On the other hand the resulting number density and mass distributions are sensitive
to the underlying cosmological parameters, giving the opportunity to check the cosmological
model.

Dynamics in galaxy clusters happens in time scales that are not observable in our life-
time, which is no surprise, knowing their size. Nevertheless, it is possible to see time devel-
opment, because of the constance of light speed. Hence, looking further away is equivalent
to looking in the past. However, observing at high redshifts is limited by the sensitivity
of telescopes. This makes numerical simulations inevitable for a deeper understanding of
structure formation and the physical processes behind it. Numerical simulations included
gradually more and more physical processes. Beginning with dark matter only simulations
over hydrodynamics to feedback processes. However it is important to be careful, that if
the physical processes are not self consistently reproduced, the deeper mechanism is still
hidden. Physical properties in simulations are mostly calculated differently than in obser-
vations, since velocities and positions can be measured directly and in three dimensions.
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Therefore, it is important to know the approach of observers for a better comparison. A big
difference is projection for example. Observers can only measure two dimensionally, because
looking in the sky is like viewing a canvas. Nonetheless, the theoretical astrophysicist has
to implement observational restrictions artificially to guarantee a valid comparison. This is
the reason I look at optical richness in simulated galaxy clusters.

Optical richness plays a big role in the study of galaxy clusters, since the first ’pho-
tographs’ of them (Wolf 1901). Max Wolf made a grid with every box representing the
number of galaxies of the coma cluster in this area. Today Richness represents the number
of luminous galaxies within a certain distance to the cluster center. Light in the visible
wave lengths was the first accessible property for astronomers to observe. Naturally they
began to categorize clusters depending on their morphology, richness being one possible
way. Today, richness holds the opportunity to calculate masses for large samples of galaxy
clusters, whereas the one present method through gravitational lensing is time consuming
and not possible for arbitrary clusters. My task was to see if the mass richness relations
found by observers fit my relations generated with the Magneticum simulations, showing
that the concept of richness exists in the simulation self consistently and matches the ob-
servations. This would lead to a better comparison of cluster masses, which constrains the
used cosmological parameters, enabling us to learn more about the early universe and its
development in space and time.
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Chapter 2

Theoretical Foundations

In this chapter I want to outline the knowledge needed to understand my work. It is divided
into four parts, beginning with the basics of cosmology. Several of physical values will be
derived that we will need in later chapters. The development of the universe, dependent
on the cosmological constants is very fascinating. However it would lead too far from the
actual subject of this thesis, namely galaxy clusters. Therefore I will leave that out.

The basic physics of galaxy clusters will be discussed in the second part of this chapter.
I will present the four main matter components of galaxy clusters, being dark matter, intra
cluster gas, stellar mass and black holes, and explain the physical effects they cause.

In the third and last section of this chapter I want to give a brief overview of the used
numerical simulation, the Magneticum simulation.
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2.1 Cosmology

Cosmology lays the foundations of the physics of large scale structures in the universe,
galaxy cluster being one of them. Therefore we first have to understand how the space,
which contains these large structures (our universe) can be described and what impact it has
on the measurement of these objects, before we start discussing galaxy clusters in particular.
Most of the formulae derived in this chapter are based on chapter 4 of ’Einführung in die
extragalaktische Astronomie und Kosmologie’ (Schneider 2015).

2.1.1 Redshift

We can measure the radial velocity of galaxies through the doppler shift of spectral lines.
Doing so, we see that the radial velocities are positive for almost all galaxies. This leads
to the impression, that they move cohesively away from us. Edwin Hubble determined a
linear relation between the radial velocity v and the distance of the galaxies D:

v = H0D (2.1)

The value of the constant is approx. 70 km
s Mpc and is the least known constant in astronomy.

The confusion and problems this brings with it will be discussed in section 2.1.5. The
redshift due to shift of spectral lines is defined as

z ≡ λobs − λ0

λ0
, λobs = (1 + z)λ0, (2.2)

where λ0 is the wavelength of the spectral transition within the system of rest and λobs
the observed wavelength. Today we know that this motion is due to the expansion of
the universe. In section 2.1.4, this will be explained in detail. There we will see that
the expansion can be described with a dimensionless factor a, the scale factor. Here it is
important to note that the measured redshift is a combined redshift of this expansion and
the actual radial velocity, due to gravitational interaction.

2.1.2 The Cosmological Principle

Cosmology describes our universe as a whole. Instead of the objects within our universe,
time and space itself are the subject. Emphasis is placed on our, because other universes or
’our’ universe before the big bang are not being discussed in cosmology. Having only one
universe to make statements about is why cosmology differs from other disciplines. Our
universe cannot be compared to other universes, because there is no way to measure it.
Not even every point in our own universe can be observed. First of all the sensitivity of
telescopes is limited, secondly the finiteness of light speed presents a limit. A look far away
is a look into the past. It is thought, that the universe formed approx. t0 = 13, 8 Gyr ago.
Therefore only points that are r = ct0 away can be observed. Which defines our visible
universe. Before the universe can be described in a quantitative manner, a few assumptions
have to be made. The redshift measured for galaxies suggests that our universe is dynamic.
Further assumptions are isotropy and homogeneity of the universe. Isotropy is based on
the fact that on large scales the distribution of galaxies is nearly the same, independent of
the direction looked from and the isotropy of the cosmic microwave background radiation
explained in chapter 2.2.2. Homogeneity follows easily if considered that no point can be
distinguished from others in our universe. Thus, it is isotropic around every point, which is
the definition of homogeneous. Yet our universe looks anything like homogeneous to us. By
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comparing the length of the largest measured structures in the universe of ∼ 100h−1 MPc
to the Hubble - Length RH = c

H0
= 2997h−1Mpc it can be seen that substructures can

be neglected in a cosmological context. The Hubble - Length represents the characteristic
radius of the visible universe. The combination of homogeneity and isotropy is called the
cosmological principle.

2.1.3 Critical Density

Gravitation is the dominant force in our universe and Newtonian gravitation describes
our universe surprisingly well. Generally, it has to be assumed that space can be curved,
therefore one would need general relativity. Nevertheless, a model universe can be created
that is small enough to remain flat and deduce from the time development of this model
universe, due to the assumed homogeneity, to the time development of our whole universe.
Of course this is just an approximation, because substructure cannot be neglected at the
same time as curvature, being the effects on the small respectively the large end of the scale,
but it will help to understand it more easily.
Let us start by imagining a homogeneous sphere and allow it to expand in a manner, that
the density ρ(t) varies over time, but not in space. Now we pick a point in time t = t0
and introduce a spatial coordinate system with origin in the center of the sphere. Due to
expansion, the particle position r(t) is time dependent. Since the expansion is radial, the
direction of r(t) is constant and the position can be written as

r(t) = a(t)x, (2.3)

where a(t) is called scale factor and meets a(t0) = 1 by definition. It describes the dynamics
of our universe. t0 is arbitrary, therefore it is chosen to represent the present time. Ob-
servers, who move according to equation equation 2.3 are called comoving observers. The
velocity of an observer due to the expansion is given by derivative in time of equation 2.3

v(r, t) =
d

dt
r(t) =

da

dt
x =

ȧ

a
r ≡ H(t)r (2.4)

with H(t0) ≡ H0. To derive the time development of our universe we have to treat it
dynamically by taking forces into account. Therefore we look again at a sphere with radius x
at the time t0 and a radius r(t) = a(t)x for an arbitrary t. The included mass is independent
of time and measures

M(x) = 4π
3 ρ(t)r3(t) = 4π

3 ρ0x
3. (2.5)

One can see that ρ0 = ρ(t)a3(t). We can now formulate the equation of motion, knowing
that the acceleration is mainly due to gravitational force and pointing inwards:

r̈(t) = −GM(x)

r2
= −4πG

3

ρ0x
3

r2
. (2.6)

This can be rewritten as

ä(t) = −4πG

3

ρ0

a(t)
. (2.7)

Equation 2.7 is independent of x and thus only dependent on matter density. We can get
another representation, by multiplying equation 2.7 with 2ȧ:

ä(t) · 2ȧ = −4πG

3

ρ0

a(t)2
· 2ȧ⇔ ȧ2 =

8πG

3

ρ0

a(t)
−Kc2 (2.8)
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The left side is equivalent to the right side by integrating, where −Kc2 is the integration
constant. If we now multiply both sides with x2

2 we get

v2(t)

2
− GM

r(t)
= −Kc2x

2

2
(2.9)

Equation 2.9 represents energy conservation, which allows to interpret the integration con-
stant. Since K is proportional to the total energy, the evolution of the universe is dependent
on K. Three cases can be distinguished:

• K < 0: The kinetic energy has to be always larger than the potential energy, thus our
universe is endlessly expanding

• K = 0: The kinetic energy has to always be of the same norm as the potential energy.
In this case our universe is endlessly expanding as well.

• K > 0: Now the kinetic energy can be zero for a = amax =
8πGρ0

3Kc2
. In this case the

universe stops expanding and collapses.

The special case of K = 0 separates the models of endless expansion from collapsing ones.
From the right hand side of equation 2.8 it can easily be seen that H2

0 = 8πG
3 ρ0 for K = 0.

Our universe has therefore a critical density of

ρcrit =
3H2

0

8πG
= 1.88 · 10−29 h2g/cm3. (2.10)

This physical quantity will be very important for characterizing galaxy clusters later on.

2.1.4 Cosmic Parameters

The Newtonian approach generates almost all important aspects of the homogeneous and
isotropic world models. Nevertheless it is modified by general relativity in several ways:
From special relativity we know that mass is equivalent to energy in terms of E = mc2.
This means that we do not only have to account for the density of matter in our equations of
motion. Radiation generates energy densities, that correspond to matter densities according
to this principle. Moreover these densities correspond to a pressure, if we put our universe
into the first law of thermodynamics dU = −PdV :

d

dt
(c2ρa3) = −P da

3

dt
. (2.11)

Another change can be seen if we look at the equation of motion obtained by solving the
relativistic field equations:

(
ȧ

a
)2 =

8πG

3
ρ− Kc2

a2
+

Λ

3
(2.12)

Λ is called the cosmological constant. The cosmological constants interpretation changed
over time. Today it is thought to account for vacuum fluctuations of the universe. For exam-
ple spontaneous pair production of electrons and positrons, within short time spans. For all
forces those fluctuations cancel out, because of positive and negative charge. Gravitational
force on the other hand is always attractive and thus creates a density field.

We now want to derive the equations of motion, including other forms of matter as
well. Pressure of a gas is generally determined by the speed of its constituents and can be
identified with an energy density. Summarized:
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• dust - this is the matter described until now. Constituents have approx. the speed of
sound and temperatures are quite low. For this gas holds P � ρc2 ∼ 0

• radiation - not only including classic radiation like the cosmic background radiation,
but also high speed particles, that meet kBT � mc2. This case results in the equation
of state Pr = ρvc

2

• vacuum energy - we already discussed how vacuum fluctuations create an energy
density. Note, that it has negative pressure. We get the equation of state Pv = −ρvc2.

Let us derive the equations of motion again, first deriving both sides of equation 2.12 and
then executing the derivatives in equation 2.11 to get an expression for ρ̇ . By coupling

2ȧä =
8πG

3
(ρ̇a2 + 2aȧρ) (2.13)

and

ρ̇a3 + 3ρa2ȧ = −3Pa2ȧ/c2, (2.14)

a pressure term appears in the equations of motion

ä

a
= −4πG

3
(ρ+

3P

c2
), (2.15)

with

ρ = ρm + ρr + ρv, P = Pr + Pv (2.16)

The same results can be obtained by identifying ρ with ρm + ρr and ρv with

ρv =
Λ

8πG
(2.17)

in the equations of motion firstly derived. Equations 2.12 and 2.15 are called the first
and second Friedmann equation, respectively. In this formulation ρv is represented by Λ
and not included in ρ. Time development of the densities is the next important step. It
can be derived by taking the listed equations of state and putting them in the first law of
thermodynamics (equation 2.11). For ρm this results in ρm(t) = ρm,0a

−3(t), because the
approximation for the pressure of dust with zero. Regarding the radiation this results in
the equation

d(ρra
3)

dt
+
ρr
3

da3

dt
= 0. (2.18)

This can be transformed to

dρra
3 = −4

3
ρrda

3, (2.19)

which can be integrated and results in ρr(t) = ρr,0a
−4(t). From a physical point of view

the interpretation is as follows: The number density of the photons changes equal to ρm
with a−3, whereas the energy of a photon changes with a−1. This is because the energy of
a photon is proportional to its wavelength, which will be redshifted. The energy density of
vacuum is as mentioned a constant, which results in ρv(t) = ρv. This allows to formulate
dimensionless constants, that represent the amount of total density distributed across the
different types of ”matter”:

Ωm =
ρr,0
ρcrit

, Ωr =
ρr,0
ρcrit

, ΩΛ =
ρv
ρcrit

, (2.20)
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with Ω0 = Ωm + Ωr + ΩΛ. With these cosmic parameters and the definition of the critical
density 2.10 the expansion equation 2.12 reads

H2(t) = H2
0 [a−4(t)Ωr + a−3(t)Ωm + a−2(t)ΩK + ΩΛ], (2.21)

where ΩK = −Kc2

H2
0

. The scale factor a(t) depends on the cosmological epoch. Let us derive

an easy description of a, assuming a light beam that reaches earth today. This light beam
is redshifted due to expansion of the universe on its way to earth. The infinitesimal redshift
dz = dλ

λ can be rewritten as dv
c . The difference in velocity is according to equation 2.4,

so one obtains dv
c = H

c dr = Hdt = da
a . In the last two steps it is used that the light

travels through space with light speed dr
dt = c and the definition of the Hubble parameter in

equation 2.4. This relation can be easily integrated resulting in λ(a) = aλobs, where λobs is
the integration constant. At the time of emission applies λe = a(te)λobs and with equation
2.2 the relation

a =
1

1 + z
(2.22)

is obtained. A lot of interpretations can now be made. But for this thesis, it is enough
to describe the model universe and understand the equations for galaxy clusters. In my
calculations, I used a flat universe (Ω0 = 1,K = 0) with the parameters

H0 = 70, Ωm = 0.3, ΩΛ = 0.7 ,and Ωr is negligible. (2.23)

2.1.5 Hubble Parameter

We learned that depending on how far an object is away from us (may it be in space or in
time), its length varies due to the expansion of the universe, see equation 2.4. The Hubble
parameter itself is dependent on redshift according to H(z) = H0E(z) with

E(z) =
√

ΩR(1 + z)4 + ΩM (1 + z)3 + ΩK(1 + z)2 + ΩΛ

Hence the dependence on redshift is known, provided the cosmic parameters were specified.
Unfortunately, the Hubble constant is one of the least known values in astronomy and there
have been furious debates about which value to use. Values ranged from 50 km s−1 Mpc−1

to 100 km s−1 Mpc−1. This can lead to a lot of mistakes and misunderstandings. Further-
more, the dimensionless hubble constant h is defined as

H0 = 100 h km s−1 Mpc−1.

Debates resulted in the compromise to factor out the H0 dependence is factored out and
put in later on with the desired h value. It is important to note, that h is just a constant,
not a unit, nor redshift dependent, although it often seems to appear as a unit. It itself
solely depends on which measurement the authors views as most trustworthy. However it
represents an uncertainty about a physical value, depending on how it is obtained. If we
take the stellar mass of a galaxy cluster for example, we find either

M = 4.224 · 1014h−1M� or M = 2.973 · 1014h−2M�

Both represent the same value. However the left one is mostly seen as result of simulations.
In simulations the mass can be calculated from the virial theorem and velocity dispersion

according to Mtot = Rvir〈v2〉
G (2.20). The radius scales with a and since h is factored out

we have to divide by h to obtain the absolute value. The right one, on the other hand,
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is seen in observations. They calculate mass from luminosity, which scales with the area,
resulting in a dependence of h2. For more examples see and a more detailed explanation
see (Croton 2013). Knowing the different dependencies is very important to be able to
compare simulated with observed data, like I do in chapter 3.
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2.2 Physics of Galaxy Clusters

Galaxies are not evenly distributed in space - on the contrary: they show the tendency to
gather in so called galaxy clusters (Schneider 2015). Despite what this name implies, galaxy
cluster do not primarily consist of galaxies. Typical galaxy clusters have masses of about
∼ 1014to1015M�. Only about 5 % of their mass is due to galaxies. The bulk of mass is given
by dark matter (∼ 65to85%) and most of the remaining mass comes from intracluster gas
(∼ 10to30%)1. In the following sections I want to present the cluster components in detail.
We will see that galaxy cluster’s size is of order of a few Mpc and that they are assumed
to sit at the nodes of filaments in the cosmic web. Most of my information for this chapter
can be found in Sarazin 1988 2, otherwise I will state the source separately.

2.2.1 Dark Matter (DM)

Cluster masses were first derived by Zwicky (1933) and Smith (1936). They found that the
masses greatly exceed those which would be expected by summing the masses of all the
cluster galaxies. The masses of galaxy clusters can be determined if it is assumed that they
are bound, self-gravitating systems. If they were not, they would disperse rather quickly
(∼ 109 yrs). Therefore the limit on the mass of clusters comes from the binding condition,

E = T + V < 0 (2.24)

where E represents the total energy, T the kinetic energy and V the gravitational potential
energy. If this condition holds true, the system can be considered as virialized. Furthermore,
a radius can always be found within the cluster for equation 2.24 being met. This radius
is called the virial radius. Given the Newtonian gravitational potential, the virial theorem
provides the relations

V = −2T, E = −T

With these relations, the aforementioned potential and the classical kinetic energy the
relation

Mtot =
Rvir 〈v2〉

G
(2.25)

is obtained. Assuming that the velocities of the galaxies are uncorrelated one can write
〈v2〉 = 3σ2

r , where σr is the radial velocity dispersion. σr can be measured due to the
redshift of galaxies within a cluster and Rvir can be measured in several ways (projected
separation, fit to galaxy distribution). This results indeed in Mtot ∼ 7 · 1014 solar masses.
It appears to be quite a challenge to indicate a cluster’s size, since the gravitational force is
proportional to 1

r2
and is for this reason always larger than zero. Rvir is one of the values that

represent a cluster’s size, which is about a few Mpc. If a system is expected to completely
consist of stars, a mass to light ratio like the sun’s should be expected. However, mass to
light ratios are found, that are of about two orders of magnitude higher than expected (Rood
1981). This ”missing mass”, that only interacts gravitationally and does not emit radiation,
is what is called dark matter (everything else is called baryonic matter). Therefore it can
only be measured indirectly. The nature of dark matter is still an unsolved question in
current research and there are various elementary particles, that are discussed (Garrett
and Duda 2010). Because dark matter only interacts gravitationally, it had the possibility
to form potential wells in the early universe.

1http://www2.astro.psu.edu/~caryl/a480/lecture12_10.pdf
2https://ned.ipac.caltech.edu/level5/March02/Sarazin/frames.html
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2.2.2 Intra Cluster Medium (ICM)

Galaxy clusters are among the brightest sources of X-ray radiation (Schneider 2015). The
area that emits this radiation is extended over the whole cluster and does not come from
single galaxies. Characteristic luminosities are about LX ∼ 1043−45erg/s. Fig. 2.1 shows
typical spectra at different temperatures with solar element abundances. The lower two
graphs fit the observed spectrum of galaxy clusters the best. We can therefore conclude that
the temperature of the intra cluster gas is about 107−8K. Three emission processes involving
electronic interaction contribute to the radiation: bremsstrahlung radiation caused by the
acceleration of an electron in the coulomb field of an ion, recombination radiation caused by
the capture of an electron by an ion following ionization, and deexcitation radiation of an
electron lowering the quantum state in an atom. The first two processes generate continuum
radiation and the latter line radiation. As can be see, the dominant radiation process in
galaxy clusters is bremsstrahlung. This is because of the fact that at these temperatures
hydrogen and helium are fully ionized and only interact with electrons in a way of deflection.
Nevertheless elements like iron are not fully ionized. The deexcitation of 25 times ionized
iron (an iron nucleus with one electron) produces enough energy (about 7keV ) to be seen
in the spectrum. Due to the very low densities in the ICM of about 10−3 particles per
cubic centimeters, there are even radiative transitions of electrons that would be forbidden
otherwise. The low densities are also the reason why so much X-ray radiation can escape
the ICM without being absorbed.

Another interesting effect that is caused by the ICM is the inverse compton scattering of
the cosmic background radiation (CMB), first described by Sunyaev and Zel’dovic (1980).

Right after the big bang the density was
so high that the mean free path length
was too short for the photons to es-
cape. The universe began to cool down
and recombination processes caused the
medium to become transparent for pho-
tons. This is the oldest radiation of
the universe we can measure and it is
called cosmic microwave background ra-
diation. Given the cosmological principle,
one would also expect it to be isotropic.
This is not exactly the case. The main
anisotropy originates in quantum fluctu-
ations of the early universe. Another mi-
nor anisotropy is caused, because on its
way to us the CMB photons traverse the
intra cluster gas of several galaxy clus-
ters. The photons are scattered to higher
energies by the hot electrons in the gas.

Figure 2.2: Graphic, that shows how SZE
influences the CMB 3

Non - thermal radiation of clusters is mainly due to merging effects. At high redshifts,
where we can see elongated, asymmetric structures of galaxy clusters effects like turbulence,
shocks, streaming motions and cold fronts can be measured.

3source: https://ned.ipac.caltech.edu/level5/Sept05/Carlstrom/Carlstrom2.html19.07.2017
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Figure 2.1: X-ray spectra for solar abundance at different plasma temperatures. The con-
tinuum contributions from bremsstrahlung (blue), recombination radiation, characterized by the
sharp ionization edges (green), and 2-photon radiation (red) are indicated. Source: https:

//ned.ipac.caltech.edu/level5/Sept09/Bohringer/Bohringer2.html19.07.2017

12



Figure 2.3: left panel: The galaxy cluster Abell1689 in the visible spectrum. Source: https:

//www.jpl.nasa.gov/spaceimages/details.php?id=PIA10237 right panel: Our neighbor galaxy,
the Andromeda galaxy (M31) in the visible spectrum. Source: https://apod.nasa.gov/apod/

ap130626.html

2.2.3 Stellar Component

Even though the stellar component makes up for only ∼ 1% of a cluster’s mass it plays a
big role in observations, especially in earlier studies of galaxy cluster, because the stellar
component emits the bulk of light in the visible spectrum. Observers began to classify
cluster morphology according to their ’richness’. There are several ways to define richness.
The one I used for my research reads as follows

Richness is the absolute number of galaxies within the radius R200 of a cluster, that are at
least as luminous as 40% of the luminosity of the Milky Way. (Rykoff et al. 2008)
There are a lot of other classification schemes for morphological types of clusters summa-

Table 2.1: Summary of various schemes to classify morphological types of galaxy clusters

Property Regular Intermediate Irregular

Zwicky Type Compact Medium-Compact Open
Richness Rich (∼ 102) Rich-Moderate (∼ 101) Rich-Poor (∼ 100)

Symmetry Spherical Intermediate Irregular
Central Concentration High Moderate Low

Subclustering Absent Moderate Significant

rized in table 2.1. These systems of classification are empirically found to be highly corre-
lated, and can roughly be mapped into a one-dimensional sequence running from regular
clusters to irregular clusters. These correlations indicate a connection between the dynam-
ical state and galactic content of clusters. There is no one-to-one correlation between the
morphology of a cluster and its richness. Regular clusters are always rich, while irregular
clusters may be either rich or sparse. Nevertheless, observers classify their observed clusters
in richness groups for a better comparison. Regarding the galaxies in galaxy clusters, they
are mostly diffuse ellipticals, due to the high merger activity. Galaxies in clusters are often
quenched and therefore form less stars, than field galaxies. This is why M31 seems more
bluish than the galaxies in Abell1689. A comparison between a field galaxy and cluster
galaxies can be seen in fig. 2.3.

13



2.2.4 Black Holes, Active Galactic Nuclei (AGN)

It is generally accepted that present-day spheroidal galaxies host supermassive black holes
(BHs) at their centres (Magorrian et al. 1998). In addition, strong correlations are found
between BH masses and properties of their host galaxies as the bulge mass, the stellar
velocity dispersion and the X-ray luminosity. This can be interpreted as an evidence for
a co-evolution between the spheroidal component of host galaxies and their BH’s. During
their lifetime, BHs are assumed to undergo several episodes of significant gas accretion,
during which this accretion powers active galactic nuclei (AGN) (Salpeter 1964). In fig.
2.4 a sketch of the unified scheme of AGN structure is displayed. Because the lengths are
not true to scale, real sizes are listed in table 2.2. Friction in the accretion disk of the AGN
causes high temperatures and a lot of energy is radiated away. Magnetic fields are twisted
and generate a pointed mass outflow called jet. These jets consist of high velocity particles,
that can increase the temperature of the surrounding inter galactic medium. The jet is
responsible for the bulk of measured radiation in the radio wavelength, but an AGN emits
enormous radiation across the whole electromagnetic spectrum.

Figure 2.4: The unified scheme of
AGN structure (Padovani 1997)

AGN component Size

black hole 10−7pc to 10−4pc
accretion disk ∼ 10−3pc

broad line region 0.01pc to 0.1pc
torus 0.1pc to 10pc

narrow line region 100pc to 1000pc
jets 1kpc to 1Mpc

Table 2.2: Length scales of AGN components.

The impact such AGN’s have on the luminosity of clusters will become important for my
analysis, so let us discuss them in detail. The following derivation is taken from a lecture
at Oxford University 4. Every luminous object in the universe has a maximum luminosity,
beyond which radiative pressure will overcome gravitational pressure and material outside
of the object will rather be pushed away than accreted. Let us consider an object of radius
R and mass M . The gravitational force an object feels at R is given by Newton’s law. The
outwards pointing radiation force is given by

Frad = Pradκm

where κ is the opacity, meaning the cross-sectional area per unit mass for radiation scattering
and Prad the radiative pressure given by

Prad =
L

c

1

4πR2

4Source: http://www-astro.physics.ox.ac.uk/~garret/teaching/lecture7-2012.pdf
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balancing the forces and solving for L results in the Eddington - Luminosity.

LEdd =
4πGMc

κ

Assuming to be in the regime of high energy accretion, the accreted particles can be approx-
imated to be mostly ionized hydrogen. Therefore the opacity comes mostly from radiation
pressure on electrons, whereas the mass comes from the protons. Although the radiation
is mostly felt by electrons, they will drag the protons with them, because of electro static
forces. Hence we approximate κ = σT

mp
, where σT is the Thomson cross - section and obtain

LEdd =
4πGMcmp

σT
.

This luminosity is the result of accreted mass, whose gravitational potential energy is trans-
formed to some degree into radiation energy. Suppose an accretion rate of Ṁ and a fraction
ε that expresses how much energy is radiated away, we get

L = εṀc2.

Since there is a maximum luminosity given by LEdd, Ṁ is limited from above as well.
Setting both equations for the luminosity equal and solving for Ṁ results in

ṀEdd =
4πMmp

εcσT

This is the Eddington - accretion rate. If L̇/L̇Edd ∼ 1 the object is called radiatively
efficient. If it is < 0.1, it is called radiatively inefficient. Even if the black hole emits a lot
of radiation, it is not guaranteed to contribute to the cluster’s luminosity. The black hole
can be obscured because of gas clouds that absorb most of the radiation.
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2.3 Numerical Simulations

Modern cosmological observations allow astrophysicists to study the evolution and history
of large scale structure hierarchy in great detail. Accurate constraints on the cosmological
parameters within a given cosmological model is a fundamental problem which requires
precise modeling of the observed structure. Large-scale cosmological simulations utilizing
modern supercomputers are essential tools for accurately calculating theoretical predictions
of the distribution and state of the baryonic and dark matter in the Universe. Especially
in the non-linear regime of gravitational dynamics and hydrodynamics, where galaxies and
clusters of galaxies form out of the large scale structure, they are of greatest importance.

Throughout all of my thesis I used the Magneticum pathfinder simulations (Dolag et al
in prep). The Magneticum pathfinder simulations are hydrodynamical simulations based
on the extended version of the parallel TreePM SPH-code GADGET-2 (Springel 2005)
called P-GADGET-3. For dark - matter - only simulations an N-body code would suffice,
however particle-particle interaction plays a tremendous role in the interaction of baryonic
matter, which needs a hydrodynamical treatment. Many physical effects are included in
the Magneticum pathfinder simulations5:

• cooling, star formation, winds

• Metals, stellar population and chemical enrichment SN-Ia, SN-II, AGB new cooling
tables

• Black holes and AGN feedback

• Thermal Conduction

• Low viscosity scheme to track turbulence

• Magnetic Fields (passive)

The Magneticum Pathfinder simulations are hydrodynamical cosmological simulations that
cover box sizes up to Gpc3 in yet unaccomplished detail. Six different boxes of varying sizes
and resolution allow the multiple wavelength comparison to observed data. I restrict myself
to Box 2b. With a size of (640Mpc)2 it allows to study galaxy clusters in a cosmological
context and a high resolution of 2 · 28803 particles allows to take astrophysical processes
reliably into account. Dark matter particles have masses of 6.9 · 108M�/h and gas particles
have masses of 1.4 · 108M�/h with softenings of 10kpc/h to avoid diverging of forces if the
simulated particles get too close. The simulation started at redshift z = 60 and evolved
to z = 0.25. I mostly used the snapshot with lowest redshift because I compared my
results to observations of nearby clusters. The Magneticum pathfinder simulations use
a ΛCDM cosmology taken from Komatsu et al. 2010, with the cosmological parameters
Ω0 = 0.272, ΩΛ = 0.728, and H0 = 70.4.

5http://www.magneticum.org/simulations.html
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Chapter 3

Creating Scaling Relations

Scaling Relations put two different physical quantities into context. Depending whether a
correlation from one to the other can be found, the resulting curve can be used to associate
one property with the other. In theoretical astrophysics scaling relations are crucial to test
the numerical simulation. The simulation is a good representation of reality if the numerical
relations fit the observed. Furthermore, it is important to see how observed scaling relations
differ from theoretical, gravitational scaling relations to learn to what extend these are
affected by hydrodynamical processes.

I want to begin this chapter by outlining how galaxy clusters in the simulation are found.
This leads to a discussion of the Friend-of-Friend algorithm and the overdensity parameter.
Results of scaling relations for the most important mass proxies, being temperature, X-ray
luminosity, SZE, velocity dispersion and richness, will be discussed in the second section.
These are calculated using the on-the-fly postprocessing of the simulation. In the third
section I will examine how the results change by taking more physical processes into account,
though I will restrict myself to the mass - luminosity relation. Luminosities will now be
calculated with the program SMAC and the effect of AGN will be taken into account.
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3.1 Galaxy Clusters in Magneticum

As the simulation ran, snapshots were created that represent the universe at a specific
time. All physical properties can be calculated from these snapshot files, while many of
them are directly obtainable through a postprocessing routine. The postprocessing routine
generates huge arrays that store data like velocities, positions, but also indices e.g. to see
what subhalo belongs to which halo.

Further I will refer to galaxies and galaxy clusters represented in the simulation as
subhalos and halos, respectively. The reason is following: Galaxies and galaxy clusters in
numerical simulations are represented by accumulations of particles. First of all the so-
called friends-of-friends (FoF) algorithm is used to find all particles in a certain overdensity
that are within a specific distance, the linking length, to another particle. Friends of friends
are friends again, thus a halo is formed. Then, the SUBFIND algorithm searches for local
minima in the halo potential. The local minima represent subhalos of the halo. It is hard to
distinguish between halos that are close to each other or even merging. Because of numerical
errors of this kind it is important to differentiate between clusters and halos. Furthermore
halos and subhalos are general concepts. Depending on the mass threshold, a halo can
represent something between groups of galaxies and galaxy superclusters.

It is important to note, that all physical quantities depend on the used radius for the
cluster. Since there is no end to a cluster in a sense like an edge, their size is defined with
the overdensity parameter ∆:

r3
∆ =

3

4πρcrit∆
Mcluster(r 6 r∆). (3.1)

This equation holds for different redshifts and even cosmologies, because in a self similar
model the ratio of mean protocluster density to the background density at turnaround
is the same for different redshifts.Which means that the cluster collapse is just scaled to
higher densities for higher redshifts (Böhringer, Dolag, and Chon 2012). Furthermore a
local region of the universe evolves like a universe with these local density and expansion
parameters irrespective of the embedding cosmology according to the Birkhoff theorem.

Physical properties are calculated by the postprocessing within six radii r∆. These are
the virial radius, the radius where the density is: 200/500 times the mean density of the
universe and 200/500/2500 times the critical density of the universe (∆ = 200/500/2500).
Therefore it is very important to pay attention to the used properties in observations for
a valid comparison. Furthermore one has to pay attention to the underlying cosmological
parameters, since the physical properties behave differently at larger redshifts for different
universes.
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3.2 Mass Scaling Relations

The theoretical scaling relations I will present for each physical property are based on dark
matter structure evolution with the assumption, that the baryonic matter follows the dark
matter. Because hydrodynamical effects are neglected, they may differ from the scaling
from observations and the simulation, but visualize quite well why there should be a scaling
in the first place. Generally the radius of clusters scales with mass in a simple geometric
way. Concerning the time development we have to look at the time dependence of the mean
density (Böhringer, Dolag, and Chon 2012):

ρcrit(z)

ρcrit(z = 0)
=
H(z)2

H2
0

= E(z)2. (3.2)

The evolution of the radius at fixed overdensity (eg. ∆ = 500) is therefore given by

r500 ∼ (
M500

ρ0
)1/3 ∼M1/3

500E(z)−2/3. (3.3)

In this approach it is assumed that clusters have just collapsed and baryonic matter follows
dark matter, which is only true in a very broad sense.

Table 3.1: Cluster properties. Taken from Pratt, Croston, et al. 2009. Mass calculated from SZE
taken from Planck survey

name T LX YX MY z

RXC J0006.0-3443 5.03 4.13 22.74 3.77 0.11
RXC J0020.7-2542 5.69 6.52 22.41 4.56 0.14
RXC J0145.0-5300 5.53 5.00 26.62 3.49 0.11
RXC J0345.7-4112 2.19 0.77 1.91 1.78 0.06
RXC J0547.6-3152 6.02 8.97 35.54 5.30 0.15
RXC J0605.8-3518 4.56 9.54 22.39 5.40 0.14
RXC J0645.4-5413 6.95 18.88 71.61 7.87 0.16
RXC J0958.3-1103 5.18 11.56 28.04 5.18 0.17
RXC J1141.4-1216 3.31 3.75 8.60 3.27 0.12
RXC J1302.8-0230 2.97 1.38 6.07 2.83 0.08

Columns: (1) cluster name;(2) T: spectroscopic temperature of the R < R500 region in keV ;(3)
Luminosity in the R < R500 region in 1044erg s−1;(4) YX in the R < R500 region in units of
1013M� keV ;(5) MY in the R < R500 region in 1014M�;(6) cluster redshift.

3.2.1 Mass - Temperature

The first basic scaling is given by linking cluster mass to cluster temperature. The heat
comes from the conversion of potential energy during the formation of the cluster (Böhringer,
Dolag, and Chon 2012), resulting in

T ∼ Φ0 ∼ (
M∆

r∆
) ∼M2/3

∆ E(z)2/3∆(z)1/3 (3.4)

The comparison between observed and simulated mass - temperature scaling is shown
in Fig. 3.1. The fitting function was taken from Ilić, Blanchard, and Douspis 2015

T = ATM (hMv)
βTM (

Ωm∆

178
)(1/3)(1 + z)1+αTM (3.5)
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Figure 3.1: Left panel: Temperature - Mass scaling for galaxy clusters. Every black dot represents
a halo from the MAGNETICUM simulation at redshift z = 0.25. The black curve is fitted to every
single halo with the same error and the black diamonds represent the binned medians in constant
steps of 1.5 · 1013M�. The green line displays the scaling relation from Ilić, Blanchard, and Douspis
2015, which is fitted to observed data. The green diamonds represent ten observed clusters listed in
Table 3.1. Right panel: Residual plot displaying the weighted difference between the observed and
the simulated scaling relation.

I created the simulation curve with this function using Ωm = 0.3, h = 0.7 and ∆ = 200
(concerning the cosmological parameters, this applies to the calculation of all physical
properties). Ilié et al. calculated them more precisely to Ωm = 0.316 and h = 0.67. I
set z = 0.25 for my curve and z = 0.12 for the observed curve, for a better comparison with
the ten galaxy clusters (see table 3.1 for redshifts). The masses for these clusters are given
in R500, which is the reason why they must be multiplied by η = 1/0.47054. η is the mean
residual between M200 and M500 in the simulation. The fitting resulted in ATM = 7.29
(βTM = 0.67 was put into the relation) for the observers and ATM = 8.08, βTM = 0.606
for the simulation. I fitted it directly without using logarithms resulting in a ∆χ2 = 185.8
and DOF = 1498. Indeed, the observed clusters are more accurately fitted by the observer
scaling relation. Nevertheless the residual is quite small and increasingly smaller for higher
temperatures as can be seen in the right panel of fig. 3.4. Furthermore the slope of the
scaling fits the theoretically assumed quite well.

3.2.2 Mass - Luminosity

According to (Henry and Tucker 1979) the temperature - potential relation can be expressed
as kT ∝ GmHρx(0)a2

x with the central density (ions + electrons) ρx(0) and the core radius
ax. Assuming galaxy clusters to be self gravitating isothermal spheres we obtain with the
upper relation

Lx ∝ n2
xV T

1/2 ∝ ρx(0)2a3
xT

1/2 ∝ T 5/2a−1 (3.6)

This results in Lx being proportional to M , because the core radius ax is proportional to the
cluster radius and T is proportional to M according to Equ. 3.4. It is important to mention
that clusters cannot be approximated by self gravitating isothermal spheres, because the
cluster mass is dominated by dark matter, that does not emit radiation. However, an
isothermal sphere confined by mass other than its own, describes a cluster quite well. Thus
ρx has to be replaced by the fraction ρx(0)/ρT (0) with the confining mass density ρT (0). The
distribution of dark matter and gas is approximately the same and ρT (0) ∼ 10ρx(0), thus
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Figure 3.2: Left panel: Luminosity - Mass scaling for galaxy clusters. Every black dot represents
a halo from the MAGNETICUM simulation at redshift z = 0.25. The black diamonds represent the
binned medians in constant steps of 1.5 · 1013M�. The black curve is fitted to these medians. The
red line displays the scaling relation from Pratt, Croston, et al. 2009, which is fitted to observed
data. The red diamonds represent ten observed clusters listed in Table 3.1.Right panel: Residual
plot displaying the weighted difference between the observed and the simulated scaling relation.

resulting in Lx ∝ M11/12. The comparison between observed and simulated luminosity
- mass scaling can be seen in fig.3.2. The fitting function was taken from Pratt, Croston,
et al. 2009:

h(z)nLX = C(A/A0)α, (3.7)

with h(z) = hE(z), A0 = 2 · 1014M�, n = −7/3 and Mν being the virial mass. This fitting
method resulted in α = 1.81, C = 1.81 for observed scaling and α = 2.00, C = 1.76 for the
simulated data. The values for ∆χ2 = 31.66 and DOF = 27 changed drastically, because
I now fitted the medians, due to the big scatter. The observational and simulation curve
match each other surprisingly well, with residuals of 0.2 for small LX and only 5% for high
LX . The slope is way higher than what one would expect seeing the theoretical relation.
This means that hydrodynamical effects play a huge role in the emission of X-rays.

3.2.3 Mass - SZ

The SZ flux integrated within a certain radius, YSZ , is proportional to the total thermal
energy of the ICM gas and thus to the overall cluster potential, which makes it relatively
insensitive to the details of the ICM physics and merging (Kravtsov, Vikhlinin, and Nagai
2006):

YSZ = (
kBσT
mec2

)

∫
V
neTe dV ∝MgTm, (3.8)

where kB, σT ,me and c have their usual meaning, ne, Te are the number density and tem-
perature of the electrons respectively and Tm is the mass-weighted mean temperature of
the ICM. With M∆ ∝Mg and 3.4 one obtains

M∆ ∝ Y 3/5
SZ E(z)3/2 (3.9)

In fig.3.3 the comparison between observed and simulated SZ - Mass scaling is displayed.
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Figure 3.3: Left panel: SZ - Mass scaling for galaxy clusters. Every black dot represents a halo
from the MAGNETICUM simulation at redshift z = 0.25. The black curve is fitted to every single
halo with the same error and the black diamonds represent the binned medians in constant steps of
1.5 · 1013M�. The teal line displays the scaling relation from Bocquet et al. 2014, which is fitted to
observed data. The teal diamonds represent ten observed clusters listed in Table 3.1.Right panel:
Residual plot displaying the weighted difference between the observed and the simulated scaling
relation.

The fitting function was

M500,c

1014M�
= AXh

1/2(
YX

3 · 1014M� keV
)BXE(z)CX , (3.10)

with the normalization AX , slope BX and redshift evolution parameter CX . I used the
observational CX = −0.4 to guarantee a better comparison. This method resulted in
AX = 5.77, BX = 0.57 for the observational curve and AX = 9.85, BX = 0.57 for the
simulation curve. As we can see the scatter is phenomenally small, thus ∆χ2 = 0.96 and
DOF = 1498. It is remarkable that the residual is constant and represents a value close
to 1/h. Both fits reproduce almost exactly the slope that was to expect from the theory,
making the relation indeed quite independent to hydrodynamics.

3.2.4 Mass - Velocity Dispersion

The relation between velocity dispersion and cluster mass was already derived in Chapter
2.2.1 being

〈v1D〉 =

√
2GM

3R
. (3.11)

With Equ. 3.2 one obtains

σ ∝M1/3
500E(z)1/3. (3.12)

I calculated the velocity dispersion in the following way

σ1D =
1√
3

√
〈(vi − ṽi)2〉, (3.13)

with ṽ being the velocity of the central subhalo, and v being the velocities of the satel-
lite galaxies. The comparison between observational and simulated scaling of velocity
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Figure 3.4: Left panel: Velocity Dispersion - Mass scaling for galaxy clusters. Every black dot
represents a halo from the MAGNETICUM simulation at redshift z = 0.25. The black curve is fitted
to every single halo with the same error and the black diamonds represent the binned medians in
constant steps of 1.5 ·1013M�. The purple line displays the scaling relation from Bocquet et al. 2014,
which is fitted to observed data. The purple diamonds represent five observed clusters listed in Table
3.2, whose masses were multiplied by 1/0.4705 to get M200 approximately.Right panel: Residual plot
displaying the weighted difference between the observed and the simulated scaling relation.

Table 3.2: Cluster properties. Taken from Ruel et al. 2014.

SPT-CL J0000-5748 J0511-5154 J0438-5419 J0546-5345 J2058-5608

M500,c 4.29 5.63 22.88 7.69 5.02

σ 935 873 1211 1080 780

rows: (1) cluster name; (2) M500,c: Mass in the R < R500 region in h−1M�; (3) σ: velocity dispersion
in km s−1.

dispersion and mass is depicted in fig. 3.4. The fitting function was

M200,c = (
σ

Aσh(z)Cσ
)Bσ 1015M�, (3.14)

with the redshift evolution parameter Cσ = 0.33, which I used for my fitting as well, to
get a better comparison. The fitting resulted in Aσ = 939, Bσ = 2.91 for the observational
curve and Aσ = 1100, Bσ = 2.95 for the simulation curve. The scatter for this relation is
comparatively big. Nevertheless ∆χ2 = 0.11 and DOF = 1498. The masses of the observed
clusters are quite big, but are indeed fitted better by the observational curve. The residual
is big as well, but gets smaller for higher velocity dispersions. Both slopes are very close to
the theoretical value of Bσ = 3. Both of them are just a little bit smaller, which may be
due to friction effects.

3.2.5 Mass - Richness

Richness is a mere empirical property, that exists since the very first cluster catalog (Abell
1958). Therefore there is no way to analytically derive a scaling between mass and richness.
However it is pretty clear that if a cluster has more and brighter galaxies in its center, it is
also more massive. Yet, this makes it so interesting to look at in simulations, to see whether
the implemented hydrodynamics suffice to generate a similar scaling.
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Figure 3.5: Left panel: Richness - Mass scaling for galaxy clusters. Every black dot represents a
halo from the MAGNETICUM simulation at redshift z = 0.25. The black curve is fitted to every
single halo with the same error and the black diamonds represent the binned medians in constant
steps of 1.5 · 1013M�. The blue line displays the scaling relation from Andreon and Hurn 2010,
which is fitted to observed data. The blue diamonds represent the eight measured means listed in
Table 3.2. Right panel: Residual plot displaying the weighted difference between the observed and
the simulated scaling relation.

I calculated the richness for the simulated halos, by checking the condition stated in
Chapter 2.2.3

Msub > 0.4M∗ and Rsub =
√

(xsub − xC)2

with M∗ being the mass of the Milky Way, xsub being the position of the subhalo and xC

being the halo position. I did this for every subhalo of a halo and increasing a variable
every time it held true. Unfortunately there is no array generated by the postprocessing
that contains the luminosity of subhalos. However I assumed that a galaxy’s mass and its
luminosity scale almost linear.

Table 3.3: Cluster properties. The values are calculated for > 17000 clusters in total from the
maxBCG catalog. Therefore the values are means. Taken from Rykoff et al. 2008.

N̄200 9.9 14.0 19.0 22.7 28.6 35.9 44.7 58.4 83.9

L̄X 2.94 6.95 9.05 15.2 24.5 40.3 57.2 86.6 131

M̄200 0.41 0.62 0.86 1.07 1.36 1.81 2.02 2.42 4.29

rows: (1) N̄200: mean of the used richness range; (2) L̄X : mean x-ray luminosity in 1042h−2erg s−1;
(3) M̄200: from L̄X calculated masses according to Equ. 3.7 with the observational parameters
1014M�.

Finally, we can examine the relation between richness and mass in Fig. 3.5. The utilized
fitting function was

lg M200 = A(lg N200 − 1.5) +B, (3.15)

resulting in A = 0.96, B = 14.36 for the observational curve and A = 1.010, B = 4.10 for
the simulated curve with ∆χ2 = 12.36 and DOF = 1498. As we can see the normalization
is off by a factor ∼ 3.5. However, the simulation curve fits the observed clusters from
Rykoff et al. 2008 quite well. This may be the result of calculating the masses with the
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Figure 3.6: Comparison between the residuals
of the different mass proxies. The colors represent
following scaling relations:
green: temperature - mass
red: luminosity - mass
orange: sze - mass
purple: velocity dispersion - mass
light blue: richness - mass
dark blue: richness - mass calculated from lumi-
nosity see Chapter 3.2.5

well approximated luminosity - mass relation shown in Fig. 3.2 and eliminating errors.
Furthermore the blue diamonds are just means of the observed clusters. Nevertheless, I
fitted the cluster means as well, which resulted in A = 1.014, B = 4.16 with ∆χ2 = 0.005
and DOF = 7. This is an astonishing result. It is important to note that all relations have
a slope of ∼ 1, which means that for double the richness, the mass is doubled.

3.2.6 Discussion

In Fig. 3.6 a comparison of the residuals of all mass proxies is displayed. They range
from approx. 100% too small, to approx. 40% too large. In an astrophysical context these
differences are not too big for all scaling relations. We have to keep in mind that scatter
plays a big role in fitting. Although the scatter is the smallest for the SZE - mass relation,
the residual is compared to the other relations quite big. However, the slope is almost
exactly the same. I rank reproducing the slope more important than obtaining the right
offset, because the physical behavior rests more in the slope than in the normalization.
As we can see, the richness - mass relation falls behind, having the highest offset and a
different slope. However the richness - mass relation, fitted to the masses calculated from
luminosities, matches the simulation curve almost perfectly with small offset and essentially
the same slope. This shows that it is important to keep in mind how the observers obtained
the masses they fitted to. If they used masses calculated from SZE it is quite obvious that
the relation cannot match if the SZE relation itself does not match. By using the luminosity
relation and calculating the masses with a relation that was accurately represented this error
is eliminated as seen in the richness scaling relation. Altogether this leads to the conclusion,
that richness is well represented in simulations and is a good and easy obtainable mass proxy.
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Figure 3.7: Fossilness of galaxy clusters

Mass - Luminosity plot of galaxy clusters. The color represents f = log(McD/Msat). Every dot
represents a halo from the Magneticum simulation.

3.3 In - Depth look at Luminosity

The on-the-fly post-processing calculates physical properties without taking all hydrody-
namical processes into account, to obtain results in short computational times. In this
section I want to examine how scaling relations change when second order effects are in-
cluded. I will restrict myself to the luminosity-mass scaling relation because there are
various interesting topics to discuss and doing this for all relations would be repetitive and
would simply take too long.

3.3.1 Scatter

The first thing that is immediately visible, looking at Fig. 3.3 is the big scatter. The
scatter is a result of dynamical processes like mergers. One way of quantifying it is the
so-called fossilness. The study of fossil groups is relatively new (Pratt, Pointecouteau,
et al. 2016). N-body simulations of clusters show that galaxy merging naturally produces
massive, central galaxies with high surface brightnesses and velocity dispersions. The central
galaxy forms through the merger of several massive galaxies along a filament early in the
clusters history. If a merger efficient system such as a galaxy group remains undisturbed
due to relative isolation from other massive systems, a giant elliptical galaxy will form as a
result of the internal multiple merger due to dynamical friction. The time-scale of such a
process depends on the local density and is shorter at early epochs. The fraction of mass
of the central dominant galaxy to the mass of the most massive satellite is an indicator of
how relaxed the system is. Although it is discussed whether fossil groups represent relaxed
systems. In Fig. 3.7 the fossilness is color coded. Red colors represent high fossilness, while
blue colors represent fractions < 0.3. As can be seen, there is a color gradient along the
y-axis, because relaxed systems show less merger activity and are would be less luminous.
Therefore a cluster evolves along the scatter similar to stars in the Hertzsprung - Russel
diagram. Thus, the scatter can be narrowed by focusing on clusters in a certain stage of
relaxation.

26



Figure 3.8: Fitting maps created with SMAC, depicting one specific galaxy halo. Size of the
picture is 4Mpc× 4Mpc. Left panel: metallicity map Right panel: luminosity map

3.3.2 SMAC

The program SMAC is a map making utility for idealized observations. A description of the
current implementation of the map making procedure can be found in Dolag et al. 2005.
The program returns fit maps with the desired cluster property, taking cooling tables into
account. The spectral lines we met in Chapter 2.2.2 are now included in the calculations,
increasing the cluster’s luminosity and lowering its temperature. Examples for maps created
with SMAC can be seen in Fig. 3.8. I created luminosity maps for 874 clusters and calculated
their total luminosities. Every pixel contains the value of the luminosity for this region.
The total luminosity is obtained by summing up all pixel properties up until the desired
radius:

LX =
∑

r<R500

lxy dA, (3.16)

with dA = (Npx/L)2 = 512px/4Mpc. In Fig. 3.9 we can see the comparison between
luminosities calculated by the post-processing and by the program SMAC. I fitted both
scatters with the same method explained in Chapter 3.2.2., resulting in AX = 1.32, BX =
1.75 and ∆χ2 = 9.70 and DOF = 26 for SMAC and AX = 1.99, BX = 1.78 and ∆χ2 = 20.26
and DOF = 26 for the post processing. Changes to the post processing fit are due to the
fact that I plotted less halos for a better comparison. It is important to note that SMAC
generated 54 luminosities, with LX < 0.1 · 1044erg s−1 and even five luminosities with
LX = 0, while the postprocessing only had five halos with LX < 0.1 · 1044erg s−1 and none
with LX = 0. As we can see halo luminosities from SMAC tend to be smaller for the same
cluster mass. Even though the spectral lines of metals increase the luminosity. The post-
processing calculates thermal bremsstrahlung with the temperature and density of the gas,
while not distinguishing between intra cluster medium and intra galactic medium. The gas
in galaxies is much colder than the ICM, but also much denser. This effect seems to be more
dominant than the effect of spectral lines of metals leading to overall higher luminosities
calculated by the post-processing. Nevertheless the post-processing is confirmed to be a
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Figure 3.9: Comparison between luminosities calculated by SMAC and luminosities calculated
by the post-processing. Left panel: Every dot represents a MAGNETICUM halo. Red represents
SMAC and black represents the post-processing. Right panel: Residual plot displaying the weighted
difference between the SMAC and the post-processing scaling relation.

good approximation.

3.3.3 AGN

Another effect, that has an impact on cluster luminosity are AGN. These are neither in-
cluded in the post-processing nor in SMAC. They have already been discussed in Chapter
2.2.4. To calculate the luminosity of AGN, I first had to check which black hole belongs to
which halo √

(xBH − xH,i)2 + (yBH − yH,i)2 + (zBH − zH,i)2 < Rvir,i (3.17)

for every black hole. For every found black hole I calculated the three properties

Lbol =
εc2

1− ε
ṀBH, ṀEDD =

4πGmp(1− ε)
εcσT

MBH, LEDD =
4πGmp

σT
MBH (3.18)

all constants with their normal meaning and ε = 0.25. The following equations can be
found in Hirschmann et al. 2014. An indicator of how efficient an AGN emits radiation is
f = L̇/L̇EDD. For high efficiencies I kept the calculated Lbol for f < 0.1 I calculated it
according to

L̃bol = 0.1LEDD(10
Ṁ

ṀEDD

)2 (3.19)

Because I am interested in LX and not Lbol, I used the third degree polynomial approxi-
mation

log(LHXR/Lbol) = −1.54− 0.24L − 0.012L2 + 0.0015L3

log(LSXR/Lbol) = −1.65− 0.22L − 0.012L2 + 0.0015L3

with L = log(Lbol/L�). Furthermore, I only added the sum of both luminosities to the
halo luminosity if a random number was smaller than fobsc. fobsc represents the probability
that a cluster is obscured by surrounding gas. In the left panel of Fig. 3.10 we see the
AGN luminosities. It is important to note that only 147 out of 1500 AGN are not obscured.
The obscured fraction has a mean of f̄obs = 0.998 However there are also four AGNs with
LX > 200× 1044 erg s−1. The right panel of Fig. 3.10 shows by which factor the fit of halo
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Figure 3.10: Left panel: luminosities for AGNs in MAGNETICUM halos. Right panel: Residual
plot displaying the weighted difference between luminosities with and without AGN

luminosity is increased due to AGN activity. It is calculated with the procedure explained
in Chapter 3.2.2, resulting in AX = 2.03, BX = 1.77 and ∆χ2 = 41.83 and DOF = 27. We
can see that for the lower end AGN increase the luminosity and decrease the luminosity at
the higher end. However this is due to the fitting routine, because AGN cannot decrease
the luminosity of a halo. With a maximum increase of about 5% the result quite small and
the mean increase is even smaller.
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Chapter 4

Summary

The study of cluster masses is essential for restraining the cosmological parameters and
thus learning about the history and evolution of our universe. While gravitational lensing
is a direct way to measure a cluster’s mass, it is difficult to obtain and needs background
objects in the perfect place. Scaling relations are therefore often the tool of choice. In this
thesis I presented the five most prominent ones, being temperature, X-ray luminosity, SZE,
velocity dispersion and richness. Richness is a mass proxy that has been sparsely studied in
numerical simulations due to its empirical origin. All of these relations vary in various ways.
An important factor is the scatter. The SZE has had by far the smallest scatter calculated
from the simulation, but also in observations it is popular for its small scatter. Merger
activity is a main cause of scatter, represented by the fossilness plot. Furthermore the slope
of the SZE relation fits perfectly, although there is a comparatively large offset. The offsets
in the scaling relations may be due to the fact that observers use masses that are calculated
by an effect that is not well represented. By comparing luminosities calculated from SMAC
and post-processing, we saw that there can be a difference of up to 40% by taking more
hydrodynamical effects into account. This is one reason why there are partly larger offsets.
AGN activity seems to have insignificant impact, at least on halo luminosity. The SZE is a
very small effect and therefore not easy and cheap to measure for large samples of clusters.
In comparison richness is just that. Although falling behind to the other relations in a first
approach, it matched well by nesting it in a richness - luminosity relation. That richness
is represented by numerical simulations at all is not obvious. I come to the result, that
richness is well represented in the Magneticum simulation, allowing a better comparison to
observational data.
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Vorträgen anderer Autoren beruhen, sind als solche kenntlich gemacht. Die Arbeit wurde
bisher keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.
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