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Introduction

The mechanisms of star formation, its causes, and its consequences are tremendously
important for the evolution of galaxies, leading to great interest in continuous re-
search on the topic from many different fields in astrophysics. Observations indicate
that most of the star formation takes place in clouds of molecular hydrogen that
collapse and fragment under their own gravity (Espada et al. [2012], Brand et al.
[2012]). Therefore, to understand star formation one must further investigate the
physics that lead to the formation of these molecular clouds, and by extension the
formation and evolution of galaxies and galactic disks. Although the rapid improve-
ment in observational instruments over the last decades now allows us to look at
galaxies, both the Milky Way and the local group in which it resides (Kennicutt
and Evans [2012]), as well as those situated in clusters or isolated up to high red-
shifts(Oliver et al. [2012]), the fact that these processes take place on timescales far
longer than a human lifetime means that observations alone have a hard time of
explaining and describing all the physics involved. As such, numerical simulations
play an ever increasing role in research, facilitated by ongoing technological progress.
When it comes to simulations concerning star formation, there exists a plethora

of different approaches, which are divided by numerical methods used but also by
the scales on which the calculations take place. Simulations of individual molecular
clouds grant great insight into fragmentation and collapse mechanisms, crucial for
understanding the way stars form(Glover and Mac Low [2007], Glover and Clark
[2012], Clark et al. [2012]). However, they can not, by definition, answer the ques-
tions about the large scale processes affecting whole galaxies. This is aggravated by
the fact that, although star formation takes place on a scale smaller than the size of
a typical galaxy, empirical discoveries like the Kennicutt-Schmidt law of star forma-
tion (Kennicutt [1998]) and the Tully-Fisher relation (Tully and Fisher [1977]) imply
that there is a coupling between the formation of individual stars and the greater
behaviour of the galaxy that itself influences further star formation. Furthermore,
theoretical models predict that the accretion of hydrogen into the galaxy should also
significantly impact both the internal structure of the galaxy and subsequently the
formation of stars therein (Dekel et al. [2009], Bouché et al. [2010]). Thus it can not
be enough to simply understand the microphysics involved in star formation, but
one also has to take into account the larger scales of whole galaxies.
Cosmological simulations on the other hand that calculate vast areas on the order

of megaparsecs over large timescales up to the age of the universe(Heß and Springel
[2012], Biffi et al. [2012]), are ideally suited for further investigating the formation
of structure and therefore galaxies but so far lack the accuracy to actually resolve
individual galaxies to a degree that allows conclusions as to the physical processes



2 Introduction

governing the actual formation of stars. While these simulations are able to give
great insights into the interaction between galaxies and the way in which they form,
evolve, and accrete more hydrogen from their surroundings, this lack of resolution
means that, in order to calculate internal dynamics of galaxies(Springel and Hern-
quist [2003]), the involved codes often apply strong simplifications that only allow
the most tentative speculations.
Another possible approach would be to simulate an isolated galaxy that is suffi-

ciently resolved to guarantee correct treatment of the dynamics of the interstellar
medium, as well as calculate star formation scenarios with only a minimum of as-
sumptions that might bias the results(Dobbs [2011]). In this work, we carry out such
a simulation with the goal of giving a self-consistent view that includes a full hydro-
dynamical, as well as gravitational treatment of hydrogen in a galactic disk inside a
Dark Matter halo. This includes a star forming algorithm, complete with feedback
from supernovae and draining of the hydrogen reservoir, as well as a rudimentary
prescription of additional accretion onto the disk.
The thesis is organized in the following way. First we give a brief overview over

the physics and observed phenomena involved in star formation on all scales. Second
we describe the numerical implementation chosen for the simulations presented in
the following chapter. Lastly we summarize our findings and draw a conclusion.



1 Theoretical & Observational
Background





1.1 Galactic Density Distributions

Observations of Galaxies show that in most Galactic Disks, the luminosity I has an
exponential distribution over radius R of the Form

I(R) = I0e
−R/Rd , (1.1)

where I0 is the central luminosity and Rd is the scale radius (Freeman [1970]).
It is now a reasonable assumption that the luminosity is directly correlated to the

surface density Σ , which then takes the form

Σ(R) = Σ0e
−R/Rd , (1.2)

with central surface density Σ0. We would now like to calculate the gravitational
potential Φ of such a disk, since this is generally more useful for calculating the
dynamics of particles. This derivation closely follows (Binney and Tremaine [2008]).
For this we treat the disk as a very flat spheroid. A homogeneous spheroid has
surface density

Σ (a,R) = 2ρq
√
a2 −R2, (1.3)

where q is its axial ratio c/a , a and c are its semi-axes, ρ is its density, and R is
the cylindrical radius. Differentiating equation 1.3 with respect to a gives us the
surface density for a thin homoeiod

δΣ (a,R) =
Σhδa√
a2 −R2

, (1.4)

where we substituted Σh ≡ 2ρqa. We can now deconstruct any thin disk into a series
of such homoeiods, whose combined surface density is the same as that of the disk.
Mathematically speaking, we want to solve

Σ (R) =

∞∫
R

da
Σh (a)√
a2 −R2

(1.5)

for Σh (a) . This yields

Σh (a) = − 2

π

d
da

∞∫
a

RΣ (R)√
R2 − a2

. (1.6)

Additionally, the potential of a thin homoeiod is

δΦ = −2πGΣhδaarcsin

 2a√
z2 + (a+R)2 +

√
z2 + (a−R)2

 , (1.7)
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where G is the gravitational constant. Inserting equation 1.6 into equation 1.7 and
integrating them gives us the potential of a thin disk as

Φ(R, z) = −2
√

2G

∞∫
0

da
[(a+R)/

√
+]− [(a−R)/

√
−]√

R2 − z2 − a2 +
√

+
√
−

×
∞∫
a

dR′
R′Σ(R′)√
R′2 − a2

, (1.8)

with √
± =

√
z2 + (a±R)2. (1.9)

The second integration in equation 1.8 yields
∞∫
a

dR′
R′Σ(R′)√
R′2 − a2

= Σ0aK1(a/Rd), (1.10)

where K1 denotes the modified Bessel function. This can now be used to calculate
the mid plane potential of the disk, which turns out to be

Φ(R, 0) = −πGΣ0R[I0(y)K1(y)− I1(y)K0(y)], (1.11)

with
y ≡ R

2Rd
(1.12)

and the modified Bessel functions K0, K1, I0 and I1.
Knowing the potential we can now determine the rotational velocity vc to be

v2
c = R

∂Φ

∂R
= 4πGΣ0Rdy

2[I0(y)K0(y)− I1(y)K1(y)] . (1.13)

Technically, this equation is only for the limit of an infinitesimally thin disk, which
can be shown to still remain valid for disks with scale height small compared to their
scale readius.
Of course, we also want to discuss the vertical structure of a galactic disk. We

begin with the Poisson equation under the assumption that only matter in the
equatorial plane in the disk is relevant for gravity and therefore we only need the
dependence on the distance z to the equatorial plane:

d2Φ

dz2
= 4πGρ (1.14)

with density ρ . Next, we assume that the disk is in thermal equilibrium, which
reduces the Euler equation to

dp

dz
= −ρdΦ

dz
, (1.15)

where p denotes pressure. To express the pressure in terms of density, we assume
that the disk is made up of isothermal sheets and get the equation of state as

p = c2
sρ, (1.16)
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where cs is the sound speed. By substituting equation 1.16 into equation 1.15,
dividing by ρ, differentiating by z, and using equation 1.14 to eliminate d2Φ

dz2
we get

d

dz

(
1

ρ

dρ

dz

)
= −4πG

c2
s

ρ. (1.17)

By substituting variables in a favourable way and some calculations (see (Spitzer
[1942]) for a more detailed discussion) this equation can be solved and gives

ρ (z) = ρ0sech2

(
z

2z0

)
, (1.18)

with ρ0 being the mid plane density, and scale height

z0 =
cs√

8πGρ0
. (1.19)

Figure 1.1 illustrates the behaviour of ρ(z), namely that it can be approximated by

Fig. 1.1: Illustration of how the function sech2(x)(red) from equation 1.19 can be
approximated by 4e−2x(green) for small radii, and e−x

2(blue) for large
radii respectively.
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a Gaussian for small x and by an exponential function for large x. Using the fact
that ρ0 is nothing else but the surface density, we get

ρ (R, z) = Σ0e
− R

Rd sech2

(
z

z0

)
. (1.20)

It is generally assumed that all Galaxies reside in larger Dark Matter halos, whose
gravitation also has a tremendous impact on the baryonic matter within. To further
study its density distribution, we start with the rotatinal velocity

v2
c,dm (r) = r

dΦ

dr
. (1.21)

By taking the halo as being spherically symmetric, this simplifies to

v2
c,dm (r) =

GM (r)

r
(1.22)

with M (r) being the mass inside a sphere of radius r. For a rotation curve we use

v2
c,dm (r) = v2

0
r2

(r + ε)2 , (1.23)

with the core radius ε. This is the simplest parametrisation that gives us a rotation
curve that is linear in r in the centre and becomes flat with an asymptotic limit of
v0 for large radii. This now allows us to solve for

M (r) =
v2

0

G

r3

(r + ε)2 . (1.24)

Next we consider the fact that the mass inside a sphere can also be calculated by

M (r) =

∫
V

ρdm (~r) d~r =

r∫
0

4πρdm (r′) r′2dr′, (1.25)

written in spherical coordinates under the assumption of spherical symmetry of the
halo. Using the fundamental theorem of calculus, we can now write

dM (r)

dr
= 4πρdm (r) r2, (1.26)

which can easily be solved for

ρdm (r) =
1

4πr2

dM (r)

dr
. (1.27)

Differentiating equation 1.24 and then substituting into equation 1.27 then gives us
the density distribution of the Dark Matter

ρdm (r) =
v2

0

4πG

(
3

(r + ε)2 −
2r

(r + ε)3

)
. (1.28)
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1.2 Density Perturbations

So far we have always treated the matter in a Disk to be more or less homgeneously
distributed. Most systems will inevitably show perturbations of some kind that can
drastically alter the expected behaviour. In the following paragraphs we want to
give a short overview of how perturbations that arise can be maintained in a razor
thin disk of fluid-like particles. We again follow (Binney and Tremaine [2008]) very
closely for the following derivation. We begin with the Euler equation in cylindrical
coordinates:

∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ
−
v2
φ

R
= −∂Φ

∂R
− 1

Σd

∂p

∂R
(1.29)

∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ
− vφvR

R
= −∂Φ

∂φ
− 1

ΣdR

∂p

∂φ
, (1.30)

where Σd is the surface density of the disk. We now start with an unperturbed
axisymmetric disk in a steady state, which will be denoted in the following with
the subscript "0". The prerequisites necessary for such a disk, namely vR0 =
0 and ∂Φ0/∂φ = ∂p0/∂φ = 0, then simplify the Euler equations to

v2
φ0

R
=

dΦ0

dR
+ c2

s

d
dR

lnΣ0. (1.31)

We also need an equation of state for the further treatment. In this case we take
the rather simple equation

p = KΣγ
d, (1.32)

with K being a constant that depends on the specific entropy, and γ being the
adiabatic index. From this equation we can trivially derive the sound speed to be

c2
s (Σ0) =

(
dp
dΣ

)
Σ0

= γKΣγ−1
0 . (1.33)

We can further simplify the equations of motion by replacing the pressure with the
specific enthalpy

h =
γ

γ − 1
KΣγ−1

d . (1.34)

We now introduce perturbations of the form vR = εvR1, vφ = vφ0 + εvφ1, h =
h0 + εh1, Σd = Σ0 + εΣ1 and Φ = Φ0 + εΦ1 , where ε is a very small number.
Inserting that in the equation of motion and only evaluating terms that are linear
in ε we get

∂vR1

∂t
+ Ω

∂vR1

∂φ
− 2Ωvφ1 = − ∂

∂R
(Φ1 + h1) (1.35)

∂vφ1

∂t
+

[
d (ΩR)

dR
+ Ω

]
vR1 + Ω

∂vφ1

∂φ
= − 1

R

∂

∂φ
(Φ1 + h1) , (1.36)
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where Ω is the circular frequency vφ0/R. We can now make the Ansatz that the
perturbations are of the form

vR1 = Re
[
vRa (R) ei(mφ−ωt)

]
, (1.37)

with m-fold rotational symmetry, and angular frequency ω.
We also need the equation of continuity to link the velocities to the surface density.

For terms linear in ε and in cylindrical coordinates, this equation is of the form

∂Σd1

∂t
+ Ω

∂Σd1

∂φ
+

1

R

∂

∂R
(RvRaΣ0) +

Σ0

R

∂vφ1

∂φ
= 0, (1.38)

which we can calculate to be

− i (ω −mΩ) Σda +
1

R

d
dR

(RvRaΣ0) +
imΣ0

R
vφa = 0. (1.39)

If we now assume that a tight-winding, short-wavelength approximation is viable,
meaning that the radial wavelength of the debsity perturbations is much smaller
than the disk radius, a reasonable assumption for most obeerved disks, we can write
the gravitational potential imposed by these density waves as

Φa(R) = F (R)e
i
R∫
kdR

, (1.40)

where F is the amplitutde of the perturbation and k is its radial wavenumber.
Linking the potential to the surface density via Poisson’s equation and omitting
terms of the order |kR| � 1 we arrive at the velocities being

vRa = −(ω −mΩ)

∆
k (Φa + ha) (1.41)

vφa = −2iB
∆

k (Φa + ha) . (1.42)

Similarly, the continuity equation now has the form

− (ω −mΩ) Σda + kΣ0vRa = 0. (1.43)

Combining these equations and assuming self-consistency we get the dispersion re-
lation

(ω −mΩ)2 = κ2 − 2πGΣ0|k|+ c2
sk

2, (1.44)

where κ is the epicyclic frequency

κ2 = R
dΩ2

dR
+ 4Ω2. (1.45)

For an axisymmetric perturbation, the disk becomes unstable if the right side is
negative and therefore the limit of stability is defined as

κ2 − 2πGΣ0|k|+ c2
sk

2 = 0. (1.46)
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This equation is not allowed to have a solution for any positve |k| , since the equation
is quadratic, the stability criterion can easily be derived to be

Q ≡ csκ

πGΣ0

> 1 . (1.47)

This can be understood as a condition for local stability (Toomre [1964]). If Q is
smaller than unity, perturbation waves of a wavelength smaller than the critical
wavelength can grow while travelling through the unstable region.

1.3 Interstellar Medium

Knowing that a fluid disk can be in a state of instability, the next question to be
asked is how such a disk can arrive at this state. For that we have to take into
account the different constituents of the Interstellar Medium and their interactions
with each other and radiation from different sources. Observations show that the
ISM usually consists of three distinct phases, a cold neutral phase, a warm phase that
is both neutral and ionized, and a hot ionized phase. These phases are additionally
in pressure equilibrium (McKee and Ostriker [1977]).
This can be fairly easily explained by taking a closer look at the mechanisms

that determine the temperature of the diffuse gas in a galaxy. The gas is heated by
photoelectric ionization of grains by ultraviolet photons (Bakes and Tielens [1994]),
ionization by cosmic rays (Blandford and Ostriker [1980]), soft X-rays (McCam-
mon and Sanders [1990]), and other mechanisms (Hollenbach and McKee [1989]).
Cooling takes place due to collisional excitation of fine structure lines (Launay and
Roueff [1977]), electron recombination(Bakes and Tielens [1994]), and other pro-
cesses (Hollenbach and McKee [1989]). The efficiency of both heating and cooling
generally depends on the composition of the ISM and its density and temperature
(Wolfire et al. [1995]). A simple parametrisation of the temperature change in a
volume element of the ISM would be

dT = nΓ− n2Λ, (1.48)

where Γ is the heating rate, and Λ is the cooling rate, both of which might be
functions of temperature. It is now obvious to see that an equilibrium temperature
will be obtained for

Γ = nΛ. (1.49)

This equilibrium temperature will depend on density and furthermore, since pressure
p = nT will correspond to an equilibrium pressure that will be sensitive to the exact
form of the cooling and heating rates, respectively. This dependency can now be
turned around by assuming that pressure will be set by the surroundings of the
volume element. Thus, for a given pressure there might be more than one viable
pairing of density n and temperature T, that satisfies the equilibrium condition.
This concept is illustrated in figure 1.2 (Wolfire et al. [1995]), where it can be
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seen that starting on a point on the downwards slope of the line of stability, small
perturbations in density are intensified and the system is pushed towards the regions
of upwards slope. There are even more mechanisms that determine the behaviour

Fig. 1.2: (a)Thermal pressure versus hydrogen density. (b)Heating(dashed) and
cooling(solid)rates per nucleus versus hydrogen density. (c)Electron frac-
tion versus hydrogen density. (d)Gas temperature(solid) and ioniza-
tion parameter (dashed) as a function of hydrogen density. Taken from
(Wolfire et al. [1995])

of the ISM, like magnetic fields, that go above the scope of this work and are not
relevant for the numerical simulations described later.

1.4 Molecular Clouds

Looking at the distribution of hydrogen in the Milky Way, one finds that molecular
hydrogen is predominantly clumped together into cloud-like objects, with extensions
of tens to hundreds of parsec and masses ranging from several thousands to millions
of M� (e.g. Table I from (Heyer et al. [2009])). These molecular clouds are the
densest regions in the ISM and have long been associated with star formation. To
get a feeling for whether and how these clouds might collapse under gravitation, we
once more look at the Euler equation, this time in three dimensions:

ρ
∂v

∂t
+ ρ (v ·∇)v = −∇p− ρ∇Φ. (1.50)

Once more we make an Ansatz for small perturbations δρ, δv, and δΦ:

ρ = ρ0 + δρ · exp [i (k · r − ωt)] (1.51)
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v = δv · exp [i (k · r − ωt)] (1.52)

Φ = δΦ · exp [i (k · r − ωt)] . (1.53)

We use the isothermal equation of state

p = c2
sρ. (1.54)

Plugging these into equation 1.50 and omitting terms of order greater than one, we
get

− iωρ0δv = −ikc2
sδρ− ikρ0δΦ. (1.55)

We now multiply both sides with ik to get

ωρ0δv · k = c2
sk

2δρ+ k2ρ0δΦ. (1.56)

Using the Poisson equation we can relate the potential to the density:

δΦ =
4πG

k2
, (1.57)

and arrive at
ωρ0δv · k = c2

sk
2δρ− ρ04πGδρ. (1.58)

Now we have a look at the continuity equation

∂ρ

∂t
= ∇ (ρv) . (1.59)

Using our ansatz this can be derived to be

ω2δρ = ωρ0δv · k. (1.60)

Since the left side of equation 1.56 and the right side of equation 1.60 are equal, this
leads to

ω2 = c2
sk

2 − 4πGρ0. (1.61)

For an exponential growth, the right side of this equation has to be negative, hence
the wavenumber k has to be smaller than

k0 =

(
4πGρ0

c2
s

) 1
2

. (1.62)

The relation k = 2π
λ

gives us a typical length-scale for growing perturbations, the
so-called Jeans length

λJ =

(
πc2

s

Gρ0

) 1
2

, (1.63)

which then allows us to estimate the mass, above which a cloud should be unstable
against gravitational collapse, the Jeans mass

MJ = ρ0λ
3
J =

π
3
2 c3
s

G
3
2ρ

1
2
0

, (1.64)
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which for the dense molecular regions in the ISM is of the order of a few solar masses.
Clouds with a mass exceeding the Jeans mass will collapse on a time scale

τ =
1√

4πGρ0

, (1.65)

which is of the order of some million years for molecular clouds.
This gives rise to a certain problem. Almost all molecular clouds in the Milky Way

Galaxy should be Jeans unstable. With about 109M� of hydrogen in the galaxy,
this should lead to a star formation rate of(

dM∗
dt

)
=
MH2

τ
=

109M�
106yr

= 103M·
yr

. (1.66)

The observed star formation rate in the MilkyWay is only 1−3M�/yr, however. This
begs the question as to why hydrogen seems to collapse slower than it is expected
to (Zuckerman and Evans [1974]). Many ideas have been brought forth to explain
this discrepancy, from turbulence (Krumholz et al. [2006]) to magnetic fields (Shu
et al. [2007]) and the fact that molecular clouds are not actually gravitationally
bound (Dobbs et al. [2011a]). Also, non-linear perturbations lead to cores that are
much more dense and collapse faster than the rest of the cloud, turning a small
percentage of the cloud into stars, the feedback of which potentially disrupts the
cloud (Vázquez-Semadeni et al. [2007]).

1.5 Star Formation & Stellar Feedback

Further investigation of the star forming process is warranted. There are many
micro-physical properties involved, such as turbulence, gravity, and magnetic fields.
Turbulence can both slow down collapse, or facilitate it, depending on its exact
nature in a given system. It is also not clear beyond doubt how turbulence is
driven and sustained over many dissipation timescales. Magnetic fields might hold
the answers to that but investigating them is very complex, both in observations
and simulations. The gravitational behaviour then strongly depends on the density
structure imposed by the turbulence.
Also, the star formation itself is expected to have a strong influence on the star

forming ISM, via feedback processes. First and foremost, stars emit radiation that
strongly heats and ionizes the gas surrounding them. Most stars also eject particle
winds that transfer further energy to the ISM and generate shock fronts. Also,
massive stars only live for short times before exploding in supernova events that
deposit enormous amounts of energy and material back into the galaxy. Stars are
furthermore crucial in creating and enriching the ISM with metals and heavier atoms
that form the basis for the formation of dust particles that are so crucial for its energy
budget. One can easily see that the precise treatment of all this goes far beyond the
scope of this work.
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Indeed, when observing galaxies one can find a large range of different regimes of
star formations. From ellipticals with almost none, over extended galactic disks with
star formation rates of several M� per year, up to star bursts with up to 1000M�
per year. While these regimes surely have individual causes, be it accumulation
in spiral shocks, or funnelling of gas by central bars, or major mergers, there is
nevertheless a strong correlation between star formation and molecular hydrogen.
This is evident in the so-called Kennicutt-Schmidt law of star formation (Kennicutt
[1998], Schmidt [1959]), illustrated in figure 1.3. It states that the surface density

Fig. 1.3: Left side: Star formation density plotted against gas density. Solid points
denote normal spirals, squares denote circumnuclear starbursts, circles
denote inner regions of normal disks. Right side: Same data plotted
against the ratio of the gas density to the orbital time in the disk. (Taken
from (Kennicutt [1998]))

of the star formation rate for any region is determined by its surface density of
molecular hydrogen:

ΣSFR ∝ ΣN
H2. (1.67)

The exponent N can range from 1 to 1.4, depending on the method of measuring
the density that is used (Krumholz and Thompson [2007]). One also finds a tight
correlation between the star formation density and the ratio of the gas density to
the orbital time

ΣSFR ∝
ΣH2

τdyn
, (1.68)

which holds independently from the tracers used to determine star formation rates
or gas densities.
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1.6 Gas Accretion

This relation between the star formation rate and the gas content in a galaxy begets
the assumption that there should also be a link between star formation and the
accretion of new gas into said galaxy. Accretion rates have the disadvantage of
being incredibly hard to measure observationally and even simulations are just now
getting to the point of being able to determine them. To make some first assertions
as to the connection between the two, we look at a very basic model (Bouché et al.
[2010]). Namely we treat the mass of hydrogen as a reservoir that evolves according
to

·
M gas =

·
Macc − α · SFR, (1.69)

where
·
M gas is the time derivative of the gas mass,

·
Macc is the cold gas accretion

rate, and α is a proportionality factor, caused by the fact that a fraction of the gas
that is depleted by star formation is recycled into the galaxy and stellar feedback
leads to a certain amount of outflow of gas from it. To determine the SFR we use
the Kennicutt-Schmidt relation, that can be shown to be of the universal form

SFR =
εSFR
tdyn

Mgas. (1.70)

This implies that a system transforms a certain fraction εSFR of its hydrogen gas
into stars over one dynamical time tdyn. This allows us to write equation 1.69 as

·
M gas =

·
Macc −

αεSFR
tdyn

Mgas. (1.71)

This differential equation can be solved if the time dependence ofMgas is of the form

Mgas(t) =
tdyn

·
Macc

αεSFR
− C · exp

(
1− αεSFR

tdyn
t

)
, (1.72)

where C is an integration constant determined by the initial conditions. Figure 1.4
illustrates the general behaviour of Mgas(t), namely that for large t it approaches a
constant equilibrium value. This equilibrium value is in our specific case determined
to be

Mgas →
tdyn

·
Macc

αεSFR
. (1.73)

In other words, the system reaches an equilibrium state, where
·
M gas is zero and the

star formation rate

SFR =
1

α

·
Macc , (1.74)

is directly set by the accretion rate. Of course, all this is only valid if the accretion
rate doesn’t change over the timescale needed to reach this equilibrium state. Figure
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Fig. 1.4: Illustration of the behaviour of the function (1−exp(1−x)) from equation
1.72.

1.5 shows that this simple toy model can indeed give this expected behaviour if it
is numerically solved for long times, even taking into account accretion rates that
change with redshift.
It should again be noted that this is a very simplistic model. In reality, it seems

highly likely that not only the net accretion rate but also the mode of accretion,
whether it be hot or cold gas, whether the densities of accreted gas are significantly
higher or lower than those of the disk material, should have a considerable impact
(Dekel et al. [2009], Genel et al. [2012]).
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Fig. 1.5: Top panel: Accretion (red dashed) and SFR (solid black) timescales versus
redshift. Bottom panel: SFR (solid black) and maximum accretion rate
(red dashed) against redshift. It can be seen that the SFR reaches a
quasi-steady state, where the SFR follows the accretion rate. Taken from
(Bouché et al. [2010])
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2.1 Hydrodynamic Code GADGET3

For this work we use the cosmological simulation code GADGET3, which is based
on the publicly available version GADGET-2 (Springel [2005]), commonly used for
simulations of Dark Matter structure formation and evolution of galaxies. The
additional implementation of many supplemental features by different groups allows
the study of a variety of different physical systems. The code was written in C and
uses both the MPI and the OpenMP libraries for parallelisation.
GADGET3 uses smoothed particle hydrodynamics(SPH) to solve the equations

of motion for an ideal gas, using a smoothing kernel that uses adaptive smoothing
lengths without giving up conversation of both energy and entropy in the system.
It also introduces an artificial viscosity to better deal with contact discontinuities,
e.g. in shocks, which is traditionally a problem when using SPH-methods. To
calculate gravitational forces, the code employs a monopole expansion in an oct-tree
approach for grouping the particles, in an effort to allow maximum parallelisation
with minimum memory requirements at short distances and switches to Fourier
techniques for evaluating gravity at long ranges.
The parameters and routines used in any one run are set by modifying the Makefile

and a separate parameter file. For initial conditions, the number of particles needs
to be clarified, each one with a mass, initial positions, velocities, and specific internal
energies.

2.2 Additional Physics

2.2.1 Galactic Potential

In order to get the correct form for densities and rotation curves in a computationally
less expensive manner, we omit explicitly treating dark matter, but instead opt to
assign the simulated particles an additional acceleration. We take an acceleration
corresponding to a logarithmic potential

ΦL =
1

2
v2

0ln
(
R2
c +R2 +

z2

z2
q

)
, (2.1)

where v0 and Rc are constants and zq is the axis ratio of the equipotential sur-
faces(Binney and Tremaine [2008]).
We also incorporate a potential for rotating spiral density perturbations, taken

from (Cox and Gómez [2002]).

2.2.2 Cooling

For the cooling we use the simple equation 1.48, where we assume

Γ = 2.0 · 10−26(ergs/s) (2.2)
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to be constant, and Λ(T ) is calculated to be

Λ(T ) = Γ · (f1 + f2) cm3, (2.3)

where
f1 = 1.0 · 107 · exp

(
−1.184 · 105

T + 1000.0

)
, (2.4)

and
f2 = 1.4 · 10−2

√
T exp

(
−92.0

T

)
. (2.5)

This is taken from (Vázquez-Semadeni et al. [2007]). The thermal pressure is il-
lustrated in figure 2.1. Comparison to figure 1.2 shows that this cooling procedure
should yield a stable two phase medium.

Fig. 2.1: Thermal equilibrium pressure versus density for the heating and cooling
prescription used throughout this work. Taken from (Vázquez-Semadeni
et al. [2007]). The vertical line denotes the initial density (Vázquez-
Semadeni et al. [2007]) used in their work.

The numerical implementation goes as follows. Each timestep we loop over all
active particles. For each particle, we determine the internal thermal energy u,
density ρ, and its assigned timestep dt. We calculate the temperature corresponding
to the thermal energy and use these values to determine the change in energy due
to cooling by radiation, durad, to be

durad = Λ(T )
n2

ρ
dt, (2.6)
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where n is the particle density, assuming a molecular weight for the gas

µ = 1.27mp, (2.7)

mp donating the proton mass, and Λ(T ) according to equation 2.3 We refine this
cooling by setting a limit on what fraction of the initial thermal energy can be
radiated at once at constant cooling rate. Should the change exceed this limit,
the thermal energy is reduced by this fraction and the time needed for that is
determined. Then a new cooling rate is calculated for this lowered temperature and
the amount of energy radiated away in the remainder of the timestep is determined.
This refinement is repeated as necessary, until the end of the timestep is reached.
After that we add to the internal thermal energy a value due to heating, that is

calculated to be
duheat = Γdt, (2.8)

with Γ taken from equation 2.2.

2.2.3 Star formation and stellar feedback

The basis for our star formation and stellar feedback implementation is taken from
(Dobbs et al. [2011b]). To determine star forming events in this model, we first loop
through all particles, checking whether their SPH density is over a certain threshold.
For each of these particles, we then consider a sphere with pre-set radius around it
and find all SPH particles therein. We use this information to calculate the centre
of mass and the total number of particles and mass inside that sphere. For star
formation, we assume that a certain fraction of the mass involved turns into stars.
We then use this mass to calculate the amount of energy put into the remaining gas
via supernova feedback, using

ESN =
εMH2

160
1051ergs, (2.9)

where ε is the fraction of hydrogen mass turned into stars and we assume that
one supernova event will happen for each 160 solar masses of stars formed, each
supernova contributing 1051ergs of energy to the feedback. We consider both kinetic
and thermal feedback. For the kinetic feedback we add to the present velocity a value
corresponding to the total energy of all super novae distributed across the ambient
medium and scaled to the distance of the particle to the centre of the event. For
the thermal feedback, we calculate the temperature of the ambient medium and set
the internal energy of affected particles to the corresponding value.
We modified the model by introducing a subroutine that turns gas particles into

star particles, in order to decrease the total gas mass in the disk, according to
equation 1.69. To do this we determine the number of particles participating in a
star forming event in addition to their total mass. We then select the fraction ε of
these particles at random, so that we remove the right amount of gas mass, where we
exclude the central particle, and set their mass to zero, so that GADGET can then
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at a later point remove these particles from the simulation in a numerically correct
way. Also, setting the mass to zero removes the particles from the SPH-calculations,
so they no longer impact the physics of the system in any way. Finally we transform
the central particle into a star particle, with a mass equal to the cumulative mass
of all particles removed that way.

2.2.4 Injection of new gas particles

To simulate the accretion of new gas, we utilise a very crude routine that can easily
be modified and extended should one be interested in a more physical approach
of handling accretion. First we set an arbitrary accretion rate. Then we calculate
every timestep, how many particles should have been created with this particular
rate. This number is determined using non-integer values, since for small timesteps,
a low number of particles, or low accretion rates, less than one particle would be
created per timestep. The values are then summed up over time.
Once we reach a value bigger than one, we start the injection routine, decreasing

the value of accreted particles by one in each iteration. The first step of the routine
is determining a position for the new particle. This is done in one of two ways: either
we pick a distance to the rotation axis at random, distributed exponentially with
a scale radius of 4kpc, where we forbid injection in the innermost 2kpc in order to
prevent the majority of new particles to be created in the region of highest density.
Alternatively we choose the radius to be uniformly between nine and ten kpc. We
set the distance to the equatorial plane to be exponentially distributed, with a scale
height of 200pc, again forbidding the innermost 50pc. Next we search the nearest
particle to that position in order to know on which process to inject the new particle.
To insert a new particle into a running simulation is a non-trivial task. To im-

plement it, we raise the variables denoting SPH-particle number and total particle
number by one, thus gaining acces to memory space in the particle sequence that
GADGET has already allocated to this task to be able to manage fluctuations in
particle number due to fluctuating distribution of particles between individual pro-
cesses. This allows us to copy the particle data structure of the first non-SPH
particle, which is at this point stored in a slot reserved for SPH particles due to
the increase in numbers, to the newly created and therefore vacant position in the
particle sequence. If the simulation does not have non-SPH particles, this peculiar
step will simply do nothing. Now we can copy the data structure of the determined
closest particle into the memory slot of the formerly first non-SPH particles that
will subsequently be treated as the last SPH particle in the sequence. Of course we
also change the position variables to the position of the new particle and give it a
new and unique identification number in order to later be able to trace the particles
injected by this routine. So far this routine only works for setups that only allow
one type of non-SPH particle, like the ones presented later in this work. If one was
interested in running more elaborate simulations, one would have to modify the code
appropriately.
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3.1 Numerical Tests

Before doing the high resolution simulations to test the hypotheses above, we per-
formed a series of low resolution runs in which we tested the individual parts of our
code. Each run was performed with an initial number of 100000 particles, which
could increase or decrease with time due to accretion and star formation, respec-
tively. For all following simulations we used a set of arbitrarily chosen code units
to make sure that the floating point operations are done with numbers that are not
exorbitantly large nor small. These units can be found in table 3.1, all other units
are then derived from these.

Tab. 3.1: Code Units
unit_length_in_cm 100pc
unit_mass_in_g 105M�

unit_velocity_in_cm_per_s 2.0747559 · 105 cm
s

3.1.1 Setup

To set up the initial conditions, we distributed the particles uniformly over a cylin-
drical disk with radius 10kpc and height 400pc. The density profiles described in
chapter 1.1 will evolve naturally over time, given the methods shown in chapter
2.2.1. We set an initial uniform density for the gas that gives us a total mass of
2.5 · 109M�. For an initial velocity, we take the circular velocity corresponding to
the logarithmic part of the potential of equation 2.1, and superimpose a Gaussian
random distribution with width 5km/s. As a starting temperature for the particles
we choose 700K, which has shown to be irrelevant after letting the system evolve
for several Myr. This is due to the fact that for the initial density, the cooling or
heating time scales are so short that the gas takes on the equilibrium temperature
before the initial temperature has a chance to affect the uniformity. For the cooling,
we also generally us a minimum temperature floor of 500K. We set the number of
SPH-neighbours inside one smoothing length to be 40.
We made overall three test runs, one for cooling, one for star formation, and one

for accretion, respectively. The exact physical processes used in each one are listed in
table 3.2. For testing the accretion routine, we set the accretion rate to be 5M�/yr

Tab. 3.2: Processes used in Test Simulations
Simulation Cooling Star Formation Accretion

Cooling yes yes yes
Self-Gravity no yes no

Star Formation no yes no
Accretion no no yes
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and used the version that creates particles at exponentially distributed radii.

3.1.2 Cooling

Figure 3.1 shows the surface density for the run with only cooling at times 50Myr,
100Myr, 150Myr, and 200Myr. It shows very nicely how dense gas is gathered
in the spiral arms over time. Figure 3.2 shows the fractions of gas in the different

Fig. 3.1: Column densities in the disk for the test simulation including only cooling
after (top left) 50Myr, (top right) 100Myr, (lower left) 150Myr, and
(lower right) 200Myr.

phases developing over time. Even without self-gravity of the particles, a significant
amount of the gas gets cooled down to temperatures for which star formation would
be possible. Gravity is even expected to increase this effect. We designate gas with
a temperature below 1000K as cold, gas with a temperature above 8000K as hot,
and gas with intermediate temperatures as warm. Figure 3.3 shows the Toomre Q
parameter for different regions of the disk after 200Myr. It once more details that
the material inside the spiral arms is in a state that allows gravitational collapse to
be amplified.

3.1.3 Star Formation

Figure 3.4 shows the surface density for the star forming simulation at times 50Myr,
100Myr, 150Myr, and 200Myr. The stellar feedback disrupts the spiral arms and
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Fig. 3.2: The fractions of hot (red), warm (green, and cold(blue) gas in the ISM
versus time for the test simulation including star formation.)

leads to a much more turbulent density distribution. Figure 3.5 shows the star
formation rate density over time. It can be seen that the gas takes some time to
cool down and get dense enough to form stars. The follows a rise in star formation
before feedback can disrupt the cooling process enough to see a small drop and then
there is an equilibrium state where the SFR is roughly constant. These values are
comparable to those found in (Dobbs et al. [2011b]). Figure 3.6 shows the fractions
of gas in the different phases developing over time. Again this figure shows us
how the fraction of cold gas slowly builds up over time until star formation sets in.
Afterwards the ISM reaches an equilibrium between cooling and heating by stellar
feedback. Figure 3.7 shows the velocity dispersion in z-direction against time. We
again see values comparable to those from (Dobbs et al. [2011b]). Also, the onset
of star formation clearly drives turbulence, which we would expect from 3.1. Figure
3.8 shows the Toomre Q parameter for different regions of the disk after 200Myr.
We see clearly once more how the spiral arms are broken up by feedback and also
that there are now regions with Q < 1 in between the spiral arms. These are
compact objects that are blown out of the spiral by stellar feedback and can survive
surrounded by the hot medium for quite some time.

3.1.4 Accretion

Figure 3.9 shows the surface density for the star forming simulation at times 50Myr,
100Myr, 150Myr, and 200Myr. The most significant difference to the other runs



30 3. Simulations

Fig. 3.3: Toomre stability parameter for the test simulation including only cooling.
Blue colours denote regions with Q < 1, red colours denote areas with
Q > 1.

is the formation of a ring-like structure. This is a consequence of the exponentially
distributed radii of our injected particles, which leads to the majority of new gas
being created at R ∼ 2kpc. Figure 3.10 shows the fractions of gas in the different
phases developing over time. The increase in cold gas, compared to the run with
only cooling, is easily explained by the increase in density due to the higher number
of particles. Higher density means more efficient cooling, which naturally leads to
more cold gas. Figure 3.11 shows the velocity dispersion in z-direction against time.
The velocity dispersion is what we would expect for a calculation without stellar
feedback, compared to the first 50Myr of figure 3.7. This means that the newly
injected gas does not disturb the dynamics of the disk in any meaningful way, but
should be well incorporated into it. Figure 3.12 shows the Toomre Q parameter for
different regions of the disk after 200Myr. It looks very much like figure 3.3, except
for a region of marginal instability where we inject the majority of our particles.
Figure 3.13 shows the number of SPH-particles in our simulation over time. It is
fairly obvious that the number increases in a linear fashion. The slope of the line is
5M�/year, the predefined value. We can be certain that our routine will create the
exact right amount of particles that we want.
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Fig. 3.4: Column densities in the disk for the test simulation including star forma-
tion after (top left) 50Myr, (top right) 100Myr, (lower left) 150Myr, and
(lower right) 200Myr.

3.2 Star Formation & Gas Accretion

3.2.1 Setup

To test the assumptions gleaned from chapter 1.6, we set up a high resolution sim-
ulation in which we make use of all our routines described in chapter 2. We started
with eight million particles, set up as in chapter 3.1.1, except that we gave them
an initial temperature of 5000K, and we left an empty space in the center of the
disk with a radius of 2kpc. The initial temperature should not make any difference,
as detailed earlier. We chose to keep the central parts of the disk empty to save
computational resources and are not particularly interested in these regions, since
most star formation happens in the spiral arms that don’t reach that far inward.
And although we assume particles to travel into the centre, according to (Krumholz
and Burkert [2010]), we have found that for the calculated time intervals, this effect
only plays a minor role. It should be noted here that we face a resolution problem,
since according to (Bate and Burkert [1997]) we would need many more particles
to resolve the Jeans mass at our threshold density of 1000/cm3 at our minimum
temperature of 500K, but this resolution we have is the best we can do with the
given computational resources, and we are better resolved than most studies that
came before this work.
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Fig. 3.5: Star formation rate density against time for the test simulation including
star formation.

Fig. 3.6: The fractions of hot (red), warm (green, and cold(blue) gas in the ISM
versus time for the test simulation including star formation.)
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Fig. 3.7: Velocity dispersion in z-direction against time for the test simulation in-
cluding star formation.

We executed this simulation in the following way. We evolved the highly resolved
disk for 300Myr, without gas accretion up to this point. After that we had to reduce
the resolution even further due to time concerns. For that we took the final snapshot
of the preceding simulations and selected 50% of the SPH-particles at random and
multiplied their mass by a factor of two. We repeated this step a second time for a
total particle number of approximately two million. We then took these new initial
conditions and had two simulations running, one with each of our accretion schemes
with an accretion rate of 20M�/yr. We let these systems evolve for 100Myr then
we chose to continue with the EDGE-scheme, mostly because it is somewhat less
computationally expensive. We started three more simulations, based on the end
state of the previous one, and tried three different accretion rates. First we took an
accretion rate that was equal to the star formation rate of that particular snapshot
chosen as a new initial setup, in this case this means

·
Macc = 0.8M�/yr. For the

second run we took an accretion rate that was two times as high, 1.6M�/yr, and for
the last one we turned off accretion all together. We then let these systems evolve
for 50Myr to see whether there would be any difference.

3.2.2 Results

Figure 3.14 shows the column density of the setup-run with eight million particles
at the beginning, after 100Myr, after 200Myr, and after 300Myr. It shows the
highly turbulent structure of the ISM, with many transient features between the
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Fig. 3.8: Toomre stability parameter for the test simulation including star forma-
tion. Blue colours denote regions with Q < 1, red colours denote areas
with Q > 1.

spiral arms. Figure 3.15 shows how the star formation rate evolves over time for
this first run. It is comparable to 3.5, in that it shows an initial peak and then
seems to reach somewhat of an equilibrium after 100Myr. The differences to 3.5
are due to the much higher resolution. Figure 3.16 then shows the star formation
rates for the two runs with accretion over time. It can be clearly seen that the
SFR rises linearly in time, as one would expect, since the total mass of the system
also increases linearly. This shows nicely how the fresh supply of gas forces the
SFR to rise and accommodate to the accretion rate, although we were not able
to run the simulation long enough for a steady state to develop due to the time
restraints given for this work. Also, there is no difference between the two accretion
schemes concerning star formation, consistent with our somewhat simplistic model
from chapter 1.6. The SFR rises very slowly, so it would take much more time
than is reasonable for us to wait until an equilibrium might be reached. Figure 3.17
shows the column densities for the final states of the two high-accretion runs. The
most notable feature is the ring of high density gas at the edge of the disk in the
EDGE-accretion scheme. This is not unexpected, since we inject a lot of particles
in this region, which take some time to be distributed over the disk, longer than the
time for them needed to cool and collapse. This might skewer our results, but the
fact that the exponentially distributed accretion scheme shows the same behaviour
in the SFR gives us confidence that this would only have a minor influence. Figure
3.18 shows the column densities for our three comparison simulations after each
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Fig. 3.9: Column densities in the disk for the test simulation including gas accretion
after (top left) 50Myr, (top right) 100Myr, (lower left) 150Myr, and
(lower right) 200Myr.

has evolved for some time The first thing that leaps to the eye is the fact that the
outer ring seems to be breaking up now that it is no longer continuously fed at the
high rate that built it up. This is consistent with chapter 1.2, where perturbations
can freely grow. The rest of the disk is largely unaffected and does not show any
signs of peculiar evolution. Figure 3.19 shows the star formation rates for our three
simulations against time. No difference can be discerned between the three lines.
On first glance one might assume that this is contradictory to what we said in
chapter 1.6, where we claimed that the SFR will be determined by the accretion
rate. However, one should not forget that it takes time to reach this quasi-steady
state, a time comparable to tdyn/(αεSFR). If we assume the dynamical time to be
of the order of the depletion time Mgas/SFR ∼ 1Gyr, α to be unity and the star
formation efficiency εSFR ∼ 10%, we would have to wait several Gyr for equilibrium
to set in. This is consistent with the findings of (Bouché et al. [2010]), who had their
systems evolve from a redshift of z = 9 forward. It is also clearly visible in figure
3.16, where it takes about 50Myr before a significant rise in SFR can be seen, the
same amount of time the simulations in figure 3.19 actually ran.
This would mean that the disk is still trying to accommodate to an accretion rate

of 20M�/yr for the durations that we simulated. Our assumption is enforced by
figure 3.20, where we plotted our expectation for the behaviour of the SFR according
to chapter 1.6, for an accretion rate of 20M�/yr. We estimate the dynamical time
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Fig. 3.10: The fractions of hot (red), warm (green), and cold(blue) gas in the ISM
versus time for the test simulation including gas accretion.

Fig. 3.11: Velocity dispersion in z-direction against time for the test simulation
including gas accretion.
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Fig. 3.12: Toomre stability parameter for the test simulation including star forma-
tion. Blue colours denote regions with Q < 1, red colours denote areas
with Q > 1.

to be 1250Myr and set the line so we would get an SFR of 0.25M�/yr at the time
60Myr. This gives us the function

SFR(t) = 20
M�
yr
−

19.75M�
yr

e
· e1− t−60

1250 . (3.1)

Figure 3.20 shows nicely that even the runs with significantly lower accretion rates
still follow the line given by an accretion rate of 20M�/yr. Looking at figure 3.19,
one might think that the SFRs for the low accretion and no accretion runs are about
to drop or at least rise slower than the SFR of the high accretion run. Unfortunately
this could not be further determined within the timeframe of this work.
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Fig. 3.13: Number of SPH-particles against time for the test simulation including
gas accretion.

Fig. 3.14: Column density for the high resolution setup run after (upper left) 0Myr,
(upper right) 100Myr, (lower left) 200Myr, (lower right) 300Myr.
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Fig. 3.15: Star formation rate versus time for the high resolution setup run.

Fig. 3.16: Star formation rates for the runs with high accretion rate and (red)
exponential radial distributions, or (green) injection at the edge of the
disk.
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Fig. 3.17: Column densitis for the runs with injection at the edge of the disk (left),
and injection with an exponential radial destribution (right).

Fig. 3.18: Column densities for the simulations without any accretion(left), with
accretion rate 0.8M�/yr (middle), and with accretion rate 1.6M�/yr
(right).
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Fig. 3.19: Star formation rates for the simulations without accretion (red), with ac-
cretion rate 0.8M�/yr (green), and with accretion rate 1.6M�/yr (blue).

Fig. 3.20: SFRs for the simulations (coloured points) and the analytic model of
equation 3.1 (solid line).





Summary and Conclusion

In this work we presented numerical implementations into the SPH-code GADGET3,
that allows the study of the interaction between gas accretion and star formation.
We have performed tests of a prescription for radiative processes in the interstellar
medium that allow a two-phase medium to develop even in the absence of self-gravity.
We introduced a self-consistent model of star formation and stellar feedback that
further regulates the gas dynamics of a star forming system and takes into account
the consumption of gas during star formation. Lastly we developed a routine that
is capable of introducing new SPH-particles into an already running simulation in
a numerically stable way. This routine is highly flexible and can easily be adapted
to study many different accretion regimes, many more than we were able to present
in this work. Our aim was to study a system that is self-regulated, where the star
formation rate closely follows the accretion rate of cold gas, as one would expect
from simple theoretical models. Our initial tests point in the right direction expected
from theory, but unfortunately time limits forced us to expand this work to a scope
that would allow an even more detailed treatment of the systems we were interested
in. Furthermore, the high resolution run described in chapter 3.2.1 holds a wealth
of information on the dynamics of a star forming gaseous disk that is only waiting
to be closely investigated. In closing, we would like to point out once more that this
work can be seen as preliminary work that opens up a new and interesting field of
research that can now be studied with heretofore not possible detail. There is still
a lot of work to be done until a satisfactory understanding of the link between star
formation and accretion of cosmic gas is reached.
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