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1. Introduction

1.1. Motivation
The stability of stellar systems has always been a key question in theoretical astrophysics.
Since gravitational systems with more than two bodies have no analytical solution, solv-
ing questions imposed by N-body systems relies on numerical or statistical approaches.
One of these statistical approaches was first introduced by Antonov (1961) and lead to
the theory of Radial Orbit Instability (ROI). This section is intended to give a short
motivation for an examination of ROI, a more detailed explanation of the theory will be
given in the next section. For a historical overview of most papers on ROI until 2010 see
Maréchal and Perez (2011).
The theory of ROI allows for an instability in systems with predominantly highly excentric
radial orbits, which causes initially spherically symmetric systems to flatten and become
prolate or triaxial. This lead to a series of simulations to test the impact of this instability
on isothermal spheres and spherically symmetric stellar systems to explain the geometric
properties of elliptical galaxies (see e.g. Henon (1973); van Albada (1982); Palmer and
Papaloizou (1987); Burkert (1990); Theis and Spurzem (1998)).
One of the key assumptions for ROI is that the system is collisionless, which makes the
theory also applicable to dark matter halos (DMHs). This sparked a recent interest in the
impact of ROI on the properties of DMHs. The result of which were that ROI might be
the reason for some of the properties of the NFW density profile (Navarro et al. (1996),
see Sec. 1.3), as proposed by MacMillan et al. (2006). Bellovary et al. (2008) obtained
the geometric counterpart to these implications by observing the geometric properties of
DMHs that had undergone ROI. While MacMillan et al. (2006) and Bellovary et al. (2008)
used isolated DMHs, Ceverino et al. (2015) obtained their results with baryonic matter
inside of the halo. They used their simulations to examine the influence of prolate DMHs
on the shapes of their inhabiting galaxies.

The purpose of this thesis is to show a connection between the ellipticity of the resulting
stellar system and the initial energy relation. This connection will be established in the
unperturbed systems and then compared to systems with induced perturbations. These
perturbations will be an added rotational velocity vφ and a compact central mass with
different masses M•.
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CHAPTER 1. INTRODUCTION 1.2. RADIAL ORBIT INSTABILITY

1.2. Radial Orbit Instability
The purpose of this section is to give a short introduction to the basic concept of Radial
Orbit Instability. Since this thesis is not about an analytical approach to ROI, but rather
a phenomenological analysis of its impact on different spherical stellar systems, the math-
ematical concepts will be kept brief. For in depht analysis of the mathematical properties
see the cited papers.
The most intuitive approach to the cause of Radial Orbit Instability is given by Palmer
and Papaloizou (1987), who base their explanation on the work by Lynden-Bell (1967).
This is best summed up by Maréchal and Perez (2011): "An axissymmetric perturbation
of the potential [...] could influence a star’s orbit and lengthen it, which tends to align
orbits along the perturbation.". One explanation for this axissymmetric perturbation is
given by Burkert (1990), who states that elliptical galaxies undergo a short initial star-
burst phase, after which the system experiences a violent collapse phase. Small initial
inhomogenities cause the axissymmetric perturbations, as stars come closer to each other,
which causes the orbits of some stars that follow one of these inhomogenities to align.
This concept is later emphasised by Polyachenko (1992b), with the constraint of orbit
orientation. He states that the torque that alters the orbital angular momentum, induced
by the forced alignment along the perturbation, has different effects on the system, de-
pendent on its direction. If this torque forces the orbital precession rates of the stars to
change in the same direction, it leads to a bar-like structure, while a opposite force causes
the instability to oscillate.
The "tuning-fork" diagram taken from his original paper can be seen in Fig. 1.1. The
top-right image displays the resulting instability if the orbit precession rates are pushed
in the same direction, the bottom-right image displays the resulting oscillation if they are
not. This prolate, bar-like shape is the prominent feature of Radial Orbit Instability that

Figure 1.1.: "Tuning-Fork" Diagram: Display of the two different possible develop-
ments of the instability, as presented by Polyachenko (1992b)

2



CHAPTER 1. INTRODUCTION 1.2. RADIAL ORBIT INSTABILITY

can be observed in position-space.
Bellovary et al. (2008) give special importance to these torques in the further development
of ROI. They state that, as the system collapses and stars feel the torque from neigh-
bouring stars the loose angular momentum. This brings the stars on a smaller orbit and
causes the density in the inner region of the system to increase.
Since this interaction solely depends on gravity, it is also applicable to dark matter halos.
The work by MacMillan et al. (2006), which will be of importance later, uses this concept
to explain the slope of the NFW-profile (see Section 1.3 for the description of the profile).

Analytical approaches tried to find a threshold for the onset of ROI. The first proposal
of such a threshold was given by Polyachenko and Shukhman (1981), who performed a
fourier analysis of the perturbations and analysed them with a matrix-method.
Using this approach they found a criterion for stability, the "russian stability criterion", ξ
in this thesis

ξ = 2Tr
T⊥

> 1, 7± 0, 25 . (1.1)

Here Tr and T⊥ are the kinetic energy in radial direction and perpendicular to radial
direction, respectively. The value for ξ is not coherent over different studies. Merritt and
Aguilar (1985) used the same method as Polyachenko and Shukhman (1981) and found a
sharp transition between stability and instability at

ξ ≈ 2.5 (1.2)

while Trenti and Bertin (2006) soften this sharp transition to

ξ ≈ 2.5− 2.9 . (1.3)

An alternative approach towards a parameter for the onset of ROI is used for example by
Bellovary et al. (2008). The so-called anisotropy parameter

β = 1−
σ2
φ

2σ2
r

(1.4)

depends on the relation between σφ and σr, hence the velocity dispersion in φ- and r-
direction respectively.
For more work on analytical solutions to ROI see: Palmer and Papaloizou (1987), Poly-
achenko (1991), Polyachenko (1992a), Polyachenko et al. (2011), Polyachenko and Shukhman
(2015), Polyachenko and Shukhman (2016) and Polyachenko and Shukhman (2017).

This thesis will work with a parameter for the onset of ROI as a function of the ini-
tial virial parameter ηvir,0, derivation of which will be subject of Sec. 2.3.1.
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1.3. Density Profiles
The goal of this thesis is to analyse the impact of ROI on the shape of spherical stellar
systems, charcterised by two different density profiles. The properties of these density
profiles will be discussed in this section.

Figure 1.2.: Ideal plots of the density profiles

The first density profile in question was discovered by Plummer (1911) and will be hence-
forth referred to simply as Plummer profile. Plummer derived this density profile by
counting stars in high-resolution images of globular clusters, which required exceptional
accuracy for the time. From this method he obtained the density distribution

ρP (r) = 3M
4πa3 · (1 + r2

a2 )− 5
2 (1.5)

where M is the total mass and a is a scaling length and in this case a measure of the
half-mass radius (HMR)

r(M1/2) = 1.3 · a (1.6)
also referred to as core-radius. The half-mass radius marks the radius within which half
of the total mass is contained. A plot of the density profile can be seen in Fig. 1.2. Here
the values for M and a are chosen to be M = 1 and a = 1.
The most prominent feature of the profile is an inner region of constant and finite density.
After r = 1 the density drops constantly, with a slope of ρ ∼ r−5. This ensures that the
total mass inclosed by the profile is finite.
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The second density profile that will be tested for the impact of ROI is the density pro-
file proposed by Hernquist (1990). Hernquist introduced this density profile to present a
potential-density pair that closely approximates the de Vacouleurs R1/4-law for elliptical
galaxies. While the R1/4-law describes the surface-brightness and hence the stellar mass
of elliptical galaxies very nicely, it has the disadvantage of being of purely observational
nature. This leads to the problem that essential values, like the escape velocity or the
free-fall time, can’t be directly derived from the profile. For that reason Hernquist calcu-
lated an analytical solution for a close approximation to the de Vaculeurs law that follows
the equation

ρH(r) = M

2π ·
a

r (r + a)3 . (1.7)

The inner region of the profile grows in density, in contrast to the Plummer profile. This
causes the density to diverge, as r → 0, which of course is not possible in real stellar
systems. Compared with the Plummer profile the density decreases faster until r ≈ 12.
After that the Hernquist profile decreases slower, which causes the outer regions of the
profile to be more dense.

The last density profile discussed in this thesis is the NFW profile, as proposed by Navarro
et al. (1996). Even though there were no simulations conducted with this profile, recent
studies like those of MacMillan et al. (2006) have tried to explain the properties of the
NFW profile as a result of ROI. Therefore it plays an important role in the field of ROI
research.
This profile was found by Navarro et al. (1996), who fitted the dark matter halos observed
in numerical cosmological simulations with an approximated density curve. It is therefore
the only density profile of the three to not be found as a result of observations in stellar
systems, which of course is due to the fact that dark matter can’t be observed directly.
The profile follows the equation

ρNFW (r) = ρa
r (r + a)2 . (1.8)

This profile behaves as ρ ∼ r−1 in the core, ρ ∼ r−2 at r = a and like ρ ∼ r−3 in the
outskirts of the system and is therefore more closely related to the Hernquist profile than
the Plummer profile.

The knowledge of the properties of the density profiles can be used for various calcu-
lations. One of these calculations is the obtaining of a free-fall time tff (r), which will be
discussed in more detail in Sec. 2.5. As the free-fall time at a given radius is dependent on
the mass inclosed within that radius, it depends on the properties of the density profiles.
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2. Method

2.1. Code
The underlying code of this work is a N-body code by Lars Hernquist, written in the
FORTRAN ’77 language. It was originally published in 1987 (Hernquist, 1987) and revised
in 1996. The code is based on the treecode concept introduced by Barnes and Hut (1986)
and uses a self-starting Leapfrog integrator. Both of these concepts will be discussed in
this section.

Figure 2.1.: Concept of a Treecode. Image Credit: Nyland et al (1993)

The general concept of a treecode as introduced by Barnes and Hut (1986) is displayed
in Fig. 2.1. At each timestep of the simulation a grid of 3-dimensional cubic cells is
overlayed over the system. If one cell of the inital grid contains more than one particle,
that cell is subdivided by cutting its edge length in half, which cuts the original cell into
eight cubic subcells. This process is repeated until each cell contains only one particle.
By discarding the empty cells, this leads to the hierarchical tree-like structure displayed
on the right side of Fig. 2.1. While setting up this grid takes time, following Barnes and
Hut (1986) the required time is of the order O(NlogN), the advantage is the possibility
to combine distant cells into one. That way the force on an individual particle p can be
calculated as the force of the center of mass of a cell on that particle. To get a function
for the combining or subdividing of cells, a parameter θ is defined that corresponds to an
opening angle. This concept is most evident if viewed from the perspective of a bigger cell
with more than one particle. If θ > l/D, with l being the length of the cell and D being
the distance of the center of mass of the cell to the particle whose force is being calculated,
the cell is kept as it is. The resulting force on the particle is then that of a pseudo-particle
with the combined mass of all particles in the cell, at the center of mass of that cell. If
θ < l/D the cell is subdivided into eight subcells and the process is repeated. That way
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closer cells are smaller and contain less particles, while more distant cells are larger and
contain more particles. The combining of cells obviously leads to an error, as the force is
computed for the center of mass and not for the real positions of the particles, but this
error can be controlled by changing θ to smaller values, if neccessary. Following Hernquist
(1987) this error is less than 1% in comparison to a direct sum over the particles.
This loss in accuracy is compensated by a significant cutdown in computing time, as Fig.
2.2 shows. While calculating the individual forces between the particles would require
1
2N(N − 1) calculations, so O(N2), the tree method reduces that to O(Nlog(N)). For
particle numbers of N ≈ 105, as used in this thesis, that leads to a reduction of computing
time by 4 orders of magnitude.

(a) Order of processing
time plotted against
particle number

(b) Impact of timestep size
on a leapfrog integra-
tor

Figure 2.2.: Code Properties: Order of processing time (left) and impact of timestep
size on a leapfrog integrator (right)

A Leapfrog integrator is a numerical improvement to the classic euler integrator. The
classic euler integrator calculates the acceleration on a particle and then multiplies the
resulting vector of acceleration with the timestep size to obtain a velocity vector. Once
the velocity is obtained the next position for the particle can be obtained by multiplying
the velocity with the same timestep size.

tn+1 = tn + ∆t (2.1a)

~vn+1 = ~vn + ~an ·∆t (2.1b)

~xn+1 = ~xn + ~vn+1 ·∆t (2.1c)
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This causes a problem if the chosen timestep size is too big. For positions with high
acceleration, the particle is still multiplied by the same fixed timestep, which causes the
particle to overstep his actual next position. Once this overstepping has happened, all
consecutive accelerations will be smaller than they should be, which in turn causes the
particle to spiral outwards. This also leads to poor energy conservation.
To account for this problem, a Leapfrog integrator is used. In contrast to the euler inte-
grator, a Leapfrog integrator takes an initial half timestep and calculates the acceleration-
and velocity vector at this point.

tn+1 = tn + ∆t (2.2a)

~vn+1 = ~vn + ~an+1/2 ·∆t (2.2b)

~xn+1/2 = ~xn−1/2 + ~vn ·∆t (2.2c)

This results in a tangential velocity vector at the ∆t
2 -point. Once the velocity vector

is obtained, it is multiplied by ∆t to get the position vector. This position vector is
then evaluated on the initial starting point. For a circular orbit this causes the position
vector to always end up on the ideal circle. In elliptical orbits, the timestep size gains
importance. If the timestep size is sufficiently small, the process works the same way as in
the circular orbit. For bigger timesteps the ellipses start to preside, as shown in Fig. 2.2
b). For sufficiently small timesteps, both energy loss and orbit precession is minimised.
The plot for the Leapfrog integrator was obtained from another code with a central point
mass and only serves as an example. The matter of energy conservation of this code will
be discussed in Sec. 2.4.2.

2.2. Units
The Code is in itself scale-free, so physical units can be chosen freely to some degree. The
code imposes that G = 1, so all units have to be calculated from that restriction. All
setups (except for those with a compact central mass) also use Mtot = 1.
Units for a globular cluster with a Plummer density profile are chosen to be as length- and
mass unit respectively: lunit = 10pc and munit = 106M�. Deriving the assorted time-unit
from these restrictions is easiest by directly calculating the rotational velocity and then
calculating the time-unit from that velocity.

v2 = G ·M
R

(2.3)

Since all of the units in that fraction are equal to 1 the velocity in code-units is

v =
√
G ·munit

lunit
= 1 vunit (2.4)
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and
vunit = lunit

tunit
. (2.5)

This equation solved for tunit yields:

tunit =
(

l3unit
Gcgs ·munit

) 1
2

(2.6)

Inserting the chosen length- and mass units into equation 2.6 returns the numerical value

tunit = 1.4877 · 1013s ≈ 4.7143 · 105yrs ≈ 0.5 · 106yr (2.7)
This leads to a velocity unit:

vunit = lunit
tunit

≈ 6.5726 · 10−2 pc

yr
(2.8)

For a elliptical galaxy which follows a Hernquist density distribution the initial units look
rather different. Large elliptical galaxies usually have a total mass of Mtot ≈ 1012M� and
reasonable length-scales are in the kpc regime. Since the proportions of these changes
cancel out in equation 2.6 the numerical values for both systems are the same.

Sec. 4.1 will require a rotation Ω that follows the equation

Ω = q · σ(R)
R

= q · vunit
lunit

(2.9)

which corresponds to a unit for Ω of

Ωunit = q · 6.5726 · 10−3 1
yr

. (2.10)

To keep the plots clean all results of this thesis will be discussed in code-units unless
otherwise indicated by the explicit use of physical units.

2.3. Setup of Initial Conditions
As previously mentioned in section 2.1 the initial conditions were set up with an additional
code that generates a system in equilibrium where all particles follow a given density-
distribution. This section will follow the process of setting up the initial conditions for a
Plummer sphere. The process for the Hernquist sphere is the same, except for a different
energy density function f(E).
To obtain such a system one first needs to define a maximum system-radius Rsys and an
asymptotic mass Msys as the total mass which is enclosed in the system as r → inf. In
all simulations the system radius was chosen to be Rsys = 50 and all but the central mass
simulations use Msys = 1. The particle masses for all simulatons with equal masses are
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then easily obtained by dividing M(Rsys) by the number of particles Np. M(r) in the
Plummer an Hernquist models follow

MP (r) = Msys

(r2 + a2)3/2 · r
3 (2.11)

MH(r) = Msys

(r + a)2 · r
2 (2.12)

respectively, where a is a constant, in this case a = 1. With Np = 80.000 this leads to
mP = 1.24925·10−5 andmH = 1.20146·10−5 in code units. After the initial boundaries are
set, the radial component of the particle-position is generated by multiplying a random
number ι with Rsys.
Next the escape velocity from the core radius

vesc(a) = 2GM
a

(2.13)

is calculated and again multiplied by a random number. To check whether the generated
particle is bound to the system the total energy per unit mass is calculated. If the energy
is negative the code proceeds, if not, the previous two steps are repeated. The next step
is to check if the generated particle follows the energy density equation of the different
profiles and therefore follows the density profiles.
For the Plummer model the energy density equation is

f(E) =
(
r

a

)2
·
(

v

vesc(a)

)
· (−E)7/2

const
(2.14)

where the constant is chosen in such a way that f(E) ≤ 1. These calculations have only
set up the particle in one dimension, the other two dimensions need to be added. Since
the system is by definition spherically symmetric it is most reasonable to choose spherical
coordinates to do so. For that θ and φ components need to be added. While φ is directly
generated by multiplying 2π by a random number, θ is a little more complicated. Instead
of calculating θ ∈ {0, π} it is easier to directly calculate cos(θ) ∈ {−1, 1}. A random
distribution for cos(θ) is obtained by using the equation

cos(θ) = 2 · ι− 1 (2.15)

where ι is a random number between 0 and 1. Then sin(θ) follows from

sin(θ) =
√

1− cos(θ)2 (2.16)

and the sign of sin(θ) is added via

sin(θ) = ι

|ι|
· sin(θ) . (2.17)
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Once this is completed in position-space, the same procedure is repeated to get a ran-
dom distribution in the velocity-space. After all free parameters are filled the system is
transfered back into cartesian coordinates by using

x = r · sin(θ) · cos(φ) (2.18a)

y = r · sin(θ) · sin(φ) (2.18b)

z = r · cos(θ) (2.18c)

for position and velocity coordinates respectively. Once the cartesian coordinates are
known the computing can be initiated.

There is however a small problem with the randomness of the beforementioned numbers.
Since the random number generator is seeded, it will always produce the same sequence
of pseudo-random numbers and hence always distribute the particles in the same way.
This usually undesireable effect holds a great advantage in this case: The system that
is tested for stability is always the same one, which means that the different tests are
less vulnerable to numerical effects caused by the random number generator. Hence the
inhomogenities of the initial density profiles are always the same and the evolution of the
systems are perfectly comparable to each other.

2.3.1. Unperturbed Radial Orbit Instability
To get a setup for the observation of unperturbed ROI an approach similar to Trenti
and Bertin (2006) was chosen. The initial velocities were rescaled by mulitplying the
equilibrium configuration by a constant factor χ < 1 so that

v(t = 0) = χ · veq . (2.19)

This leads to an initial collapse and causes ROI to develop, if the initial conditions allow
for an alignment of orbits, as described in Section 1.2.
To get a quantifying measure for the energy properties of these initial conditions, the
parameter ηvir,0 is introduced. Since the systems are set up to be in equilibrium they
follow the virial equation

2Ekin = |Epot| (2.20)

with Ekin being the kinetic energy and Epot being the potential energy of the system.
From this equation the virial coefficient ηvir is obtained

ηvir ≡
2Ekin
|Epot|

. (2.21)
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For a system in equilibrium this means that ηvir,eq = 1. To get a more intuitive scaling
factor for the simulations than χ, ηvir,0 is introduced by inserting χ into equation 2.21

ηvir,0 = m · (χ · v0)2

|Epot|
= χ2 · ηvir,eq = χ2 . (2.22)

Since for the rest of this thesis will work mostly with ηvir,0, the shorthand ηvir is introduced.
Unless otherwise stated this describes the fraction of ηvir,eq in the initial conditions of the
simulation.
As ηvir is a function of kinetic energy and the kinetic energy of particles can be associated
with temperature, by relating to statistical physics and the movement of particles in a
volume, the terms "dynamically warm" and "dynamically cold" will be used in this thesis.
Hereby "dynamically warm" relates to systems with a higher virial ratio in the initial
conditions, while "dynamically cold" relates to systems with smaller initial virial ratio. As
the system collapses and preceeds to find a new equilibrium state, the particle’s potential
energy will be turned into kinetic energy and the system will warm up. This is due to
energy conservation and the system will be in a new equilibrium state as ηvir(t)→ 1.

2.3.2. Rotation
For the rotation setup a rigid body rotation was added to the initial velocity distribution.
The requirement was that the rotation satisfied the equation

R · Ω = q · σ(Rsys) (2.23)

where σ(Rsys) is the initial velocity dispersion at the outer radius of the system and q is
a constant. The values of q were varied to test the impact of an initial rotation on the
development of ROI. With the average σ(Rsys) ≈ 0.03 taken from the initial conditions
of the Plummer system and a benchmark of q = 0.2 this leads to

Ω = q · σ
Rsys

≈ 0.0001 . (2.24)

To add a rotational velocity to the individual particles it is most efficient to do so while
the system is still being set up in spherical coordinates. That way a vφ can be added to
each particle before it is transfered back into cartesian coordinates. Since the required
rotation was that of a rigid body, vφ must be proportional to the particle distance from
the rotation axis, in this case the z-axis.

vφ = rz · Ω (2.25)

Here the distance from the rotation axis is rz, where rz is defined as

rz = r · sinθ . (2.26)
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Since the particle is still in spherical coordinates, both r and θ are already known and
can be used to find vφ. After vφ has been found the new velocity components can be
calculated from

v′x = vx − vφ · sinφ (2.27a)

v′y = vy + vφ · cosφ (2.27b)

v′z = vz (2.27c)

The signs for vφ are chosen in such a way that the resulting rotation is counter-clockwise,
looking down on the system along the z-axis. A plot of the added velocities can be seen
in fig. 2.3.

(a) Rotation Plummer (b) Rotation Hernquist

Figure 2.3.: The vectors indicate the direction and magnitude of the added rotational
velocity. Plotted are only a small fraction of the particles. The signs in
the transformation lead to a counter-clockwise rotation around the z-
axis.

2.3.3. Central mass
As discussed by Kulkarni et al. (1993) and observed by Maccarone et al. (2007) and
Chomiuk et al. (2013), there is strong evidence of black holes in globular clusters. Follow-
ing Kulkarni et al. (1993)’s assumption that these black holes settle to the core of a GC
due to dynamical friction on timescales ∼ 108yr, a central mass was positioned at the very
center of the Plummer profile. Since there is also strong evidence for supermassive black
holes (SMBHs) in the center of elliptical galaxies, as observed for example by Hlavacek-
Larrondo et al. (2013)), the assumption of a compact central mass in a Hernquist profile
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is also justified.
The mass of that object was varied over two orders of magnitude from M• = 102m to
M• = 104m, with m being the respective particle mass of the systems. To test the influ-
ence of a massive point-mass on the development of ROI, the initial velocities were again
multiplied by a constant factor χ < 1, as described in Section 2.3.1.

2.4. Numerics
This chapter is intended to discuss some of the numeric properties of the code, like sta-
bility of the initial conditions for an equilibrium setup and the error induced by different
timestep sizes.

2.4.1. Code stability
To test the stability of the initial conditions against changes in softening length, a number
of high-resolution tests with equilibrium initial conditions were conducted. The goal of
these tests was to see whether any significant 2-body interaction and hence clumping
or scattering in the densest reagions would occur with a smaller softening length. This
would lead to changes in the density profile over the time of the simulation. Clumping
would increase the density in the central regions and scattering would decrease it, while
increasing the density of the outer regions as time progresses. Fig. 2.4 and Fig. 2.5 show
the results of the conducted test for the Plummer and Hernquist spheres respectively.
ε indicates the softening length, so the length at which the gravitational acceleration is
damped

~ai = G ·mj

(|~ri − ~rj|2 + ε2) 3
2
· ~ri (2.28)

and has nothing to do with the ellipticities ε1,2 that will be discussed later. Softening is
implemented to stop the acceleration from diverging as the particle distance |~ri − ~rj| goes
to zero.
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(a) ε = 0.05 (b) ε = 0.01 (c) ε = 0.005

Figure 2.4.: Stability of the Plummer-Profile against change in the softening-length
ε

(a) ε = 0.05 (b) ε = 0.01 (c) ε = 0.005

Figure 2.5.: Stability of the Hernquist-Profile against change in the softening-length
ε

As can be seen quite clearly, the changes in the density distribution are negligible. The
small fluctuations in the outer radii are due to the finite number of particles. As the
density decreases with greater radius, the number of particles in the outer shells also
decreases. Since the particles constantly move into and out of the shells, a changed
number of particles has a great impact on the density in that radial shell. This causes
the density in this shell to fluctuate purely by chance, which is a purely numerical effect
without physical implications.
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2.4.2. Energy conservation
This work will briefly discuss the impact of different resolution, in term of timestep size
and softening length, on the resulting ellipticities of the systems. To see if the different
softening lengths and timestep sizes will have a great impact on energy conservation, the
simulations were evaluated in that regard. The result of a direct comparison between the
high-resolution and low-resolution simulation of the Plummer sphere with ηvir = 6.25·10−2

can be seen in Fig. 2.6. This system will be discussed in more detail in Sec. 3.1.1.
While the high-resolution simulation stays very constant over the entire simulation with
a change in total energy of

|∆Etot| = 2.223 · 10−9 (2.29)
the lower resolution simulation drops from the initial energy to a lower level, which is
nevertheless quite constant over the rest of the simulation.

Figure 2.6.: A direct comparison between the development of the total energy in
the high-resolution and low-resolution simulation "P-HighRes-0,25" and
"P-0,25" (see Sec. III.2.1 for Parameters).

The low-resolution change in total energy is

|∆Etot| = 3.491 · 10−8 . (2.30)
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The loss of total energy for the high resolution simulation corresponds to O(0.1%) and
for the low-resolution simulation to O(1%). As can be seen in Fig. 2.7 this difference
in energy conservation is very small compared to the actual energies. It is therefore
justified to use the results of the lower resolution simulations. Problems with differences
in resolution will be discussed in Sec. 3.3.

Figure 2.7.: Kinetic-, potential and total energy are plottet over the entire simulation-
time. The green and purple line in the center correspond to the lines
for high- and low resolution in Fig. 2.6 with the same colors. The
red lines resemble kinetic energy, while the blue lines resemble potential
energy. Solid and dashed lines correspond to high- and low resolution,
respectively.

2.5. Collisionless calculation
As mentioned in the introduction, the ROI can only be observed in collisionless systems.
To justify a collisionless calculation, the run-time of the simulation must be small com-
pared to the relaxation time of the stellar system. The relaxation time is defined as
the time on which collisions and scattering are not negligible as an effect which causes
a system to become randomly distributed. Following Binney and Tremaine (2011) the
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relaxation time is defined as
trelax '

0.1N
ln(N) · tcross (2.31)

where N is the total number of particles in the system and tcross describes the crossing-
time, the average time it would take a particle to cross the system. The crossing time for
a system in equilibrium is calculated as

tcross = 2 · r
〈v〉

. (2.32)

These equations are solved for the Plummer and Hernquist systems respectively.
The initial conditions for the Plummer system yield r ≈ 50 and 〈v〉 ≈ 0.5, which leads to

tcross ≈ 200 . (2.33)

Using this result in eq. 2.31 results in a relaxation time for a Plummer system with N =
80000 particles

trelax ∼
0.1N
ln(N) · tcross ≈ 708.6 · tcross ≈ 1417200 . (2.34)

For the Hernquist system in equilibrium r and N stay the same and 〈v〉 is found to be

〈v〉 ≈ 0.37 . (2.35)

Solving the equation for relaxation time with these variables results in

trelax ≈ 191513.5 . (2.36)

Since the dynamically coldest systems have very small initial velocities, the crossing time
changes, as 〈v〉 decreases. To make sure that collisions can still be neglected, a worst-
case calculation will be conducted. For this worst-case calculation one can assume that
〈v(t = 0)〉 ≈ 0 and therefore the crossing time is tcross(r) = 2 · tff (r), with tff (r) being
the free-fall time at a given radius. Additionally, since the calculations for the ellipticity
will be performed within the half-mass radius r(M1/2) (for shorthand r1/2 ≡ r(M1/2) in
this calculation) the relaxation time for that radius is more important than that for the
entire system radius. The free-fall time is defined as

tff (r) =
√

3π
32Gρ(r) . (2.37)

Solving this equation within the half-mass radius leads to

tff =
√

3π
32Gρ =

√
3πV

32GM =

√√√√4π2r3
1/2

32M2
=

√
8π2r3

1/2

32 = π

2 · r
3
2
1/2 (2.38)
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where M = 1 and G = 1 was used. With r1/2 ≈ 1.3 for the Plummer system this results
in

tff ≈ 2.33 (2.39)

and hence to a relaxation-time of

trelax ≈ 3302 . (2.40)

For the Hernquist system the initial half-mass radius is r1/2 = 2.26 which leads to

tff ≈ 5.34 (2.41)

and a relaxation-time of
trelax ≈ 7568 (2.42)

These solutions lead to the assumption that at a simulation time of tmax = 100 relaxation
caused by collisions and scattering can be neglected. Furthermore, as t = 100 corresponds
to 20 · tcross in the Plummer system and 10 · tcross in the Hernquist system, the runtime is
therefore long enough to be able to analyse the newly found equilibrium after the initial
collapse.

2.6. Ellipticity
To observe the geometric shape of the central region of the individual systems, a similar
approach to Bellovary et al. (2008) was chosen. Like in the work of Bellovary et al. (2008)
the inertia tensor was calculated within a fixed radius. In this case the half-mass radius,
as it is a property that can be both easily calculated and observed. The next step was to
obtain the eigenvalues (λi) of the inertia tensor

Iij =
∑
k

m(k)(δijr2
(k) − xi(k)xj(k)) (2.43)

where k is the summation index for all particles and i(j) runs over the cartesian coordi-
nates of the individual particles. While Bellovary et al. (2008) use these eigenvalues to
observe the development of the axis of inertia over time, here the intrinsic ellipticities were
calculated following Obreja et al. (2016). With the eigenvalues sorted as λ1 ≤ λ2 ≤ λ3,
the lengths of the three semiaxes a ≥ b ≥ c follow the equation

a2 + b2 + c2 = 5(λ1 + λ2 + λ3)
2 (2.44)

and hence

a2

b2 = λ3 + λ2 − λ1

λ1 + λ3 − λ2
, (2.45a)
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a2

c2 = λ3 + λ2 − λ1

λ1 + λ2 − λ3
, (2.45b)

c2

b2 = λ1 + λ2 − λ3

λ1 + λ3 − λ2
. (2.45c)

From these dependencies the intrinsic ellipticities εi were obtained as

ε1 = 1− c

b
= 1−

√
λ1 + λ2 − λ3

λ1 + λ3 − λ2
, (2.46a)

ε2 = 1− c

a
= 1−

√
λ1 + λ2 − λ3

λ3 + λ2 − λ1
. (2.46b)

This way the ellipticities are set up to be ε1 ≤ ε2 and correspond to the ellipses with
minimum and maximum ellipticities: ε1 = εmin and ε2 = εmax. It also holds the advantage
of keeping the ellipses in a geometric configuration perpendicular to each other, which in
term is a way to evaluate the prolateness, oblateness, or triaxiality of the system. For
ε1 ≈ 0 and ε2 > 0 the system is prolate, for ε1 ≈ ε2 > 0 the system is oblate and for
ε2 > ε1 > 0 the system is triaxial.
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3. Unperturbed Radial Orbit
Instability

3.1. Dynamical Evolution
The purpose of the following chapter is to visualise the dynamical evolution of both density
profiles (Hernquist and Plummer, see Sec. 1.3) as they undergo unperturbed ROI. This
is done by plotting the simulations that show the most elliptic final states for each the
Plummer and Hernquist density profile in position- and phase-space and in the density
distribution respectively. Those simulations are "P-0,25" for the Plummer profile and
"H-0,25" for the Hernquist profile. Parameters for these simulations can be found in Sec.
III.2.1. The beforementioned concept of ellipticity will be discussed in Sec. 3.2.

3.1.1. Plummer Setup
Fig. 3.1 shows the initial condition of the system. Both the position-space and the density
distribution are that of an ideal Plummer sphere, only the phase-space shows deviations
from an equilibrium system which will lead to the imminent collapse. By rescaling the
equilibrium velocities in the way explained in section 2.3.1, the radial velocities are re-
duced. This is indicated in phase-space by a cigar-like distribution instead of the cone-like
distribution of a system in equilibrium. It is important to note that in this configuration
the velocity dispersion is still very much random and the signs of the radial velocities
are both positive and negative, so particles would move inward and outward. This is,
however, only an artefact of the way the initial conditions were set up.
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(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.1.: Plummer-profile: Initial condition

As soon as the simulation is started, the potential energy dominates the dynamical evolu-
tion and the system collapses. This can be seen in all of the three plots in Fig. 3.2. The
position-space shows a compact core, which is more evident in the sudden rise in density
at small radii (Fig. 3.2 c). In phase-space the signs of the particles are predominantly
negative, which corresponds to an inward motion.

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.2.: Plummer-profile: At the First infall

Once the particles have passed the center, the sign becomes positive as they begin to
move outwards again. This leads to a kind of spiral-shape in the phase-space diagram,
hints of which first occur in Fig. 3.2 and become more evident in Fig. 3.3.
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(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.3.: Plummer-profile: After the turnaround point

These twirls in phase-space are accompanied by outwards moving shells in position-space
and are especially evident in the density distribution where they move outwards in density-
waves as can be seen in Fig. 3.4 a) and c) respectively. It is important to note that at
this point in the evolution, the system still appears to be spherically symmetric. This is
only a very short-lived state however. The system undergoes a rapid change in ellipticity
at this time, as can be seen from the high increase of ε2 in Fig. 3.9 b). This rapid growth
of ellipticity shows how voilently the onset of ROI works on the system.

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.4.: Plummer-profile: Density-waves form

At t = 10 in code-units, corresponding to 5 Myrs in physical units, the core of the
system has reached its maximum ellipticity which will slowly decline over the remainder
of the simulation (Fig. 3.9 b)). The outward motion of the density waves becomes more
prominent in Fig. 3.5, but the central region keeps its peak in density. Phase-space
shows some interesting behaviour, as the previously smooth spirals are compressed and
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show saw-tooth-like shapes. This inhomogenity in phase-space is evidence for the inherit
instability.

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.5.: Plummer-profile: The density waves move outwards

Fig. 3.6 shows the system at t = 25. In position space even the outer regions of the system
have undergone ROI and have taken on an elliptical shape. Phase-space shows evidence
of a beginning phase-mixing. Phase-mixing describes how, after the system has initially
collapsed and stars find their new orbits in the changed energy regimes, the spiral shapes
in the phase-space diagram seem to disappear. In reality the spiral still exists, only the
space between the arms becomes smaller, as the stars follow their new orbits in different
orbital periods until they are undistinguishable by eye. The inital conditions could be
reconstructed by analysing the phase-space density, as long as the radial velocities can be
measured at sufficient accuracy.

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.6.: Plummer-profile: The beginning of phase-mixing

The result of phase-mixing becomes more evident in fig 3.7. Here the inner regions seem
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to have no distinct structure, only the outer regions at around R ≈ 10 still have clear
groups of particles moving on similar paths in phase-space. MacMillan et al. (2006) call
this effect "Virialisation from the inside out". The density waves have proceeded to move
out to that region as well. This effect also levels out some of the ellipticity in the outer
regions, as movements start to become more random again.

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.7.: Plummer-profile: The inner shells appear phase-mixed

Fig. 3.8 shows the final state of the evolution. The position-space still shows a very
elliptical shape of the inner regions, while the outer regions have become more spherical.
Phase-space appears completely mixed, except for the outermost region where some of
the initially grouped trajectories can still be distinguished. It shows the beforementioned
cone-like shape of an equilibrium system, where the boundaries of the shape are normally
defined by the escape-velocity vesc(r) of the system at that radius. It appears as of the
escape velocity at these radii should be higher than the cutoff, which would indicate that
not all of the available phase-space is filled. Analysing this question should be done in
future studies.
The best evidence for the previous collapse can be found in the density distribution. The
two density waves can be observed on the outskirts of the system and the drop in density
starting from about log(r) ≈ 11 is also fairly evident. Due to the finite particle numbers
in the simulation needs to be considered that small changes in the number of particles per
density-shell lead to high fluctuations in the density profile. As the density in this region
is of the order log(ρ) ≈ −8 just a single particle entering or leaving the shell in which the
density is calculated can have a high impact on the density in that shell.
Fig. 3.9 gives an overview of some of the intrinsic features of the system and how they
evolve over time. Fig. 3.9 a) shows the evolution of the half mass radius (HMR). The
plot clearly displays the initial collapse and the following pulsation of the central region,
which leads to the waves in the density profile. It is also important to note the corellation
between the fluctuation of the HMR in Fig. 3.9 a) and the fluctuation of the virial ratio
ηvir in Fig. 3.9 c). This behaviour is to be expected: As the system moves towards a
new eqilibrium-state with ηvir → 1 the orbits of the stars begin to stabilise. This in

27



CHAPTER 3. UNPERTURBED ROI 3.1. DYNAMICAL EVOLUTION

(a) Position-space (b) Phase-space (c) Density distribution

Figure 3.8.: Plummer-profile: End of the simulation

term leads to a constant exchange of stars in the inner regions, which can be observed
in phase-space as the beforementioned phase-mixing. Phasemixing stabilises the density
profile which again leads to a more and more constant HMR. The evolution of ellipticity
is shown in Fig. 3.9 b). While the initital condition is fairly spherical with an ellipticity of
ε1,2 ≈ 0, it rapidly evolves towards its final prolate shape with ε2 ≈ 0.5 and ε1 ≈ 0. This
is in accordance with the violence of such dynamical changes predicted by Lynden-Bell
(1967). The slight decline of ε2 over the remainder of the simulations will be cause for
discussion in Sec. 3.3. Since particles scatter each other through their random motion the
system will slowly become less elliptical and relax to a new spherical distribution within
the relaxation timescale discussed in section 2.5.

(a) Evolution of the
half-mass radius

(b) Evolution of ellip-
ticity

(c) Evolution of ηvir

Figure 3.9.: Evolution of HMR, ellipticity and ηvir
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3.1.2. Hernquist Setup
The same experiment is done with an initial Hernquist sphere. The figures for this setup
can be found in the appendix in Sec. III.1.1. Figures III.1 through III.9 show the same
steps in the Hernquist evolution. The initial conditions are displayed in Fig. III.1 and
appear to be an ideal Hernquist density distribution. Only the phase-space is compressed
in the same way as for the Plummer sphere case (see Fig. 3.1). The first difference
between the Hernquist and Plummer setups can be seen in Fig. III.2: Since the core of
the Hernquist profile is a lot denser than the core of the Plummer profile, the freefall
time (see Eq. 2.37) of the innermost particles is smaller. This leads to a faster collapse
of the core and the point at which the first stars start to move outwards again is reached
after only t = 1.0 in contrast to t ≈ 1.6 in the Plummer case. For the same reason in
the Hernquist profile case more particles have passed the center of the system, which can
be observed as four instead of three spiral arms in phase-space at t = 2.2 (Fig. III.3).
The rest of the evolution appears rather similar to that of the Plummer system, with
density waves moving outwards (Fig. III.4), evidence for the instability in phase-space
(Fig. III.5) and the beginning of phase-mixing (Fig. III.6). One major difference between
the profiles is that the outer regions of the Hernquist profile catch up to the ellipticity
a lot slower than those of the Plummer profile. Fig. III.6 shows the highest ellipticity
in the outer regions of position-space, while at the same time (t = 50.0) in the Plummer
profile the outer regions have already started to loose their elliptical shape. At the end
of the simulation another difference can be oberved: phase-mixing seems to take longer
in the Hernquist system. While the Plummer phase-space appears mostly homogeneous,
the Hernquist phase-space shows some clear structure of the initial spirals, even at small
radii.

3.2. Ellipticity
A key question of this work was to study the evolution of the central, bar-like structure
that develops during the ROI. The matter in question was, if there is a point at a certain
ηvir,crit where a sudden onset of ROI can be observed. The follow-up question of course
was how the geometric evolution progresses after that point, whether it grows rapidly, or
slowly, whether the resulting ellipticity converges at some point, if it keeps growing or
declines again.
Fig. 3.10 and 3.12 show the ellipticity within the HMR plotted against decreasing ηvir
of the initial condition for the Plummer and Hernquist case, respectively. The plots are
divided into three segments to account for changes in the x-axis. In order to portray the
steep rise in ellipticity for 10−2 < ηvir < 0.2, the middle segment zooms into that range of
the x-axis. The right segment changes the x-axis to a logarithmic scale to account for the
bigger stepsize between the original χ-factors. All values for the ellipticities were taken
from the end of the simulations at t = 100. Following Fig. 3.9 there would also have been
the option to take the value of maximum ellipticity, as ε2 declines slightly over the time
of the simulation. This approach was discarded, because at that state the system is far
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from virial-equilibrium, which seemed less favorable. Therefore all ellipticities discussed
in Sec. 3.2.1 and Sec. 3.2.2 are the final ellipticities of the systems. Problems arising with
this definition will be discussed in Section 3.3.

3.2.1. Plummer-Profile
Figure 3.10 shows the evolution of ε for the Plummer profile. For the equilibrium setup
the ellipticies are very low, hence the system is approximately spherical. There is a slight
tendency towards triaxiality, but at these small values for ε they could also be caused by
random fluctuations. As the system is dynamically cooled down and ηvir decreases, the
values for ε1,2 vary slightly around the ones for the equilibrium system, but stay fairly
constant until ηvir = 0.16. Once ηvir passes 0.16 the ellitpicity ε2 increases drastically until
it reaches a temporary maximum at ηvir ≈ 0.12. In the same range, while ε2 increases,
ε1 stays close to zero, which indicates the prolate shape that is one of the key features
of ROI. As the system cooles down even more, ε2 decreases again and hits a temporary
minimum at ηvir ≈ 0.1. Since ε1 increases at the same time, the system becomes more
triaxial in that process. This sudden dip in ellipticity is quite intriguing as it consists
of three datapoints with higher resolution than most of the other simulations, but with
the same resolution as their neighboring datapoints with higher ellipticity ε2 and lower
triaxiality. All in all the dip consists of four datapoints that are significantly lower than
the surrounding ellipticity values.

Figure 3.10.: Evolution of ellipticity with decreasing ηvir
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Looking at the ellipticity evolution in the simulations where the dip occured (see Fig. 3.11
for one example) one can see that the system reaches an inital maximum at ε2 ≈ 0.5, which
would fit the expected curve, but then drops significantly over the rest of the simulation,
while ε1 grows within the last 10% of the simulation time. This is especially unanticipated
since the system is almost in perfect virial equilibrium, as Fig. 3.11 b) shows.
To adress this issue, the impact of resolution on the evolution of ellipticity will be discussed
in Sec. 3.3.
After ηvir ≈ 0.08, ellipticity ε2 increases again and reaches the maximum of all simulations
(ε2 ≈ 0.48) at ηvir ≈ 0.06. At this point the system is also almost perfectly prolate again,
as ε1 decreases in that range. For ηvir < 0.06 the systems become more and more triaxial
until they reach constant values of ε1 ≈ 0.42 and ε2 ≈ 0.26 at log(ηvir) = −4.

(a) Evolution of elliptic-
ity

(b) Evolution of ηvir

Figure 3.11.: Evolution of ε and ηvir in the system "P-0,31"
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3.2.2. Hernquist-Profile

Figure 3.12.: Evolution of ellipticity with decreaing ηvir

As Fig. 3.12 shows, the Hernquist systems behave a little different from the Plummer
systems. For one the onset of the ROI starts a little earlier, at ηvir ≈ 0.2. The ellipticity
ε2 proceeds to grow as the systems become dynamically colder and reaches the same
value as the Plummer system at ηvir ≈ 0.12. This in term means that the growth in ε
is less steep and therefore the onset of ROI is less violent. Unlike the Plummer systems
there is no dip in the evolution of ε2, which raises the question if the Hernquist systems
are more stable and keep the shape induced by ROI longer. This will be discussed in
more detail in section 3.3. Until ηvir ≈ 0.08 the systems are almost perfectly prolate.
As ηvir passes 0.08 the systems become more triaxial until they stay fairly constant after
log(ηvir) = −4. Much like in the Plummer case, the growing triaxiality and the increase
in ε1 is accompanied by a decrease in ε2. The difference in this triaxial regime is how the
triaxiality is reached: While in the Plummer case the system first reaches a prolate phase,
which becomes more triaxial over the remainder of the simulation for sufficiently small
values of ηvir (see Fig. 3.11 and Fig. 3.15), the Hernquist system does not undergo a
change in shape, but reaches its triaxial configuration faster and without an intermediate
prolate phase (see Fig. 3.13).
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(a) Evolution of the
half-mass radius

(b) Evolution of ellip-
ticity

(c) Evolution of ηvir

Figure 3.13.: Evolution of HMR, ellipticity and ηvir in the Hernquist system "H-e-4",
see Sec. III.2.1 for parameters.

3.3. Impact of resolution
To discuss the impact of resolution on the final ellipticity, high-resolution simulations
were performed. Since these simulations are computationally very expensive, only a few
of them were conducted and only at prominent values of ηvir. Resolution is in this case
referring to a smaller timestep size and a smaller softening length, rather than a higher
number of particles. For the Plummer profile those values were chosen to be in the vicinity
of the observed dip, to estimate if the dip is caused by numerical effects or not. For the
Hernquist profile the values were chosen to observe a shift in the onset of ROI, or the onset
of the triaxiality, hence less tests were performed. The parameters of these simulations
can be taken from Sec. III.2.1 in the appendix.

3.3.1. Plummer profile
Fig. 3.14 shows the previous ε1,2 evolution overplotted by the tests with increased resolu-
tion. It shows that with increasing resolution the triaxiality of the systems also increases.
The value for ε2 at ηvir = 1.156 · 10−1 also indicates that the dip in ellipticity is not of
numeric nature. As the value is higher than next value at ηvir = 1.024 ·10−1 the dip seems
to occur even in the high-resolution simulations.
Looking at the evolution of ellipticity over the time of the simulation in Fig. 3.15, the same
tendency can be observed. At high resolutions and with decreasing ηvir, the timescale in
which the system leaves its prolate shape and develops a triaxial configuration shrinks.
While at ηvir = 1.156 · 10−1 the value of ε1 stays fairly constant at ε ≈ 0 and the value
of ε2 decreases constantly, the resulting shape is still prolate. For smaller values of ηvir
the decrease of ε2 stops after proceedingly shorter times and after a short increase, a
constant value for ε2 is reached. Complementary, the value of ε1 increases until it reaches
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Figure 3.14.: Resolution-impact on Plummer-profile

a constant value and causes the resulting shape to be triaxial. This indicates that the
onset of triaxiality is shifted to dynamically warmer regimes.
Acknowledging these results, the resolution for the general simulations is nevertheless kept
at lower values. This decision was made for three reasons: First, the higher resolution
only shifts the onset of triaxiality, while the values for ε2 stay fairly close to those of the
lower resolution simulations. Even more so, the tendency of the behaviour of ε2 stays the
same, which indicates that the final 2-dimensional shape of the bar is not influenced by the
resolution as much, as the 3-dimensional configuration. Following Fig. 3.15 that behaviour
of ε1 can be estimated and therefore included in the conclusion. The second reason was
that the high-resolution simulations were so computationally expensive that obtaining a
high resolution in datapoints for ηvir would have been impossible, but that was the key
question of this work. Third, the high-resolution simulations of the Hernquist profile show
less divergence from the low-resolution ones, as will be seen in the next chapter. Hence, to
ensure a comparability between both profiles, the resolution was kept at the lower values.
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(a) ηvir,0 = 1.156 · 10−1 (b) ηvir,0 = 1.024 · 10−1 (c) ηvir,0 = 9.61 · 10−2

(d) ηvir,0 = 9 · 10−2 (e) ηvir,0 = 6.25 · 10−2

Figure 3.15.: Evolution of ellipticities. Solid lines: high-resolution simulations.
Dashed lines: low-resolution simulations.
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3.3.2. Hernquist profile

Figure 3.16.: Resolution-impact on Hernquist-profile

In contrast to the simulations with the Plummer profile, a higher resolution in the Hern-
quist setups does not seem to shift the beginning triaxiality towards dynamically warmer
regimes. Instead the ellipticity of ε1 stays very close to that of the low-resolution simula-
tions and therefore the systems where ROI can be observed keep their prolate shape over
the entire time of the simulation. For the systems with ηvir = 0.09 and ηvir = 6.25 · 10−2

the values for ε2 also stay almost the same as in the low-resolution simulations. The only
significant difference is the shift of the onset of ROI. In the low-resolution tests the sys-
tem with ηvir = 0.16 shows a higher value of ε2, therefore the impact of ROI is apparent
already at this value of ηvir, while in the high-resolution simulation the system remains
spherically symmetric. The high resolution tests indicate that a smaller timestep-size
shifts the onset of ROI to dynamically colder regimes with a shift-phase of ∆ηvir ≈ 0.04.
Fig. 3.17 shows the evolution of ellipticiy in the individual systems. It indicates that
once the systems have undergone ROI, they stay almost constant and keep their prolate
shapes. In contrast to the Plummer systems there seems to be no second change in shape
over the remainder of the simulations.
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(a) ηvir,0 = 0.16 (b) ηvir,0 = 0.09 (c) ηvir,0 = 6.25 · 10−2

Figure 3.17.: Evolution of ellipticities. Solid lines: high-resolution simulations.
Dashed lines: low-resolution simulations.

It would be of interest to perform more simulations with even higher resolutions to check
if the onset of ROI is shifted even further to dynamically colder regimes. In the same
process it would be interesting to go for longer run-times to see if the Hernquist profile
also undergoes a second change of shape, like the Plummer profile, only at later stages
of the evolution. Both these questions will have to be discussed in future work, as the
run-times for these simulations would exceed 1000 cpu-hours with the given code.
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4. Perturbed Radial Orbit
Instability

In contrast to the previous chapter, the purpose of this chapter is to study the evolution
of ROI under not-ideal conditions. For this reason different systems with a rigid body
rotation and a compact central mass at the center of the system were set up in the way
described in Sec. 2.3.2 and Sec. 2.3.3, respectively.

4.1. Rotation
The first disturbance to be tested is an addition of rotational velocity to the initial condi-
tions of the Plummer- and Hernquist spheres. Since both the anisotropy-parameter (eq.
1.4) used by Bellovary et al. (2008) and the russian stability criterion (eq. 1.1) suggestes
by Polyachenko and Shukhman (1981) rely on the proportion of radial- to tangential ve-
locity, it is reasonable to try and test the boundaries of that assumption. The setup was
done as described in Sec. 2.3.2. A table with all conducted tests can be found at Sec.
III.2.2 in the appendix.

4.1.1. Plummer Setup
The result of these tests can be seen in Fig. 4.1. Both plots show equal behaviour
for ε1 and ε2 in the dynamically cold regime (i.e. ηvir � 1), which is to be expected.
Because of the way the system is set up, as it is artificially cooled down by multiplying
the velocities with a constant factor χ < 1, all velocities scale down by the same factor.
Since the rotational velocity is added to the particle velocities before they are scaled
down, the additional rotation becomes too small of a factor to have a real influence on
the dynamical evolution. This seems to be the case for ε2 in the setups with an ηvir colder
than ηvir = 4 ·10−2. The dynamically warm regime shows no change under different values
for Ω either.
Only the ε1 values in the systems with intermediate rotation show lower ellipticities at
ηvir = 0.09.
To illustrate this problem fig. 4.2 displays a direct comparison between the ellipticities
of the rotation setups and those of the undisturbed setups. This way it becomes more
apparent that the deviations between the non-rotating initial conditions are in general
very small. Only the unusual dip in the ε2 ellipticity evolution is altered significantly for
two values of Ω, namely log(Ω) = −4 and log(Ω) = −3. Since these two values of Ω are
the minimum and maximum values of Ω, the correlation between rotation and decrease in
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ε2 and increase in ε1 remains questionable. Following equations 1.1 and 1.4, for a reliable
evidence of an additional effect, the ellipticity should correlate in some way with Ω. To
get an impression of the evolution of the ellipticities, they are plotted against the ideal
system in Fig. 4.3.
This again shows that there is no clear correlation. The initial maxima of the ε2 value
in each simulation are essentially the same, only the evolution of the ellipticities diverge
at around t = 40. Since neither this point of divergence, nor the resulting ellipticities
correlate with Ω it is highly likely that this change in ε1 is not caused by the rotation.

(a) ε1 dependency on Ω and ηvir (b) ε2 dependency on Ω and ηvir

Figure 4.1.: Evolution of the ellipticity under different conditions of rotational veloc-
ity Ω and virial coefficient ηvir. Both Ω and ηvir are displayed logarith-
mically, while the values of ε are color-coded.
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(a) ε1 dependency on Ω and ηvir (b) ε2 dependency on Ω and ηvir

Figure 4.2.: Comparison of the ellipticities to those of the systems without rotation.

(a) Ω = 1 · 10−4 (b) Ω = 2 · 10−4 (c) Ω = 1 · 10−3

Figure 4.3.: Evolution of ellipticity in the systems with ηvir = 0.09. Solid lines:
System with rotation. Dashed lines: System without rotation.
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4.1.2. Hernquist Setup

(a) ε1 dependency on Ω and ηvir (b) ε2 dependency on Ω and ηvir

Figure 4.4.: Evolution of ellipticity under different conditions of rotational velocity
Ω and virial coefficient ηvir

In contrast to the Plummer spheres there is almost no evidence for an impact of rotation
on the development of ROI in the Hernquist spheres at the same values of Ω that were
used for the Plummer case, namely 10−4 ≤ Ω ≤ 10−3.
There seems to be no influence on the development of ROI and remarkably not even on
the evolution of ε over the time of the simulation, as it can be seen in the Plummer case.
It seems evident that the additional rotational velocity is too small to play a role in the
Hernquist systems. This could be caused by the profile itself: Since the rotational velocity
vφ scales with the distance to the rotational axis and the density of the Hernquist profile
decreases quite rapidly, there are not enough particles in the zone of the profile that is
close enough to the center to have a major impact on the first collapsing stars and still
far enough from the center to get sufficient additional velocity from the rotation.
To account for this problem, additional values for Ω were tested to stretch the range of Ω
over 4 orders of magnitude. As can be seen in Fig. 4.5, even these very high values of Ω
show no sign of significantly changing the impact of ROI in the dynamically colder setups.
It seems that only the additional rotation with log(Ω) = −1 increases the ellipticity in the
dynamically warmer setups, so the onset of ROI is shifted. Since the rest of the values fit
the unperturbed case very well this also means that the slope of the onset is decreased,
hence the growth in ellipticity starts earlier, but progresses slower.
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(a) ε1 dependency on Ω and ηvir (b) ε2 dependency on Ω and ηvir

Figure 4.5.: Evolution of ellipticity under different conditions of rotational velocity
Ω and virial coefficient ηvir

(a) XY-plane with velocity vec-
tors

(b) Rotation-map with line-of-sight ve-
locities

Figure 4.6.: Plot of rotational velocities in the initial conditions

To visualise the rotation setup, Fig.4.6 shows the initial condition of the system with
log(Ω) = −1 and ηvir = 0.25, which showed the highest values for ε2, compared to the
unperturbed case. As can be seen in both plots of Fig. 4.6, there is a distinct counter-
clockwise rotation of the system. Fig. 4.6 shows that the outer regions are dominated
by rotational velocity only, while the inner regions still show some random motion. At
the end of the simulation (Fig. 4.7), the initial rigid body rotation has smoothed out
to a disk-like rotation. As in the unperturbed simulations, the system has become more
compact which can be seen in Fig. 4.7 a).
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(a) XY-plane with velocity vec-
tors

(b) Rotation-map with line-of-sight ve-
locities

Figure 4.7.: Plot of rotational velocities at the end of the simulation
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4.2. Central Mass
The second kind of perturbation discussed in this thesis is that of a compact central
mass. Systems with either of the two density profiles used in these simulations can in
principle house such a compact central mass. A system with a Hernquist profile, like
an elliptical galaxy, most likely houses a supermassive black hole (SMBH). In a globular
cluster with a Plummer profile, massive stars will eventually reach the end of their life
and collapse to become neutron stars or stellar black holes. Through different effects,
like collisions between compact objects or between compact objects and stars, as well
as accretion of gas, these stellar black holes might grow. Due to dynamical friction the
BHs will eventually settle down to the center of the cluster, like Kulkarni et al. (1993)
propose. It is therefore justified to assume some kind of compact object at the center of
these systems and therefore their impact in the evolution of ROI needs to be discussed.
It has to be noted that both the development of SMBHs and the process of dynamical
friction take a significant amount of time, so one has to assume the onset of ROI to be
in a later stage of the lifetime of the system to resemble a real physical process. For an
analytical approach to the problem of a central mass at the center of a system undergoing
ROI see Palmer and Papaloizou (1988).
All simulations were run with the same timestep-size and the same softening length.
Since the ellipticity of the systems is calculated within the half-mass radius, the central
masses were excluded from the calculation of the HMR: As especially for the setups with
M• = 104m the BHs contain a significant amount of mass of the entire cluster (M• ≈
10−2Mtot). Including them in the calculation would shrink the HMR and therefore ruin
the comparability between the different setups and the previous tests. By excluding them,
only the stellar component is observed and compared to the unperturbed simulations.

4.2.1. Plummer Setup
As in the other chapters, analysis of the results begins with the Plummer setups. The
parameters of the simulations can be found in Sec. III.2.2.

In contrast to the rotation setups, a central mass appears to have a much larger impact
on the evolution of ellipticity (see Fig. 4.8). For dynamically warmer regimes until
ηvir = 0.16 the influence of the central mass seems to be small and independent of MBH .
For log(ηvir) = 0.09, log(M•) = 2 and log(M•) = 4 show almost the same ellipticity
ε2, which would suggest that the impact of the effect is still independent of mass, but
log(M•) = 3 shows a much higher ellipticity ε2 and appears almost perfectly prolate. The
interesting implications of this will become more evident in Fig. 4.9 and will be discussed
at that point. While for the lower mass BHs (log(M•) = 2 — 3) and dynamically cold
regimes (log(ηvir) = −4 — − 2) the effect seems to be negligible, it is very dominant for
log(M•) = 4: For these values of ηvir the central mass changes the shape drastically from
a slight triaxiality in the unperturbed case to a very oblate shape.
Fig. 4.9 shows the interesting behaviour of the systems compared to the unperturbed
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(a) ε1 dependency on M• and ηvir (b) ε2 dependency on M• and ηvir

Figure 4.8.: Evolution of ellipticity under different conditions of black hole massMBH

and virial ratio ηvir

(a) ε1 dependency on M• and ηvir (b) ε2 dependency on M• and ηvir

Figure 4.9.: Comparison of the influence on BH-mass to the ideal systems

case at three points. First at ηvir = 0.09: While log(M•) = 2 is only slightly more triaxial
than the unperturbed system, log(M•) = 3 and log(M•) = 4 differ a lot from the ideal
case. Instead of the slightly triaxial shape of the unperturbed system, log(M•) = 3 is
almost perfectly prolate. It also does not follow the dip in ε2 of the unperturbed case,
which indicates that it suppresses the effect that causes ε2 to decline in the ideal system.
This would mean that a central mass of log(M•) = 3 has a stabilising effect on the system
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and helps it keep the final shape induced by ROI. To test this assumption it could be of
interest to perform more simulations with varying central masses at values for ηvir that
show a dip in ε2.
The system with log(M•) = 4 also differs from the ideal system. The value for ε1 is
significantly higher than in the unperturbed system, which indicates a stronger triaxial
shape of the resulting system.
The next interesting point is at ηvir = 0.04: While log(M•) = 2 — 3 fit the unperturbed
case very well, except for a more triaxial shape in the log(M•) = 3 system, the values of
ε1,2 for log(M•) = 4 differ significantly from the ideal system. ε1 is a lot higher than in
the unperturbed case, while ε2 is a lot lower, giving the system a very oblate shape with
a slight tendency towards triaxiality.
The third point of interest is at log(ηvir) = −2: log(M•) = 2 — 3 have grown in triaxiality,
with log(M•) = 3 being slightly more triaxial. The setup with log(M•) = 4 has decreased
in both ellipticities ε1,2, while still staying oblate.
While there is strong evidence for an impact of a central mass on ROI in a Plummer sphere,
there seems to be no obvious corellation between mass and supression of ellipticity.

4.2.2. Hernquist Setup
In contrast to the Plummer setups, the simulations with log(M•) = 2 — 3 appear to have
less of an effect on the final ellipticity. Only the value of ε1 is higher for the log(M•) = 3
system which hints towards a stronger triaxiality. The impact of a central mass on the

(a) ε1 dependency on M• and ηvir (b) ε2 dependency on M• and ηvir

Figure 4.10.: Evolution of ellipticity under different conditions of black hole mass
MBH and virial ratio ηvir
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(a) ε1 dependency on M• and ηvir (b) ε2 dependency on M• and ηvir

Figure 4.11.: Comparison of the influence on BH-mass to the ideal systems

evolution of ellipticity becomes apparent for the log(M•) = 4 setups. A clear suppression
of the ε2 ellipticity can be observed starting from ηvir = 0.16.
To better portray this behaviour the ellipticities are plotted against the ideal case in Fig.
4.11. At ηvir = 0.16 the value for ε2 in the log(M•) = 4 system is significantly lower than
in the ideal case, while ε1 is slightly higher. This means that the system is still fairly
spherically symmetric at this point, with a slight tendency towards oblateness. These two
observations indicate that the onset of ROI in the log(M•) = 4 system is suppressed and
significantly shifted towards dynamically colder regimes.
As ηvir decreases, the systems with log(M•) = 2 — 3 stay quite close to their unperturbed
counterpart. Even though the effect appears small it has to be noted that the log(M•) = 3
ellipticity ε2 always stays below the ones for log(M•) = 2 and the ideal case. These values
are too small to decide wether the effect is really of suppressing nature, but it would
indicate that the threshold for the beginning impact of a central mass on the evolution
of ROI is somewhere of the order of magnitude M• = 103. It would be of interest to
conduct more tests with variing M• to further pinpoint that threshold, but this surpasses
the capacity of this thesis.
At log(ηvir) = −2 both values of ε1 in the log(M•) = 2 and log(M•) = 3 systems are lower
than the unperturbed value, which indicates a more triaxial shape of the final system.
Together with the fact that the value of ε1 at log(ηvir) = −4 only slightly differs from
that at log(ηvir) = −2 in the log(M•) = 2 system and stays the same in the log(M•) = 3
system, this indicates that the systems reach their final triaxiality, as observed in the
other tests, at larger values of ηvir.
The system with log(M•) = 4 shows the most promising results for the impact of a central
mass on ROI evolution. Especially the ε2 values appear to be damped by MBH , as the
difference in ellipticity between the unperturbed system and that with log(M•) = 4 stays
fairly constant at ∆ε1 ≈ 0.1 − 0.2. It would be interesting to check for a correlation
between the mass of the central object and this dampening of ellipticity, but that would
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require more simulations with different M• and is therefore best suited for future work.
The values of ε1 also appear to be influenced in a way that indicates a changed evolution
of the final shape after the ROI set in. While for the undisturbed systems the resulting
shape is predominantly prolate, the systems with a central mass become more triaxial
and oblate as the central mass increases and ηvir decreases.
For a detailed look on the evolution of ROI in the systems with log(M•) = 4, Fig. 4.12
through Fig. 4.14 show the evolution of ellipticity over the time of the simulation in the
system with central mass, compared to the system without central mass.
In the ηvir = 0.16 system (Fig. 4.12) with central mass the suppression of the onset of
ROI is very evident. There is a slight increase in ellipticity ε2 in the same period of the
simulation, as in the system without a central mass, but the maximum value of ε2 is a lot
lower for the case with the BH. In both cases, both ε1 and ε2 stay fairly constant in the
time after they have reached their respective maximum values.
In the ηvir = 0.09 setup (fig. 4.13) the effect of suppression is just as dominant. While
the maximum ellipticity ε2 is only slightly lower in the system with central mass than in
the system without, the value of ε2 decreases right after the maximum, whereas the value
stays fairly constant in the unperturbed system.
Fig. 4.14 shows the system with ηvir = 0.04. Here the effect of the BH on ε1 becomes
very apparent. While the other perturbed simulations ended in prolate shapes, like the
unperturbed ones, the central mass seems to increase the triaxiality of the restulting
system until it becomes almost oblate, as discussed earlier in this section.

(a) System without central
mass

(b) System with log(MBH) =
4

Figure 4.12.: Suppressing effect of the central mass in the systems with ηvir,0 = 0.16
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(a) System without central
mass

(b) System with log(M•) = 4

Figure 4.13.: Suppressing effect of the central mass in the systems with ηvir = 0.09

(a) System without central
mass

(b) System with log(M•) = 4

Figure 4.14.: Suppressing effect of the central mass in the systems with ηvir = 0.04
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5. Summary and Conclusion
In this work the evolution of Radial Orbit Instability was studied for setups of Plummer-
& Hernquist spheres, with the goal to understand the evolution and resulting intrinsic
ellipticities ε under different virial coefficients ηvir. Additional to these ideal setups, the
influence of an added rotation and a central mass on these results was studied.

Undisturbed ROI

Chapter 3 gave an overview of the properties of ROI in unperturbed systems. The evo-
lution of the intrinsic ellipticities (ε1,2) was evaluated and most systems showed a violent
increase in ε2, which lead to a prolate shape that indicates the onset of Radial Orbit
Instability. From the resulting final ellipticities of the systems, thresholds of ηvir for the
onset of ROI in the Plummer and Hernquist systems were found. These appear to be
at ηvir ≈ 0.16 for the Plummer systems and ηvir ≈ 0.2 for the Hernquist systems. Both
spheres show a maximum in ε2 at ηvir = 6.25 · 10−2 and remain fairly prolate until that
point. After the maximum the systems became more and more triaxial, until they reached
a constant value for ε1 and ε2 at log(ηvir) = −4, which they kept until the system with
the smallest initial virial ratio of log(ηvir) = −16. Only a dip in ε2 accompanied by an
increase in ε1 in the Plummer systems at ηvir = 0.09 disturbed this evolution and caused
a discussion of resolution.
Tests with a smaller timestep size and softening length indicated that the resulting el-
lipticities vary slightly with these properties. A higher resolution caused the Plummer
systems to undergo a second change in shape, from a predominantly prolate configura-
tion, to a triaxial one. This change also happens for lower resolution simulations around
ηvir = 0.09. It takes place in the last 10% – 20% of the simulation time for the lower res-
olution simulations and is shifted foreward in time with higher resolution and decreasing
virial coefficient ηvir. This indicates that the onset of rising triaxiality is shifted towards
larger values of ηvir in simulations with smaler timestep sizes and smaller softening length.
As to why this change in shape happens also for distinct lower resolution simulations is
not yet clear and should be studied in more detail. Likewise more high-resolution tests
should be conducted, to see if the onset of ROI is shifted as well, or if even high-resolution
simulations only undergo this second change of shape after a critical value for ηvir. The
only available data for a high-resolution test in the dynamically warmer regime could
indicate a second change in shape, as the decrease of ε2 had already begun, but this data
is not sufficient to find a conclusion.
The Hernquist systems showed no second change in shape at higher resolutions, but kept
their maximum values for ε1 and ε2 over the entire time of the simulation. Only the onset
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of ROI was shifted to smaller values of ηvir.

Disturbed ROI

To test the impact of perturbations on the evolution of the shape of systems that have
undergone ROI, numerous tests with rotation and a compact central mass were conducted.

For the rotation no significant impact on either of the spheres was found. Only for
the additional tests with exceedingly large rotational velocities in the Hernquist profile,
a slight indication for an increase in ellipticity in the dynamically warmer regimes was
found. The way the rotation was set up as a rigid body rotation, whereas neither elliptical
galaxies, nor globular clusters show a rigid body rotation around an axis, and the high
rotational velocities needed to find a difference in the evolution, make it unlikely that a
setup like this can resemble a real physical system.
This in turn is a soothing result for other systems that might undergo ROI, as rotation
is a widely found feauture in different stellar systems and rotation around an axis seems
to play no significant role in the evolution of ROI.

The simulations with a compact central mass showed more promising results.
In the Plummer setups the systems with log(M•) = 3 seemed to suppress the destabilisa-
tion that caused the ellipticity ε2 to decline around ηvir = 0.09 and caused the system to
become more triaxial at that point than the ideal system without a central mass. Besides
the suppression of the decline in ε2, the systems for log(M•) = 3 stayed fairly close to
the unperturbed case and log(M•) = 2 showed barely any deviation. The setups with the
most massive central masses with log(M•) = 4 differed most from the unperturbed re-
sults. While the dynamically warm setups showed no difference to the unperturbed ones,
the systems that underwent ROI showed none of the expected prolate shapes typical for
ROI, but instead started out as triaxial and then became oblate.
For the Hernquist systems the effect was essentially the same. With increasing mass of
the central object the values for ε2 were decreased. While ε2 decreased, ε1 increased,
which caused the system to become more triaxial. Another result was that the decrease
of ε2 seems to scale with the central mass in the Hernquist systems. While log(M•) = 3
only slightly decreased the resulting ε2, the impact of log(M•) = 4 was significant. This
leads to the assumption that the beginning of the effect of a central mass on ROI lies
between log(M•) = 3 and log(M•) = 4. In addition to that, the onset of ROI appeared
to be shifted to dynamically colder inital conditions for log(M•) = 4. This means that a
sufficiently large central mass seems to suppress the ROI until a certain value of ηvir. To
get the exact relation between M• and ηvir required for this suppression, more tests will
have to be conducted.

However, the required mass needed to have an effect on ROI imposes a problem on the
applicability to real physical systems. In the conducted tests, a mass of log(MBH) = 3
means that MBH ≈ 10−2Mtot. For a globular cluster with Mtot ≈ 106M� this would
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lead to MBH ≈ 104M�. Black holes in GCs are believed to be of stellar origin, which
would give them masses of M• ≈ 3 − 10M�. Even taken into account that recent mea-
surements of gravitational waves from the LIGO oberservatory are believed to originate
in GCs and that these measurments indicate black hole mergers between black holes of
M• ≈ 20− 30M�, the resulting BHs are more than two orders of magnitude smaller than
the required masses.
For elliptical galaxies like Messier 87, with a total mass of Mtot ≈ 1012M� the BH-mass
would be M• ≈ 1010M�. While elliptical galaxies seem to host the most massive SMBHs
known to this date and can reach masses of M• > 1010M� (see for example Hlavacek-
Larrondo et al. (2013)), one has to take into account the accretion timescales for them to
reach these masses. To account for that, the ROI would have to happen at a very late
stage in the dynamic evolution of the stellar system. This is in contrast to the suggestion
by Burkert (1990) who discusses ROI as a reason for the shape of elliptical galaxies. In
this concept the galaxies undergo a short, initial starburst-phase after which they experi-
ence a violent collapse.
In order to address this problem, it would be of interest to study the impact of particle-
number and timestep-size of the simulation on the mass-dependency of the effect on the
resulting geometric shape. If a higher particle-resolution could reduce the required mass
for an evident impact on the resulting shape, this could indicate a more realistic result.

Radial Orbit Instability in Cold Dark Matter Halos

The suppression of ROI in systems with a central mass could also be relevant for simula-
tions of the impact of ROI on cold dark matter halos (CDMHs) (for example carried out
by MacMillan et al. (2006)). With the galaxy inside a CDMH being only a small fraction
of the size of the halo, it can be viewed as a relatively compact central mass. If the
CDMH is then disturbed, for example by interaction with other halos in a galaxy cluster,
as Frank C. van den Bosch (2017) suggests, and a Radial Orbit Instability is induced,
the gas component might not be negligible. This would indicate that the observation
of isolated CDMHs, as done by MacMillan et al. (2006), is not sufficient to accurately
describe the resulting geometric configuration of such systems. This is supported by the
results of Ceverino et al. (2015) who find that if the baryonic mass of galaxies within a
DMH is large enough, the resulting galaxy will become more oblate, instead of prolate as
induced by the DMH.
The suppression of ellipticity seems to have no effect on the resulting density profile, how-
ever, as Fig. III.10 indicates and therefore does not affect the elegant theory of MacMillan
et al. (2006) to explain the shape of the NFW-profile. Nevertheless it would be of interest
to further study the impact of central masses on the evolution of shape in the Radial Or-
bit Instability. Either with the beforementioned upscaling of particle numbers and higher
timestep resolution, or with a galaxy at the center of a dark matter halo, as Ceverino
et al. (2015) do.
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Figure III.2.: Hernquist-profile: First infall

61



CHAPTER III. APPENDIX III.1. ADDITIONAL PLOTS

(a) Position-space (b) Phase-space (c) Density distribu-
tion

Figure III.3.: Hernquist-profile: After the turnaround point

(a) Position-space (b) Phase-space (c) Density distribu-
tion

Figure III.4.: Hernquist-profile: Formation of density-waves
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(a) Position-space (b) Phase-space (c) Density distribu-
tion

Figure III.5.: Hernquist-profile: Shells move outwards

(a) Position-space (b) Phase-space (c) Density distribu-
tion

Figure III.6.: Hernquist-profile: Beginning of phase-mixing
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Figure III.7.: Hernquist-profile: Inner shells appear phase-mixed
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Figure III.8.: Hernquist-profile: End of the simulation

64



CHAPTER III. APPENDIX III.1. ADDITIONAL PLOTS
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(b) Evolution of ellip-
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(c) Evolution of ηvir

Figure III.9.: Evolution of hmr and ellipticity during the time of the simulation

III.1.2. Effect of central mass on the Hernquist profile

Figure III.10.: Comparison of initial and final density with central mass and in the
ideal case
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III.2. List of Simulations

III.2.1. Undisturbed ROI
Plummer
Name of the Simulation χ ηvir run-time ∆ snap ∆t ε
P-1,0 1,0 1,0 100 0,2 0,01 0,05
P-0,95 0,95 9, 025 · 10−1 100 0,2 0,005 0,05
P-0,90 0,9 8, 1 · 10−1 100 0,2 0,01 0,05
P-0,85 0,85 7, 225 · 10−1 100 0,2 0,005 0,05
P-0,80 0,8 6, 4 · 10−1 100 0,2 0,01 0,05
P-0,75 0,75 5, 625 · 10−1 100 0,2 0,005 0,05
P-0,70 0,7 4, 9 · 10−1 100 0,2 0,01 0,05
P-0,65 0,65 4, 225 · 10−1 100 0,2 0,005 0,05
P-0,60 0,6 3, 6 · 10−1 100 0,2 0,01 0,05
P-0,55 0,55 3, 025 · 10−1 100 0,2 0,005 0,05
P-0,50 0,5 2, 5 · 10−1 100 0,2 0,01 0,05
P-0,45 0,45 2, 025 · 10−1 100 0,2 0,005 0,05
P-0,40 0,4 1, 6 · 10−1 100 0,2 0,01 0,05
P-0,39 0,39 1, 521 · 10−1 100 0,2 0,01 0,05
P-0,38 0,38 1, 444 · 10−1 100 0,2 0,01 0,05
P-0,37 0,37 1, 369 · 10−1 100 0,2 0,01 0,05
P-0,36 0,36 1, 296 · 10−1 100 0,2 0,01 0,05
P-0,35 0,35 1, 225 · 10−1 100 0,2 0,01 0,05
P-0,34 0,34 1, 156 · 10−1 100 0,2 0,01 0,05
P-0,33 0,33 1, 089 · 10−1 100 0,2 0,01 0,05
P-0,32 0,32 1, 024 · 10−1 100 0,2 0,01 0,05
P-0,31 0,31 9, 61 · 10−2 100 0,2 0,01 0,05
P-0,30 0,3 9, 0 · 10−2 100 0,2 0,01 0,05
P-0,25 0,25 6, 25 · 10−2 100 0,2 0,005 0,05
P-0,20 0,2 4, 0 · 10−2 100 0,2 0,01 0,05
P-0,15 0,15 2, 25 · 10−2 100 0,2 0,005 0,05
P-e-1 0,1 1 · 10−2 100 0,2 0,01 0,05
P-e-2 0,01 1 · 10−4 100 0,2 0,01 0,05
P-e-3 1 · 10−3 1 · 10−6 100 0,2 0,01 0,05
P-e-4 1 · 10−4 1 · 10−8 100 0,2 0,01 0,05
P-e-5 1 · 10−5 1 · 10−10 100 0,2 0,02 0,05
P-e-6 1 · 10−6 1 · 10−12 100 0,2 0,02 0,05
P-e-7 1 · 10−7 1 · 10−14 100 0,2 0,02 0,05
P-e-8 1 · 10−8 1 · 10−16 100 0,2 0,02 0,05
P-Stability 1,0 1,0 50 0,1 0,01 0,01
P-LongRun 0,1 0,01 200 0,2 0,005 0,05
P-HighRes-0,34 0,1 1, 156 · 10−1 100 0,2 0,001 0,01
P-HighRes-0,32 0,32 1, 024 · 10−1 100 0,2 0,001 0,01
P-HighRes-0,31 0,31 9, 61 · 10−2 100 0,2 0,001 0,01
P-HighRes-0,3 0,3 9, 0 · 10−2 100 0,2 0,001 0,01
P-HighRes-0,25 0,25 6, 25 · 10−2 100 0,2 0,001 0,01
P-HighRes-0,1 0,1 1 · 10−2 100 0,2 0,001 0,01
P-HighRes-0,01 0,01 1 · 10−4 100 0,2 0,001 0,01



Hernquist

Name of the Simulation χ ηvir run-time ∆ snap ∆t ε
H-0,95 0,95 9, 025 · 10−1 100 0,2 0,005 0,05
H-0,90 0,9 8, 1 · 10−1 100 0,2 0,01 0,05
H-0,85 0,85 7, 225 · 10−1 100 0,2 0,005 0,05
H-0,80 0,8 6, 4 · 10−1 100 0,2 0,01 0,05
H-0,75 0,75 5, 625 · 10−1 100 0,2 0,005 0,05
H-0,70 0,7 4, 9 · 10−1 100 0,2 0,01 0,05
H-0,65 0,65 4, 225 · 10−1 100 0,2 0,005 0,05
H-0,60 0,6 3, 6 · 10−1 100 0,2 0,01 0,05
H-0,55 0,55 3, 025 · 10−1 200 0,4 0,01 0,05
H-0,50 0,5 2, 5 · 10−1 100 0,2 0,01 0,05
H-0,45 0,45 2, 025 · 10−1 100 0,2 0,005 0,05
H-0,40 0,4 1, 6 · 10−1 100 0,2 0,01 0,05
H-0,35 0,35 1, 225 · 10−1 100 0,2 0,005 0,05
H-0,30 0,3 9, 0 · 10−2 100 0,2 0,01 0,05
H-0,29 0,29 8, 41 · 10−2 100 0,2 0,01 0,05
H-0,28 0,28 7, 84 · 10−2 100 0,2 0,01 0,05
H-0,27 0,27 7, 29 · 10−2 100 0,2 0,01 0,05
H-0,26 0,26 6, 76 · 10−2 100 0,2 0,01 0,05
H-0,25 0,25 6, 25 · 10−2 100 0,2 0,01 0,05
H-0,24 0,24 5, 76 · 10−2 100 0,2 0,01 0,05
H-0,23 0,23 5, 29 · 10−2 100 0,2 0,01 0,05
H-0,22 0,22 4, 84 · 10−2 100 0,2 0,01 0,05
H-0,21 0,21 4, 41 · 10−2 100 0,2 0,01 0,05
H-0,20 0,2 4, 0 · 10−2 100 0,2 0,01 0,05
H-0,15 0,15 2, 25 · 10−2 100 0,2 0,005 0,05
H-e-1 0,1 1 · 10−2 100 0,2 0,01 0,05
H-e-2 0,01 1 · 10−4 100 0,2 0,01 0,05
H-e-3 1 · 10−3 1 · 10−6 100 0,2 0,01 0,05
H-e-4 1 · 10−4 1 · 10−8 100 0,2 0,01 0,05
H-e-5 1 · 10−5 1 · 10−10 100 0,2 0,02 0,05
H-e-6 1 · 10−6 1 · 10−12 100 0,2 0,02 0,05
H-e-7 1 · 10−7 1 · 10−14 100 0,2 0,02 0,05
H-e-8 1 · 10−8 1 · 10−16 100 0,2 0,02 0,05
H-St_eps-2 1,0 1,0 50 0,1 0,01 0,01
H-St_eps-3 1,0 1,0 50 0,1 0,01 0,005
H-LongRun 0,1 0,01 200 0,2 0,005 0,05
H-HighRes-0,4 0,4 1, 6 · 10−1 100 0,2 0,001 0,01
H-HighRes-0,3 0,3 9, 0 · 10−2 100 0,2 0,001 0,01
H-HighRes-0,25 0,25 6, 25 · 10−2 100 0,2 0,001 0,01
H-HighRes-0,1 0,1 1 · 10−2 100 0,2 0,001 0,01
H-HighRes-0,01 0,01 1 · 10−4 100 0,2 0,001 0,01



III.2.2. Disturbed ROI
Rotation

Plummer Setup:
Name of the Simulation χ ηvir Ω run-time ∆ snap ∆t ε
P_O-1e-3_v-001 0,01 1 · 10−4 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-01 0,1 1 · 10−2 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-02 0,2 4 · 10−2 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-03 0,3 9 · 10−2 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-035 0,35 1, 225 · 10−1 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-04 0,4 1, 6 · 10−1 1 · 10−3 100 0,2 0,01 0,05
P_O-1e-3_v-05 0,5 2, 5 · 10−1 1 · 10−3 100 0,2 0,01 0,05
P_O-5e-4_v-001 0,01 1 · 10−4 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-01 0,1 1 · 10−2 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-02 0,2 4 · 10−2 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-03 0,3 9 · 10−2 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-035 0,35 1, 225 · 10−1 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-04 0,4 1, 6 · 10−1 5 · 10−4 100 0,2 0,01 0,05
P_O-5e-4_v-05 0,5 2, 5 · 10−1 5 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-001 0,01 1 · 10−4 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-01 0,1 1 · 10−2 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-02 0,2 4 · 10−2 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-03 0,3 9 · 10−2 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-035 0,35 1, 225 · 10−1 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-04 0,4 1, 6 · 10−1 3 · 10−4 100 0,2 0,01 0,05
P_O-3e-4_v-05 0,5 2, 5 · 10−1 3 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-001 0,01 1 · 10−4 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-01 0,1 1 · 10−2 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-02 0,2 4 · 10−2 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-03 0,3 9 · 10−2 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-035 0,35 1, 225 · 10−1 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-04 0,4 1, 6 · 10−1 2 · 10−4 100 0,2 0,01 0,05
P_O-2e-4_v-05 0,5 2, 5 · 10−1 2 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-001 0,01 1 · 10−4 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-01 0,1 1 · 10−2 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-02 0,2 4 · 10−2 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-03 0,3 9 · 10−2 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-035 0,35 1, 225 · 10−1 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-04 0,4 1, 6 · 10−1 1 · 10−4 100 0,2 0,01 0,05
P_O-1e-4_v-05 0,5 2, 5 · 10−1 1 · 10−4 100 0,2 0,01 0,05
Hernquist Setup:



Name of the Simulation χ ηvir Ω run-time ∆ snap ∆t ε
H_O-1e-1_v-001 0,01 1 · 10−4 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-1_v-01 0,1 1 · 10−2 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-1_v-02 0,2 4 · 10−2 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-1_v-03 0,3 9 · 10−2 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-1_v-04 0,4 1, 6 · 10−1 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-1_v-05 0,5 2, 5 · 10−1 1 · 10−1 100 0,2 0,01 0,05
H_O-1e-2_v-001 0,01 1 · 10−4 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-2_v-01 0,1 1 · 10−2 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-2_v-02 0,2 4 · 10−2 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-2_v-03 0,3 9 · 10−2 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-2_v-04 0,4 1, 6 · 10−1 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-2_v-05 0,5 2, 5 · 10−1 1 · 10−2 100 0,2 0,01 0,05
H_O-1e-3_v-001 0,01 1 · 10−4 1 · 10−3 100 0,2 0,01 0,05
H_O-1e-3_v-01 0,1 1 · 10−2 1 · 10−3 100 0,2 0,01 0,05
H_O-1e-3_v-02 0,2 4 · 10−2 1 · 10−3 100 0,2 0,01 0,05
H_O-1e-3_v-03 0,3 9 · 10−2 1 · 10−3 100 0,2 0,01 0,05
H_O-1e-3_v-04 0,4 1, 6 · 10−1 1 · 10−3 100 0,2 0,01 0,05
H_O-1e-3_v-05 0,5 2, 5 · 10−1 1 · 10−3 100 0,2 0,01 0,05
H_O-5e-4_v-001 0,01 1 · 10−4 5 · 10−4 100 0,2 0,01 0,05
H_O-5e-4_v-01 0,1 1 · 10−2 5 · 10−4 100 0,2 0,01 0,05
H_O-5e-4_v-02 0,2 4 · 10−2 5 · 10−4 100 0,2 0,01 0,05
H_O-5e-4_v-03 0,3 9 · 10−2 5 · 10−4 100 0,2 0,01 0,05
H_O-5e-4_v-04 0,4 1, 6 · 10−1 5 · 10−4 100 0,2 0,01 0,05
H_O-5e-4_v-05 0,5 2, 5 · 10−1 5 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-001 0,01 1 · 10−4 3 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-01 0,1 1 · 10−2 3 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-02 0,2 4 · 10−2 3 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-03 0,3 9 · 10−2 3 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-04 0,4 1, 6 · 10−1 3 · 10−4 100 0,2 0,01 0,05
H_O-3e-4_v-05 0,5 2, 5 · 10−1 3 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-001 0,01 1 · 10−4 2 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-01 0,1 1 · 10−2 2 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-02 0,2 4 · 10−2 2 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-03 0,3 9 · 10−2 2 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-04 0,4 1, 6 · 10−1 2 · 10−4 100 0,2 0,01 0,05
H_O-2e-4_v-05 0,5 2, 5 · 10−1 2 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-001 0,01 1 · 10−4 1 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-01 0,1 1 · 10−2 1 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-02 0,2 4 · 10−2 1 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-03 0,3 9 · 10−2 1 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-04 0,4 1, 6 · 10−1 1 · 10−4 100 0,2 0,01 0,05
H_O-1e-4_v-05 0,5 2, 5 · 10−1 1 · 10−4 100 0,2 0,01 0,05



Central Mass

Plummer Setup:
Name of the Simulation χ ηvir MBH run-time ∆ snap ∆t ε
P_m_e+2_v-001 0,01 1 · 10−4 1 · 102 100 0,2 0,01 0,05
P_m_e+2_v-01 0,1 1 · 10−2 1 · 102 100 0,2 0,01 0,05
P_m_e+2_v-02 0,2 4, 0 · 10−2 1 · 102 100 0,2 0,01 0,05
P_m_e+2_v-03 0,3 9, 0 · 10−2 1 · 102 100 0,2 0,01 0,05
P_m_e+2_v-04 0,4 1, 6 · 10−1 1 · 102 100 0,2 0,01 0,05
P_m_e+2_v-05 0,5 2, 5 · 10−1 1 · 102 100 0,2 0,01 0,05
P_m_e+3_v-001 0,01 1 · 10−4 1 · 103 100 0,2 0,01 0,05
P_m_e+3_v-01 0,1 1 · 10−2 1 · 103 100 0,2 0,01 0,05
P_m_e+3_v-02 0,2 4, 0 · 10−2 1 · 103 100 0,2 0,01 0,05
P_m_e+3_v-03 0,3 9, 0 · 10−2 1 · 103 100 0,2 0,01 0,05
P_m_e+3_v-04 0,4 1, 6 · 10−1 1 · 103 100 0,2 0,01 0,05
P_m_e+3_v-05 0,5 2, 5 · 10−1 1 · 103 100 0,2 0,01 0,05
P_m_e+4_v-001 0,01 1 · 10−4 1 · 104 100 0,2 0,01 0,05
P_m_e+4_v-01 0,1 1 · 10−2 1 · 104 100 0,2 0,01 0,05
P_m_e+4_v-02 0,2 4, 0 · 10−2 1 · 104 100 0,2 0,01 0,05
P_m_e+4_v-03 0,3 9, 0 · 10−2 1 · 104 100 0,2 0,01 0,05
P_m_e+4_v-04 0,4 1, 6 · 10−1 1 · 104 100 0,2 0,01 0,05
P_m_e+4_v-05 0,5 2, 5 · 10−1 1 · 104 100 0,2 0,01 0,05

Herquist Setup:
Name of the Simulation χ ηvir MBH run-time ∆ snap ∆t ε
H_m_e+2_v-001 0,01 1 · 10−4 1 · 102 100 0,2 0,01 0,05
H_m_e+2_v-01 0,1 1 · 10−2 1 · 102 100 0,2 0,01 0,05
H_m_e+2_v-02 0,2 4, 0 · 10−2 1 · 102 100 0,2 0,01 0,05
H_m_e+2_v-03 0,3 9, 0 · 10−2 1 · 102 100 0,2 0,01 0,05
H_m_e+2_v-04 0,4 1, 6 · 10−1 1 · 102 100 0,2 0,01 0,05
H_m_e+2_v-05 0,5 2, 5 · 10−1 1 · 102 100 0,2 0,01 0,05
H_m_e+3_v-001 0,01 1 · 10−4 1 · 103 100 0,2 0,01 0,05
H_m_e+3_v-01 0,1 1 · 10−2 1 · 103 100 0,2 0,01 0,05
H_m_e+3_v-02 0,2 4, 0 · 10−2 1 · 103 100 0,2 0,01 0,05
H_m_e+3_v-03 0,3 9, 0 · 10−2 1 · 103 100 0,2 0,01 0,05
H_m_e+3_v-04 0,4 1, 6 · 10−1 1 · 103 100 0,2 0,01 0,05
H_m_e+3_v-05 0,5 2, 5 · 10−1 1 · 103 100 0,2 0,01 0,05
H_m_e+4_v-001 0,01 1 · 10−4 1 · 104 100 0,2 0,01 0,05
H_m_e+4_v-01 0,1 1 · 10−2 1 · 104 100 0,2 0,01 0,05
H_m_e+4_v-02 0,2 4, 0 · 10−2 1 · 104 100 0,2 0,01 0,05
H_m_e+4_v-03 0,3 9, 0 · 10−2 1 · 104 100 0,2 0,01 0,05
H_m_e+4_v-04 0,4 1, 6 · 10−1 1 · 104 100 0,2 0,01 0,05
H_m_e+4_v-05 0,5 2, 5 · 10−1 1 · 104 100 0,2 0,01 0,05
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