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Abstract
In this Master’s thesis we introduce a sub-grid model for the SPH code OpenGadget3, which
describes supernova remnants as cosmic ray sources. After some initial explanations of the main
features of the cosmic ray energy spectrum, arguments are presented showing that supernova
remnants are by far the most important source of Galactic cosmic rays. The particles are
accelerated by the shock wave of the ejected material. The underlying physical mechanism is
the so-called diffusive shock acceleration, which is briefly presented in a separate chapter. In
particular, from simple basic assumptions it is shown that the resulting particle spectrum in
momentum space is a power-law.

Based on that, in the main part of this work we describe how the particle spectrum can be
calculated, which is finally released into the interstellar medium by supernova remnants. The
model includes descriptions for the time evolution of shock radius and velocity, particle escape,
amplification of the self-generated magnetic field, and energy losses from adiabatic expansion as
well as from synchrotron radiation and inverse Compton scattering. The resulting spectra for
protons and electrons largely follow a power-law and consist of two components. These include
high-energy particles escaping at the shock front and less energetic ones, which suffer from
energy losses inside the supernova remnant before being released.

In addition to the theoretical part of this work, we briefly discuss the numerical implementation
in OpenGadget3 in the last two chapters and also go into the existing modules for star formation
and cosmic rays. Finally, we show graphically visualized results of the simulation of a spiral
galaxy, which, among other things, illustrates the injection of cosmic rays by supernova remnants.





Zusammenfassung
In dieser Masterarbeit führen wir ein Subgitter-Modell für den SPH-Code OpenGadget3 ein,
welches Supernovaüberreste als Quellen von kosmischer Strahlung beschreibt. Nach einigen
anfänglichen Erläuterungen zu den wichtigsten Eigenschaften des Energiespektrums der kos-
mischen Strahlung werden Argumente vorgestellt, die zeigen, dass Supernovaüberreste die mit
Abstand wichtigste Quelle von galaktischer kosmischer Strahlung sind. Die Teilchen werden
dabei an der Stoßwelle des ausgeworfenen Materials beschleunigt. Der zu Grunde liegende
physikalische Mechanismus ist die sogenannte diffusive Stoßbeschleunigung, welche in einem
eigenen Kapitel kurz vorgestellt wird. Insbesondere wird mit einfachen Grundannahmen gezeigt,
dass das resultiernde Teilchenspektrum im Impulsraum ein Potenzgesetz ist.

Davon ausgehend, beschreiben wir im Hauptteil dieser Arbeit, wie das Teilchenspektrum
berechnet werden kann, welches von Supernovaüberresten letztendlich in das interstellare Medium
freigesetzt wird. Das Modell beinhaltet Beschreibungen für die zeitlichen Entwicklung des
Stoßwellenradius und der -geschwindigkeit, das Entkommen von Teilchen, die Verstärkung des
selbsterzeugten Magnetfeldes und Energieverluste durch adiabatische Ausdehnung sowie durch
Synchrotronstrahlung und inverse Compton-Streuung. Die resultierenden Spektren für Protonen
und Elektronen folgen weitgehend einem Potenzgesetz und setzen sich aus zwei Komponenten
zusammen. Dazu gehören hochenergetische Teilchen, die an der Stoßfront entweichen und
weniger energiereiche, die im Inneren des Supernovaüberrests Energieverluste erleiden, bevor sie
freigesetzt werden.

Neben dem theoretischen Teil dieser Arbeit diskutieren wir in den letzten beiden Kapiteln noch
kurz die numerische Implementierung in OpenGadget3 und gehen dabei auch auf die bereits
vorhandenen Module für Sternentstehung und kosmische Strahlung ein. Zum Abschluss zeigen
wir grafisch visualisierte Ergebnisse der Simulation einer Spiralgalaxie, welche unter anderem
die Injektion von kosmischer Strahlung durch Supernovaüberreste veranschaulicht.





1 Introduction
Cosmic rays (CRs) are highly energetic, non-thermal particles that are part of the thin medium
between stars in a galaxy and galaxies within a cluster. The study of their origin, propagation and
interaction with other components of the interstellar medium (ISM) forms one of the most active
branches of contemporary research that is referred to as “high-energy astrophysics”. Since the
discovery of cosmic rays by the Austrian physicist and Nobel laureate Victor Franz Hess more
than a century ago (see Hess, 1912), who referred to them as “durchdringende Strahlung”, the
combined efforts of theorists and experimentalist from different fields, like particle, plasma and
astrophysics, have greatly expanded our knowledge of these high-energy particles. Yet, there are
still many open questions concerning the composition, origin and propagation of cosmic rays.
They will be addressed by future observational campaigns and more detailed simulations, which
become possible due to the increasing power of computers.

One could ask the question if cosmic ray physics is not just a sub-branch of particle physics or
if astrophysicists should care about this at all. Therefore, we will briefly motivate the relevance
of cosmic rays in the theoretical framework of modern astrophysics by following the arguments
in Draine (2011). Firstly, it is interesting to observe that the energy densities of various quantities
in the local interstellar medium – like the magnetic flux density, far-infrared radiation from dust,
starlight, thermal kinetic energy, turbulent kinetic energy and cosmic rays – are all comparable in
magnitude and lie within the range from 0.2 MeV m−3 to 2 MeV m−3 (see Draine, 2011, tab. 1.5).
This near-equipartition is only partly coincidental (e.g. the cosmic microwave background
radiation has an energy density that lies within the above range) and illustrates that there must
exist a number of feedback processes that couple the energy densities of different ISM components.
For example, magnetic field amplification through turbulent motions of plasma might explain
the similarity between magnetic and turbulent energy density. One can also argue that if the
starlight energy density was much larger than the gas pressure, the radiation pressure acting on
dust grains could remove gas from the galactic plane, which would regulated star formation.
Similarly, if the cosmic ray energy density significantly exceeded that of the magnetic field, they
could not be confined and would escape the galaxy more rapidly, which would lead to a decline
in 𝑢CR. Moreover, cosmic rays contribute to the heating of gaseous and molecular clouds and
they can penetrate deep into the dust cocoons surrounding proto-stars (dark clouds), which are
optically very thick to almost all kinds of electromagnetic radiation (especially UV). Therefore,
cosmic rays are the only source of ionising radiation (and heating) inside dense molecular clouds
and influence chemical reaction chains (e.g. the formation of OH and H2O, which require the
ionization product H+

3 as a starting point). Even more important than their influence on ISM
microphysics is the potential for CRs to launch galactic winds – an important feedback mechanism
for regulating star formation efficiency – via momentum and heat transfer to the interstellar
medium. The attractiveness of CRs as cause for these winds lies in the long cooling time scale
(compared to the thermal gas) and the strong coupling to the ISM (via interactions with plasma
waves and inelastic collisions with the gas), as discussed in the recent review Ruszkowski and
Pfrommer (2023).

Cosmic rays are not only a key component of the interstellar medium, but they also cause
radio synchrotron emission at much larger scales in the intracluster medium (ICM) of galaxy
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clusters (e.g. van Weeren et al., 2019). This radiation provides a direct observational proof
that large-scale magnetic fields and a population of relativistic electrons, that loose energy via
synchrotron radiation, exist within the ICM. These diffuse, non-thermal radio sources are divided
into three groups, namely (1) radio halos with linear sizes of ∼ 1 Mpc, whose morphology
follows the gas distribution in the ICM, (2) radio relics (or cluster radio shocks), which are giant
diffuse synchrotron sources powered by merger shocks during the hierarchical structure formation
(mostly in cluster outskirts) and (3) sources of revived fossil plasma from active galactic nuclei
(AGN), i.e. re-accelerated electrons from a supra-thermal, non-radiative seed population in the
ICM, which are characterized by their ultra-steep radio spectra (due to losses) and often irregular
morphologies.

Last but not least, there is another good reason why studying cosmic rays is a worthwhile
endeavour: they are witnesses of the most extreme acceleration processes in the universe and
can help deciphering the nature of those accelerators. Especially in the case of UHECRs there
is still no comprehensive model (not to mention an observationally confirmed source) that can
explain how it is possible that some natural processes can accelerate particles to energies three
orders of magnitude above what can be reached at the largest man-made particle accelerator, the
Large Hadron Collider (LHC) at CERN. Admittedly, jets arising from accretion disks around
massive black holes are the favoured and most plausible model today, but there remain still many
unsolved details. Even the origin of galactic cosmic rays, which seemed to be a closed case
for many years thanks to the (much better understood) supernova paradigm, has given rise to
a number of review articles in the last decade that pointed out the difficulties of this standard
paradigm. We will touch upon this issue in section 1.4.

Hopefully, the outline above has convinced the reader that cosmic ray physics is an important
cornerstone in tackling research questions on ISM dynamics, galaxy evolution and compact
objects.

1.1 Comment on units and notation
Throughout this thesis it is attempted to use a coherent notation for various physical quantities that
closely follows conventions in the contemporary scientific literature. In cases where one symbol
is used for different quantities, subscripts are employed to avoid confusion. Some clarifications,
a list of abbreviations and additional background information have been moved to the appendix.

One thing that might be awkward and lead to some confusion concerns the classification of
supernovae. Roughly speaking, in this thesis we just distinguish between thermonuclear (Ia)
and core-collapse (II, Ib, . . . ) supernovae, because the former expand in a uniform ambient
medium, whereas the latter expand in the progenitor star’s wind. However, the classification
of supernovae is not based on the explosion mechanism, but on the detected spectrum. As a
consequence, core-collapse supernovae encompass multiple spectral types, namely II, IIb, Ib,
Ic, but all thermonuclear supernovae are of type Ia. Nevertheless, in the scientific literature the
two main types of supernovae are sometimes distinguished by calling one type Ia (correct) and
the other one type II (not correct, because there is a degeneracy). If in the later chapters of this
thesis a distinction between type Ia and type II supernovae is made, then this actually refers to
the explosion mechanism and not to the spectral type!

Another misunderstanding may arise from the imprecise usage of the term “supernova energy”.
The quantity of interest in this thesis is the kinetic energy of the ejected material, which is
typically assumed to be 1044 J. The energy that goes into electromagnetic radiation is of the same
order of magnitude and mainly caused by the decay of freshly synthesized radionuclides, which
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powers the tail of the light curve. For core-collapse supernovae the most important decay chain
is 56Ni(𝑒+𝜈𝑒) 56Co(𝑒+𝜈𝑒) 56Fe, where the released positrons rapidly annihilate with surrounding
electrons and produce 𝛾-rays. However, in the case of a core-collapse supernova most of the
stellar core’s binding energy goes into neutrinos, namely 1046 J. Although we are solely interested
in the kinetic energy of the ejecta, one should keep in mind that this is only ∼1% of the neutrino
energy!

Throughout this thesis SI units (Système international d’unités) are used. This is not only
in accordance with virtually all other fields of physics and engineering, but also with the
recommendations of the International Astronomical Union (IAU). Without any further comment
I quote from chapter 5 of the IAU style manual1:

“The international system (SI) of units, prefixes, and symbols should be used for all
physical quantities except that certain special units, which are specified later, may
be used in astronomy, without risk of confusion or ambiguity, in order to provide
a better representation of the phenomena concerned. SI units are now used to a
varying extent in all countries and disciplines, and this system is taught in almost all
schools, colleges and universities. The units of the centimetre-gram-second (CGS)
system and other non-SI units, which will be unfamiliar to most young scientists,
should not be used even though they may be considered to have some advantages
over SI units by some astronomers.”

Equations containing electromagnetic quantities and whose appearance therefore depends on the
choice of units can be translated into the outdated CGS system by using the following simple
replacement rules for the electric charge 𝑞 and the magnetic flux density 𝐵:

𝑞CGS =
𝑞SI√
4𝜋𝜀0

, 𝐵CGS =

√︄
4𝜋
𝜇0
𝐵SI , 𝜀0𝜇0 =

1
𝑐2

SI
.

Note that in the SI system there appear two natural constants, namely the vacuum electric
permittivity 𝜀0 and the vacuum magnetic permeability 𝜇0. Together, they are not independent,
because one can always be expressed through the other by including the speed of light or other
natural constants, as shown below. The Committee on Data of the International Science Council
(CODATA) recommends the following values (cf. Tiesinga et al., 2021):

𝜀0 = 8.854 187 812 8(13) · 10−12 F m−1 , (1.1)

𝜇0 =
4π𝛼ℏ
𝑒2𝑐

= 1.256 637 062 12(19) · 10−6 N A−2 . (1.2)

The last two digits in braces contain a measurement uncertainty. As usual, 𝑐 is the speed of light
in vacuum, 𝑒 is the elementary charge, ℏ is the reduced Planck constant and 𝛼 is the fine-structure
constant.

1.2 Overview over cosmic ray physics
The name “cosmic rays” is of purely historical origin, since after its discovery at the beginning of
the 20th century it was believed that the ionizing radiation coming from outer space consists of
high-energy photons (like X-rays or 𝛾-rays). However, cosmic rays are particle radiation that

1see https://www.iau.org/static/publications/stylemanual1989.pdf

https://www.iau.org/static/publications/stylemanual1989.pdf
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Figure 1.1: Collection of state-of-the-art measurement data from different experimental groups (for detailed
references see Evoli, 2020). Note that the all-particle CR spectrum is an almost featureless power-law over several
decades in energy! One also sees that the most energetic cosmic rays are beyond the capacities of the world’s
largest particle accelerator, the Large Hadron Collider (LHC). Note that the plot does not show the usually quoted
centre-of-mass energy √

𝑠pp = 14 TeV, but the corresponding proton energy 𝐸p ≈ 1.0 · 108 GeV in the fixed-target
frame.

primarily consists of atomic nuclei (99%) and a small number of energetic electrons (only 1%).
The vast majority of nuclei are protons (90%) and 𝛼-particles (9%); the rest (1%) are heavier
elements up to uranium. Note that even though electrons and protons are equally abundant in the
universe, the CR electron-to-proton ratio is only ∼10−2. Indeed, if one assumes that both species
have the same abundance and spectral slope, an elementary (though non-trivial) analysis leads to
the conclusion that the spectra’s normalization depends on the electron-to-proton mass ratio at
relativistic particle energies (for a complete derivation see Schlickeiser, 2002, chap. 19.4).

A compilation of state-of-the-art measurements of the all-particle cosmic ray spectrum from
various space- and ground-based experiments is shown in figure 1.1. One can see immediately,
why the CR spectrum is sometimes called the “best power-law in nature”. If intensity is plotted
against particle energy in a simple log-log diagram, one would see an almost featureless power-law
(a simple straight line) ranging over ten(!) decades in energy from ∼10 GeV to ∼1011 GeV. In
order to flatten certain parts of the spectrum and make small features better visible, the intensity
is usually multiplied by some power of the energy (like 𝐸2, 𝐸2.3, 𝐸3). In particular, the spectral
energy distribution 𝜈𝐹𝜈 is related to the differential energy flux via

𝜈𝐹𝜈 ∝ 𝐸2 d𝑁
d𝐸

, (1.3)
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where 𝑁 (𝐸) is the number of CRs with energies above 𝐸 , which is often suggestively written
as 𝑁 (>𝐸). The two main features arising from the spectrum are referred to as “knee” and
“ankle” after an anatomic analogy. If we write the differential cosmic ray energy spectrum,
which is proportional to the intensity, as d𝑁 (>𝐸)/d𝐸 ∝ 𝐸−𝑞, this can be quantified as follows:
the knee marks a steepening of the spectral index from 𝑞 ≈ 2.7 to 𝑞 ≈ 3.1 at an energy
of 𝐸knee ≈ 3 · 106 GeV = 3 PeV, whereas the ankle is a flattening back to 𝑞 ≈ 2.7 at
𝐸ankle ≈ 5 · 109 GeV (e.g. Thoudam et al., 2016). Cosmic rays with energies larger than
109 GeV = 1 EeV, which is ten times more than what can be achieved with the world’s largest
particle accelerator LHC, are often referred to as ultra-high-energy cosmic rays (UHECRs)
and believed to be of extragalactic origin. Before we discuss these features and their physical
interpretation, a few comments on the lower and upper bound of the CR energy are in order.

An elementary particle is referred to as being relativistic when its kinetic energy exceeds its
rest mass energy equivalent. Since protons and electrons have rest masses of 938.3 MeV/c2 and
0.511 MeV/c2, both of them would be considered relativistic if their kinetic energy exceeded
1 GeV. However, when the cosmic ray spectrum is measured, the energy range below a few GeV
not accessible due to the strong influence of the Sun. On the one hand, a small fraction of cosmic
rays directly comes from the Sun, where they are created in violent events in the solar atmosphere,
like flares and magnetic reconnection. Consequently, the intensity of those particles follows the
rapid variations in solar activity. On the other hand, the majority of cosmic rays is of galactic or
extragalactic origin and anti-correlated to solar activity, because cosmic rays from outside the
solar system with low energies are effectively shielded from the solar neighbourhood when the
solar wind is strong. Therefore, the only way to measure those low-energy cosmic rays is to place
a space satellite outside the heliosphere (so far, only the two Voyager probes have reached such
a large distance from Earth). Although the investigation of low-energy non-solar cosmic rays
suffers from severe practical limitations, they are by no means unimportant for the interstellar
medium. Since the CR spectrum rapidly declines with increasing energy (typically as ∼𝐸−2),
most of the heating and ionisation is provided by CRs with kinetic energies of ∼100 MeV. Apart
from that, cosmic rays with energies above ∼10 GeV, that are not created by the Sun or influenced
by solar activity, only show weak modulations over time.

Additionally, also the highest energy cosmic rays in the regime of ∼1020 eV are shielded from
us (cf. Longair, 2011, chap. 15.12). However, the reason for this is not the Sun, but the cosmic
microwave background radiation that fills the entire universe. If the energy of a cosmic ray
particle is high enough, the CMB photons appear strongly blue-shifted in its rest frame. Hence,
the production of new elementary particles becomes possible. For protons that are bombarded
with 𝛾-rays, one expects pion production for photon energies above 200 MeV via one of the
following reactions:

𝛾 + 𝑝 → Δ+ → 𝑛 + 𝜋+ ,
𝛾 + 𝑝 → Δ+ → 𝑝 + 𝜋0 ,

𝛾 + 𝑝 → Δ+ → 𝑛 + 𝑁𝜋+ .

Note that the delta baryon Δ+ is a short-lived intermediate state that rapidly decays by creating a
pion. The most frequent decay modes of the unstable reaction products are:

𝑛→ 𝑝 + 𝑒− + �̄�𝑒 ,
𝜋+ → 𝜇+ + 𝜈𝜇 ,
𝜇+ → 𝑒+ + 𝜈𝑒 + �̄�𝜇 ,
𝜋0 → 2𝛾 .
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We also note that the Bethe-Heitler pair production

𝑝 + 𝛾 → 𝑝 + 𝑒− + 𝑒+

is another important loss mechanism for ultra-high energy cosmic rays. Its cross section is
larger than for the pion production, but the energy loss per produced electron-positron pair is
much smaller. Although the proton is never effectively destroyed in any of these reactions (if
a 𝜋+ is produced, the free neutron will eventually decay back into a proton), it will loose a
significant fraction of its kinetic energy over time. It is therefore expected that the mean free
path of protons above 1020 eV is limited to a few Mpc. Since the highest energy cosmic rays
are not produced within the Milky Way, but come from extragalactic sources, one expects the
so-called Greisen-Zatsepin-Kuzmin (GZK) cut-off at the high-energy end of the CR spectrum.
Indeed, the UHECRs show a pronounced steepening above ∼5 · 1019 eV, which is compatible
with a GZK cut-off, but could also be related to a maximum particle acceleration efficiency in
astrophysical sources. Moreover, this conclusion even holds in the case that cosmic rays with the
highest energies are composed of heavy nuclei instead of protons (this will only affect the cut-off
energy). The reason is that the absorption of 𝛾-rays with energies of a few 10 MeV (the typical
binding energy per nucleon) excites one ore more nuclei, which are then ejected from the nucleus.
This will then happen again to the shrunken nucleus, leading to its gradual disintegration.

The increasing quality of CR data has also revealed several minor features in the overall
CR spectrum that can only be understood through a solid theoretical modelling of sources
and of the CR propagation. We will not go into further detail here, but merely mention the
common interpretation of the knee and the ankle. We first define the rigidity 𝑅 of a nucleus with
momentum 𝑝 and charge number 𝑍 as 𝑅 B 𝑝𝑐/(𝑍𝑒). It has units of voltage (energy per charge)
and is defined such that the particle’s Larmor radius can be written as 𝑟L = 𝑝/(𝑍𝑒𝐵) = 𝑅/(𝐵𝑐).
This quantity is useful in high energy astrophysics, because many acceleration processes depend
on the rigidity (a prototypical example is diffusive shock acceleration, which will be discussed
in chapter 2). This can be illustrated by considering particle acceleration at the shock front
of a supernova remnant as an example. The acceleration will definitely stop, if the particle’s
gyro-radius exceeds the remnant’s size, because it cannot be confined any more.2 This not only
sets a simple upper limit to 𝑟L, but also to 𝑅, because all particles experience the same local
magnetic field, so 𝐵 is constant. If the rigidity is fixed by the basic physics of the acceleration
process, heavier nuclei can reach higher energies. If protons cannot be accelerated beyond
𝐸max,p ≈ 3 · 1015 eV by any Milky Way source, then an iron nucleus can still be accelerated up to
𝐸max,Fe = 26 𝐸max,p ≈ 8 · 1016 eV, where we made the safe assumption that nuclei at such high
energies are fully ionized. The superposition of the cut-offs in the spectra of individual elements
then naturally leads to a knee in the CR spectrum.

By contrast, the ankle is thought to be the transition from the galactic to the extra-galactic
CR component. The main argument is that a proton with energy ∼1018 eV has a gyro-radius
of 360 pc, which is comparable to the scale height of the Milky Way’s (thin) disk (assuming
a typical interstellar magnetic field of 0.3 nT). If one neglects some of the complexity of CR
transport, this implies that protons with such high energies cannot be confined within the Milky
Way. More specifically, CRs with energies below the ankle are expected to propagate diffusively
within the Milky Way – as we will see later – meaning that they arrive at Earth from all directions
and cannot be directly attributed to a source. By contrast, if there would exist an accelerator
within our Galaxy that was able to generate UHECRs, they would propagate ballistically towards

2As we will see later, this criterion can be tightened by requiring that the diffusion length is only a fraction of
the shock radius.
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Earth so that an observer would see them coming from a specific region in the sky, namely where
the source is located. However, no such astrophysical object exists within the Milky Way and
the (approximate) isotropy of UHECRs suggest that their extragalactic sources are distributed
isotropically over the entire sky. One of the big problems when investigating the arrival directions
and composition of the highest energy CRs is the extremely low flux. In the cut-off region (at
∼ 5 · 1019 eV) only one particle per square kilometre per century is detected, as indicated in
figure 1.1. It is therefore not surprising why until today no conclusive data have been obtained
that would connect the UHECR arrival directions to potential sources. However, number statistics
improve over time.

1.3 Sources of cosmic rays
Any astrophysical accelerator that is energetic enough can in principal act as CR source. In the
following we list a few examples (cf. Vink, 2020, chap. 11.1.5 and references therein):

• Supernova remnants: The strong, collisionless shock of the remnant with Mach number
∼1000 allows particles to gain energy via diffusive shock acceleration (DSA), which will
be discussed in chapter 2. As we will see in the next section, SNRs are the preferred sources
for galactic cosmic rays, because they are frequent and energetic enough to maintain the
observed energy density of CRs.

• Pulsar wind nebulae: Pulsars are fast rotating neutron stars with strong magnetic fields
that emit periodic radio pulses (also observed in other wavelengths). This radiation results
from various physical processes taking place in the so-called magnetosphere – a highly
magnetized volume immediately surrounding the neutron star. Although the exact details
of the radiation mechanism are not fully understood yet, it is clear that the strong and
rapidly varying magnetic field induces an electric field powerful enough to remove charged
particles (mainly protons and electrons) from the pulsar’s surface. Once they are in the
magnetosphere they will be accelerated to relativistic energies and their gyration along
magnetic field lines will cause them to emit synchrotron radiation in the 𝛾-ray-band. It
is expected that the 𝛾-photons are energetic enough to produce electron-positron pairs,
which are again accelerated and emit their own 𝛾-rays starting an electron-positron cascade.
The particles attached to open field lines will eventually escape the pulsar and carry the
“frozen-in” magnetic field with them, giving rise to the pulsar wind. Although rapidly
spinning neutron stars have an enormous reservoir of rotational energy that could be tapped
to produce cosmic rays, the composition of accelerated particles is expected to consist
mainly of electrons and positrons (in equal amounts). Since the observed CR spectrum is
dominated by atomic nuclei, pulsar wind nebulae cannot be the main sources of Galactic
cosmic rays, although they might provide a significant fraction of the leptonic component.

• Winds from massive stars: The idea is that young star clusters that contain many massive,
short-lived stars with strong, fast winds can act as CR factories. The energy is provided
by interacting stellar winds, whereas the acceleration itself could take place either in the
vicinity of the stars or in superbubbles; these are multi-parsec expanding cavities in dense
molecular clouds caused by stellar winds and supernovae of massive stars. Since the stellar
feedback is dominated by supernovae, superbubbles are not really an alternative source
of cosmic rays, but instead an attractive environments for CR acceleration, because the
powerful mechanically and magnetically turbulent flows allow cosmic rays to be efficiently
scattered (longer confinement in bubble environment) and accelerated (through repeated



8 1 Introduction

crossings of multiple SNR shocks or wind termination shocks). Since the acceleration
efficiency is expected to be higher than for isolated supernovae, reaching energies of several
PeV (above the knee) seems less challenging.

• Active galactic nuclei: The central engine of each AGN is a supermassive black hole
at a galaxy’s heart that accretes large amounts of matter from its surroundings. Several
particle acceleration mechanisms have been proposed, all of which involve the relativistic
jet perpendicular to the accretion disk. An example for this is the one-shot “espresso”
acceleration process proposed by Caprioli (2015), which might be able to produce UHECRs.
However, also the relativistic termination shock resulting from interactions of the jet with
the ambient medium is expected to play a significant role.

• X-ray binaries: If the compact object in the binary sytem is a stellar-mass black hole with
an accretion disk and a jet, then particles might be accelerated in similar way as in the case
of an AGN, but of course on smaller spatial and energy scales. This gives rise to the term
“micro-quasar”.

• Tidal disruption events: A star passing by a black hole will be disrupted by the strong
tidal forces if the impact parameter is small enough. The resulting transient AGN-like jets
can be a potential source of UHECRs, for which a low injection rate is already sufficient,
despite the rarity of such events (one in ∼30 000 yr within the Milky Way) and the short
duration of UHECR production in a TDE jet (weeks or months).

Probably all of these sources contribute to the overall cosmic ray spectrum. However, when it
comes to Galactic cosmic rays, supernovae are thought to be the main contributors. One reason is
of course that sources, which are either very rare or extremely energetic, can be excluded a priori.
In the following section we will discuss the main arguments in favour of supernova remnants.

1.4 The supernova paradigm
By now, the idea that supernova remnants are responsible for the vast majority of galactic cosmic
rays (up to the knee) has been elevated to the rank of a paradigm – one could also call this
ironically “standard folklore” (see the critical discussion in Drury, 2018). As we shall see, the
oldest and still most convincing argument in favour of supernova remnants is also the simplest: It
is almost impossible to think of any other plausible source for galactic cosmic rays that would
release the required amount of energy to maintain the observed CR energy density.

1.4.1 Basic arguments
There are several very good arguments that support the standard paradigm on the origin of
galactic cosmic rays, which are listed below (see e.g. Bykov et al., 2018; Cristofari, 2021, and
references therein):

1. By far the strongest argument is that supernova explosions are the only galactic sources with
enough energy to sustain the measured cosmic ray energy density of ∼0.5 MeV m−3. This
can be understood by the following, simplified back-of-the envelope estimation (this can be
found in many textbooks and review articles, but here we mostly follow the pedagogical
treatment of Longair, 2011, chap. 15.6): From the primary-to-secondary cosmic ray ratio
one can estimate that a high-energy particle arriving at Earth has typically traversed
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𝜉 = 50–100 kg m−2 of matter on average (the so-called grammage). If we assume that
the interstellar gas, which has a typical number density of ⟨𝑛⟩ = 105–106 m−3, is solely
composed of hydrogen and helium (neglecting all heavier elements), the mean molecular
weight is given by

⟨𝑚⟩ =
𝑛H𝑚p + 𝑛He𝑚He

𝑛H + 𝑛He
=
𝑛H + 4𝑛He
𝑛H + 𝑛He

𝑚p =
1 + 4 𝑓He
1 + 𝑓He

𝑚p , 𝑓He B
𝑛He
𝑛H

. (1.4)

For a helium abundance of 𝑓He = 0.1 one gets ⟨𝑚⟩ ≈ 1.3𝑚p. All this information can then
be used to estimate an escape time 𝜏esc via the simple relation

𝜉 = ⟨𝜌⟩𝑣𝜏esc = ⟨𝑚⟩⟨𝑛⟩𝑐𝜏esc . (1.5)

By assuming that CRs propagate nearly with the speed of light, one finds 𝜏esc ≈ 2.4–49 Myr.
If CRs would travel ballistically along straight lines, this escape time would correspond to
a path length of

𝜆 = 𝑐𝜏esc ≈ 7.5 · 102–1.5 · 104 kpc , (1.6)

which is far larger than the scale height of the galactic thin disc (∼0.3 kpc) and even the
thick disc (∼1.5 kpc). This is the strongest argument why cosmic rays cannot propagate
along straight lines through the Milky Way, like light rays (in weak gravitational fields), but
have to show a diffusive behaviour instead. Much more could be said about the transport
of cosmic rays in the galactic environment, but we will not further elaborate this issue here
and merely note that a robust theoretical understanding of CR propagation is absolutely
crucial for interpreting the observed CR data in the solar neighbourhood.
If one estimates the Milky Way’s volume, in which cosmic rays can be confined for the
duration 𝜏esc, by taking a cylinder with radius 𝑟d = 15 kpc and height ℎ = 2 · 300 pc, then
the total cosmic ray energy that is lost per unit time is

𝐿CR =
𝐸CR
𝜏esc

=
𝑢CR𝑉

𝜏esc
=
𝑢CR π𝑟2

dℎ

𝜏esc
= 6.5 · 1032–1.3 · 1034 W . (1.7)

Now comes the crucial point: The typical kinetic energy of the ejected material from a
supernova explosion is roughly 1044 J. Since supernovae occur on average three times per
century within the Milky Way, the corresponding power is

𝐿SN ≈ 9.5 · 1033 W . (1.8)

Therefore, in order to sustain the cosmic ray power by supernovae alone, the fraction of
the shock kinetic energy, which is used to accelerate particles from the thermal pool up to
cosmic-ray energies, must lie in the range 𝜂SN ≈ 1%–15%. More refined estimates around
𝜂SN ≈ 10% are often quoted in the scientific literature, too. Admittedly, the required
efficiency is rather high, but not unrealistically high. This argument is so powerful, because
there are no real alternative sources in the Milky Way that could provide enough energy
for cosmic ray acceleration. Indeed, most of the source candidates mentioned in the
previous section are energetically less favourable than supernova remnants (see Vink, 2020,
chap. 11.1.5 and references therein).

2. The source composition of the bulk of CR material is a mix of ∼ 80% ISM material
(with solar system abundances) and ∼ 20% outflow from massive stars or ejecta from
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SNe (including those elements preferentially locked in dust). This tells us that although
supernovae provide the energy for acceleration, the accelerated nuclei stem mostly from
the surrounding ISM (including old material from winds of low-mass stars) and not from
the exploding star itself (freshly synthesized elements from supernova have different
abundances compared to the ISM). SNRs are thought to be able to accelerate CRs until
the end of the Sedov-Taylor phase, when the remnant’s diameter has reached a size of
∼100 pc, which is a significant fraction of the (thin disk) scale height. This implies that
shocks from SNRs are indeed large enough to accelerate nuclei from a significant fraction
of the galactic volume, which cannot be achieved by any other CR sources, since their
filling factors are too small.

3. From observations of the non-thermal radiation coming from SNRs it is now well-
established that in situ production of CRs indeed takes place. As will be briefly discussed in
the next section, the main signatures are synchrotron emission emitted by ultra-relativistic
electrons and gamma-rays from the decay of neutral pions that are produced by interactions
between CR protons and the ambient medium.

4. In first approximation, the observed CR spectrum is a power-law in momentum, 𝑓 (𝑝) ∝ 𝑝−𝛼,
with a slope 𝛼 ≈ 4.7 (corresponding to a slope 𝑞 = 2.7 in energy space) that is similar
to the prediction 𝛼 = 4 of the first order Fermi acceleration mechanism at strong shocks.
Note that spectral steepening during the diffusive propagation is also expected, as will be
elaborated below. No other process naturally produces similar spectral shapes with the
“correct” slope for electrons and protons.

5. Observations of the electron synchrotron emission in the X-ray band have established
that the magnetic field in SNRs is amplified order-of-magnitudes above the typical ISM
strength. This is absolutely necessary in order to accelerate protons to PeV energies, as
we will show now. We first have to make some remarks on particle scattering by Alfvén
waves, which leads to a diffusion barrier that keeps cosmic rays confined at the shock. The
diffusion coefficient 𝐷 can generally be expressed through the scattering mean free path
𝜆mfp and the average particle velocity ⟨𝑣⟩ as

𝐷 =
1
3
⟨𝑣⟩𝜆mfp =⇒ 𝐷B =

1
3
𝑐𝑟L =

𝑝𝑐

3𝑒𝐵
≈ 𝐸

3𝑒𝐵
. (1.9)

In the last step we introduced the Bohm diffusion coefficient 𝐷B, which corresponds to a
situation where particles propagate nearly with the speed of light and have a mean free
path comparable to their Larmor radius; hence this is the minimum possible value for 𝐷.
A criterion for the maximum particle energy can be formulated by demanding that the
diffusion length 𝑙diff = 𝐷/𝑣sh must be smaller than a certain fraction 𝜒 of the shock radius
(otherwise the particle could no longer be confined at the shock and would escape). This
leads to

𝐷B
𝑣sh

≤ 𝐷

𝑣sh
= 𝑙diff

!
< 𝜒𝑅sh (1.10)

=⇒ 𝐸max < 3𝜒𝑒𝐵𝑅sh𝑣sh . (1.11)

By choosing 𝜒 = 0.1 one finds that

𝐸max ≈ 9.3
(
𝐵

nT

) (
𝑣sh

1000 km s−1

) (
𝑅sh
pc

)
TeV . (1.12)

Hence, without significant magnetic field amplifications PeV energies cannot be reached.
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Although the energy argument alone indicates quite unambiguously that supernova remnants
are the source of galactic cosmic rays, there are still some difficulties that will be discussed below:

1. Measurements of the carbon-to-boron ratio indicate that the CR spectrum injected into the
ISM is steepened during the diffusive propagation towards Earth by ∝𝐸−0.3–𝐸−0.6. This is
indeed expected, because all radiative loss processes (Bremsstrahlung, synchrotron and
inverse Compton emission) become more efficient at higher particle energies. However,
the steepening is not strong enough to reproduce the observed CR energy spectrum ∝𝐸−2.7.
Hence, the source must inject a spectrum ∝𝐸−2.1–𝐸−2.4, which has a steeper slope than
the predicted 𝑞 = 2 from DSA. This will be further investigated in the next section, where
the theoretical foundations of the test-particle approach to DSA are stated. In particular,
non-linear effects will turn out to be crucial, which is however not surprising when keeping
in mind that cosmic rays gain ∼10% of the shock kinetic energy and can therefore modify
the shock structure.

2. The isotopic ratio of 22Ne/20Ne in the CR spectrum is a factor ∼ 5 larger than in the
solar system. The favoured explanation for this abundance anomaly involves so-called
Wolf-Rayet stars, which are capable of producing more of the neutron rich isotope 22Ne
than of 20Ne. Wolf-Rayet stars are very massive and luminous stars in an evolutionary
phase that is characterized by high mass-loss rates due to strong and fast stellar winds.
In the hydrogen-burning zones all of the initial CNO nuclei are transformed into 14N,
which is then transformed in the helium-burning zone into 22Ne through the reaction
chain 14N(𝛼, 𝛾) 18F(𝑒+𝜈𝑒) 18O(𝛼, 𝛾) 22Ne. Since stellar evolution models show that the
helium burning zone is not connectively linked to the outer layers, enhanced amounts
of 22Ne can only appear at the surface if the outer hydrogen layers are removed (e.g.
through a strong stellar wind), which is a characteristic feature of Wolf-Rayet stars. An
in-depth discussion of the amount of 22Ne enrichment in CR nuclei that can be attributed
to Wolf-Rayet stars, together with arguments disfavouring other sources of 22Ne, like nova
outbursts and pulsating red giants, can be found in Casse and Paul (1982). Hence, one
expects that the strong stellar winds and the final supernova explosions of these stars
enrich their environment, which is most likely a super-bubble. Due to their short lifetimes,
Wolf-Rayet stars will be the first members of the bubble’s stellar population that explode
and consequently enrich their neighbourhood with material that can later be processed
by the shocks of subsequent supernovae. This shows how important it is to carefully
distinguish between the source responsible for CR acceleration and the matter that is
actually elevated from the thermal pool to high energies.

3. If supernovae are the main source of galactic cosmic rays, they have to accelerate protons
at least up to the knee (a few PeV). In other words, they have to be pevatrons. In principle,
the detection of 𝛾-rays in the ∼ 100 TeV range would probe the acceleration of PeV CR
protons. In practice, observations of all known SNR shells in the VHE domain have
revealed cut-offs indicating that PeV CRs are not efficiently produced. There are, however,
some strong candidates – for example, evidence for PeV protons in the SNR G106.3+2.7 is
discussed in Fang et al. (2022).

1.4.2 Radiation signatures
In this subsection we briefly discuss the non-thermal radiation from (young) SNRs, because this
is the strongest observational evidence that SNRs can accelerate particles to very high energies
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Figure 1.2: Broadband spectral energy distribution of supernova remnant G106.3+2.7 (see Fang et al., 2022, and
references therein). For the multi-wavelength data points coming from different experiments 95% upper limits or 1𝜎
error bars are shown. The thick solid line represents the overall model spectrum; the contributions from electrons are
shown in light-grey, whereas the proton contribution is shown in red. The injection spectra of both populations are
assumed to be exponentially cut off power laws. The electrons produce radio to X-ray photons through synchrotron
emission in a magnetic field (dotted curve; note the wide energy range!), hard X-ray to sub-GeV 𝛾-ray through
bremsstrahlung emission with gas in the interstellar medium (dash dotted curve), and 𝛾-rays above 10 GeV through
inverse Compton scattering of the CMB (dashed curve). The protons produce 𝛾-rays through hadronic interaction
with the surrounding gas (dash-dotted curve).

(for further details see Vink, 2020, chap. 12 and references therein). The different components
of non-thermal radiation are nicely illustrated by the broadband spectral energy distribution of
SNR G106.3+2.7, which is shown in figure 1.2 and was taken from Fang et al. (2022).

First of all, the gyration of high-energy charged particles in a magnetic field always leads to
synchrotron emission, which ranges from the X-ray to the radio band in the case of SNRs. More
specifically, the polarized radio synchrotron emission in the MHz–GHz frequency band extends
over the remnant’s whole volume and is produced by non-thermal relativistic electrons with
energies of around a few GeV. On the other hand, the X-ray synchrotron emission is confined to
thin filaments near the shock and comes from electrons with tens of TeV gyrating in an amplified
magnetic field (far above typical ISM values) immediately behind the shock front.

Apart from that, SNRs also emit 𝛾-rays with energies above 1 GeV. There is one hadronic
channel for 𝛾-ray production and two leptonic ones. The former consists of cosmic ray protons
that produce neutral pions through energetic collisions with hydrogen nuclei in the ambient
medium, which then decay into 𝛾-rays. The leptonic channel consists of (1) bremsstrahlung
emitted by high-energy electrons that are decelerated when interacting with protons in the ambient
gas and (2) inverse Compton scattering between CR electrons and photons from the interstellar
radiation field (including the CMB). These processes can be summarized as follows:

pion production: CRp + 𝑝 → 𝑝 + 𝑝 + pions , 𝜋0 → 2𝛾 , (1.13)
bremsstrahlung: CRe + 𝑝 → 𝑒 + 𝑝 + 𝛾 , (1.14)
inverse Compton scattering: CRe + 𝛾ISRF → 𝑒 + 𝛾 . (1.15)
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The lightest pion 𝜋0 has a rest mass of 𝑚𝜋0 = 134.98 MeV/c2. So if a CR proton hits a thermal
proton at rest (corresponding to the fixed-target frame), it must have a minimum kinetic energy
of ∼280 MeV in order to produce a neutral pion (cf. Vink, 2020, chap. 13.6.2). The two 𝛾-rays
from the pion decay each have an energy of 𝑚𝜋0𝑐2/2 in the pion’s rest frame, which gives rise to
the so-called “pion bump” in the observed 𝛾-ray spectrum.





2 Particle acceleration at collisionless
shocks

In this chapter particle acceleration at shocks is discussed. In particular, it is shown that the
standard theory of diffusive shock acceleration, which treats cosmic rays as simple test particles,
naturally leads to a distribution function that can be described as a power-law in momentum
space. Additionally, there are a number of non-linear effects, like the back-reaction of cosmic
rays on the shock structure or self-induced magnetic field amplification via plasma instabilities,
whose influence on the CR spectrum is discussed. This serves as a theoretical motivation for one
of the most crucial ingredients of our CR model – the distribution function at the shock front of
the supernova remnant.

2.1 A brief historical overview
Although the original idea of particle acceleration by reflection at “magnetic mirrors” was already
developed in the late 1940s by Enrico Fermi (see Fermi, 1949, 1954), the simplest version of
the theory, namely steady diffusive acceleration of test particles at a one-dimensional parallel
shock, was not worked out until the late 1970s, when it was published in four independent
papers. Essentially it was shown that repeated crossing of the shock front by cosmic rays in
combination with diffusive scattering at plasma waves leads to a momentum spectrum following
a power-law, where the slope only depends on the shock compression ratio. This central result
was demonstrated by using two different approaches, namely a macroscopic one, that is based on
the transport equation for the distribution function, and a microscopic one, that focuses more one
the physics behind diffusive shock acceleration and systematically investigates what happens to a
test particle during the acceleration process. The former approach was independently discussed
in the following three papers:

• Axford et al. (1977): This is the earliest of the four papers and was published in the
“Proceedings of the 15th international Cosmic Ray Conference”.

• Krymskii (1977): Although this two-page article (in Russian) appeared 5 months later, it
was the first to be published in the peer-reviewed literature.

• Blandford and Ostriker (1978): This article is also rather brief (3 pages) and already cites
the paper by Axford, Leer & Skadron.

On the other hand, the microscopic approach to DSA was worked out by Anthony R. Bell in a
series of two papers:

• Bell (1978a): The microphysics behind diffusive shock acceleration is discussed.

• Bell (1978b): Discussion of other aspects concerning DSA, like injection into the
acceleration process, treatment of non-relativistic particles and estimates for the resulting
synchrotron emission.
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2.2 Elementary considerations
Before we have a quantitative look at the test-particle theory of diffusive shock acceleration, we
follow a quick back-of-the-envelope calculation in Longair (2011, chap. 7.4), which illustrates
the basic ideas of Fermi acceleration. Let us assume that the energy gain Δ𝐸 in one acceleration
cycle is proportional to the particle’s momentary energy 𝐸0, i.e. Δ𝐸 = 𝐸 − 𝐸0 = 𝛽 𝐸0, and that
the particle stops participating in the next acceleration cycle with a constant “escape probability”
𝑃esc, which does not depend on energy. As will be shown later, these ad-hoc presuppositions are
direct consequences of the underlying assumption that the particle transport is diffusive, even
though details of the scattering process never enter the calculation. If all particles start with
the same initial energy 𝐸0, then after 𝑘 cycles there are 𝑁 = 𝑁0(1 − 𝑃esc)𝑘 particles left in the
acceleration region and each of them has an energy of at least 𝐸 = 𝐸0(1 + 𝛽)𝑘 , because some
will be accelerated to even higher energies in subsequent cycles. Therefore it is suggestive to
write this cumulative number as 𝑁 (> 𝐸). The auxiliary number 𝑘 can be eliminated by taking
the logarithm of both equations and dividing them:

ln(𝑁/𝑁0)
ln(𝐸/𝐸0)

=
𝑘 ln(1 − 𝑃esc)
𝑘 ln(1 + 𝛽) =

ln(1 − 𝑃esc)
ln(1 + 𝛽) (2.1)

=⇒ 𝑁 (> 𝐸)
𝑁0

=

(
𝐸

𝐸0

) ln(1−𝑃esc)/ln(1+𝛽)
(2.2)

=⇒ d𝑁 (> 𝐸)
d𝐸

∝ 𝐸−𝛼 . (2.3)

In the last step, we converted the cumulative particle number 𝑁 (> 𝐸) into the differential energy
spectrum. Note that the power-law exponent 𝛼 B 1 − ln(1 − 𝑃esc)/ln(1 + 𝛽) only depends on
the two constants 𝑃esc and 𝛽. As we will see, 𝛼 can solely be expressed in terms of the shock
compression ratio 𝜎 = 𝜌2/𝜌1 via 𝛼 = (𝜎 + 2)/(𝜎 − 1), which is quite remarkable.

The quantitative derivations in the following two sections are by now quite well-known and
can be found in many review articles (e.g. Bell, 2013; Blandford and Eichler, 1987; Jones, 1994;
Jones and Ellison, 1991; Urošević et al., 2019) or textbooks (e.g. Padmanabhan, 2001, chap. 4.10;
Thorne and Blandford, 2017, chap. 23.6). The following presentation (with some supplements
from the aforementioned literature) is mainly based on the review Drury (1983), which also
contains more references to the original literature and early papers that implicitly touch upon
variants of diffusive shock acceleration. Some additional background on the distribution function
in kinetic theory and its moments can be found in appendix C.

2.3 Macroscopic approach
At first, we present a brief summary of what is called the “macroscopic approach to DSA”,
meaning that the theoretical derivation of the resulting cosmic ray spectrum is based on the
transport equation for the CR distribution function, which is a macroscopic description. We
consider the shock to be an infinite planar discontinuity in the 𝑦-𝑧-plane and choose an inertial
frame, where the shock front is at rest at 𝑥 = 0. In this reference frame the fluid streams parallel
to the 𝑥-axis, which makes the problem effectively one-dimensional. The velocity field of the
fluid is then given by 𝑢(𝑥)ê𝑥 , where we assume that 𝑢(𝑥) is piecewise constant (stationary), so

𝑢(𝑥) =
{
𝑢1 for 𝑥 < 0 ,
𝑢2 for 𝑥 > 0 .

(2.4)
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𝑥

𝑢1 𝑢2

shock front

upstream downstream

Figure 2.1: Simplified shock geometry that is assumed in the test-particle theory of diffusive shock acceleration. In
this reference frame the shock front (an infinite plane) is at rest at 𝑥 = 0. The fluid streams in from the upstream
region (𝑥 < 0) and exits into the downstream region (𝑥 > 0).

where 𝑢1 is the upstream velocity and 𝑢2 is the downstream velocity. Normally, one would
write the distribution function 𝑓 (x, p, 𝑡) as a function of position x and p as measured in the
reference frame in which the shock is stationary and the plasma is moving. However, it is more
convenient to measure the momentum in the local fluid rest frame (denoted by p̃), because then the
distribution is isotropic, i.e. it can be written as 𝑓 (x, 𝑝, 𝑡), where 𝑝 B |p̃|. The general transport
equation for the distribution function can be derived from the relativistic Vlasov equation, which
expresses particle number conservation in phase space, and has the form

𝜕 𝑓

𝜕𝑡
+ 𝑢 𝜕 𝑓

𝜕𝑥
=
𝑝

3
𝜕𝑢

𝜕𝑥

𝜕 𝑓

𝜕𝑝
+ 𝜕

𝜕𝑥

(
𝐷 (𝑥, 𝑝) 𝜕 𝑓

𝜕𝑥

)
+𝑄(𝑥, 𝑝) , (2.5)

which is shown in Blandford and Eichler (1987). Here, 𝐷 (𝑥, 𝑝) is the spatial diffusion coefficient
along the magnetic field lines, i.e. perpendicular to the shock front. If we assume that the
distribution function is stationary, neglect the source term 𝑄(𝑥, 𝑝) and use expression (2.4) for
the fluid velocity, the transport equation simplifies to

𝜕 ( 𝑓 𝑢)
𝜕𝑥

= 𝑢
𝜕 𝑓

𝜕𝑥
=
𝜕

𝜕𝑥

(
𝐷 (𝑥, 𝑝) 𝜕 𝑓

𝜕𝑥

)
. (2.6)

If one integrates this equation over one side of the shock from 0 to 𝑥 (so that 𝑢(𝑥) remains
constant), one finds

𝑓 (𝑥, 𝑝)𝑢 = 𝐷 (𝑥, 𝑝) 𝜕 𝑓 (𝑥, 𝑝)
𝜕𝑥

+ �̃�(𝑝) (2.7)

=⇒ 𝜕 𝑓 (𝑥, 𝑝)
𝜕𝑥

=
𝑢

𝐷 (𝑥, 𝑝) 𝑓 (𝑥, 𝑝) − �̃�(𝑝) , (2.8)

where �̃�(𝑝) is an arbitrary function that only depends on momentum. By introducing 𝐴(𝑝) B
�̃�(𝑝)/𝑢, which again is independent of 𝑥 for our chosen domain of integration, we can rewrite
this as

𝜕

𝜕𝑥
( 𝑓 (𝑥, 𝑝) − 𝐴(𝑝)) = 𝜕 𝑓 (𝑥, 𝑝)

𝜕𝑥
=

𝑢

𝐷 (𝑥, 𝑝) ( 𝑓 (𝑥, 𝑝) − 𝐴(𝑝)) . (2.9)

This first-order, homogeneous ordinary differential equation in 𝑥 has the standard solution

𝑓 (𝑥, 𝑝) = 𝐴(𝑝) + 𝐵(𝑝) exp©«
𝑥∫

0

𝑢

𝐷 (𝑥, 𝑝) d𝑥ª®¬ . (2.10)
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We now have a look at the solution in the upstream region 𝑥 < 0 and note that for 𝑥 → −∞ the
exponent goes to zero, since both 𝑢1 and 𝐷 (𝑥, 𝑝) are positive and bounded. More precisely, in
the following we assume that

lim
𝑥→±∞

𝑥∫
0

1
𝐷 (𝑥, 𝑝) d𝑥 = ±∞ . (2.11)

With this assumption we can determine the unknown functions 𝐴(𝑝) and 𝐵(𝑝) from the boundary
conditions. By evaluating the solution (2.10) at 𝑥 = −∞, one finds

𝐴(𝑝) = 𝑓 (𝑥 = −∞, 𝑝) C 𝑓−(𝑝) . (2.12)

Similarly, evaluating the solution at 𝑥 = 0 yields

𝐵(𝑝) = 𝑓 (𝑥 = 0, 𝑝) − 𝑓 (𝑥 = −∞, 𝑝) C 𝑓0(𝑝) − 𝑓−(𝑝) . (2.13)

In conclusion, the upstream distribution function is given by

𝑓 (𝑥, 𝑝) = 𝑓−(𝑝) + ( 𝑓0(𝑝) − 𝑓−(𝑝)) exp©«−
0∫

𝑥

𝑢1
𝐷 (𝑥′, 𝑝) d𝑥′ª®¬ at 𝑥 < 0 . (2.14)

Similarly, the downstream solution can be found. However, from (2.11) we immediately see that
𝑓 (𝑥, 𝑝) would grow without bounds if 𝐵(𝑝) would not vanish, which implies that 𝑓 (𝑥, 𝑝) = 𝐶 (𝑝)
for 𝑥 > 0, where 𝐶 (𝑝) is again an arbitrary function that solely depends on momentum. An
important thing to note is that 𝑓 (𝑥, 𝑝) is continuous across the shock front 𝑥 = 0, because the
parallel magnetic field has no discontinuity, so the cosmic rays unaffectedly continue their helical
paths after crossing the shock front. Only the choice

𝑓 (𝑥, 𝑝) = 𝐶 (𝑝) = 𝑓0(𝑝) at 𝑥 > 0 (2.15)

joins the two solutions.
The particle flux, as measured in the shock’s frame, is given by

𝐹 (𝑥, 𝑝) = −𝐷𝜕 𝑓
𝜕𝑥

− 𝑢 𝑝
3
,
𝜕 𝑓

𝜕𝑝
, (2.16)

where the first term represents the diffusive flux and the second term arises, because we use the
momentum in the fluid rest frame, but the position in the shock rest frame. Now we calculate the
fluxes upstream and downstream, which are then both evaluated at the shock position 𝑥 = 0:

𝐹−(𝑥, 𝑝)
���
𝑥=0

= (− 𝑓0(𝑝) + 𝑓−(𝑝)) 𝑢1 − 𝑢1
𝑝

3
𝜕 𝑓0(𝑝)
𝜕𝑝

, (2.17)

𝐹+(𝑥, 𝑝)
���
𝑥=0

= −𝑢2
𝑝

3
𝜕 𝑓0(𝑝)
𝜕𝑝

= −𝑢1
𝜎

𝑝

3
𝜕 𝑓0(𝑝)
𝜕𝑝

. (2.18)

Here we wrote the downstream velocity in terms of the compression ratio 𝜎 = 𝑢1/𝑢2. By
setting both expressions equal, corresponding to a continuous flux across the shock, we obtain a
differential equation for 𝑓0(𝑝):

𝐹−(𝑥, 𝑝)
���
𝑥=0

!
= 𝐹+(𝑥, 𝑝)

���
𝑥=0

⇐⇒ 𝑝
𝜕 𝑓0(𝑝)
𝜕𝑝

=
3𝜎
𝜎 − 1

( 𝑓−(𝑝) − 𝑓0(𝑝)) . (2.19)
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The solution of this standard first-order ordinary differential equation is the sum of the homogen-
eous solution and a particular solution of the inhomogeneous equation:

𝑓+(𝑝) = 𝑓0(𝑝) = 𝑓0(𝑝0)𝑝−𝛼 + 𝛼𝑝−𝛼
𝑝∫

𝑝0

𝑝′𝛼−1 𝑓−(𝑝′) d𝑝′ , 𝛼 B
3𝜎
𝜎 − 1

, (2.20)

where we defined the slope 𝛼 B 3𝜎/(𝜎 − 1). This result deserves some further discussion.
In some references, the homogenous term in the solution is completely ignored without real
justification. From a mathematical point of view, this is untenable, but from a physical perspective
one can argue that the homogenous term resembles a source term, which is problematic, because
in our above derivation no particles are created.1 In fact, the only source for the downstream
distribution 𝑓+(𝑝) is the spectrum 𝑓−(𝑝) that was advected into the shock from upstream, which
is exactly represented by the second term. It can be understood more clearly by assuming that the
upstream distribution function is a power-law of the form 𝑓−(𝑝) ∝ 𝑝−𝛼+𝛿. Then the second term
can be integrated analytically, yielding

𝛼𝑝−𝛼
𝑝∫

𝑝0

𝑝′𝛼−1 𝑓−(𝑝′) d𝑝′ ∝ 𝛼𝑝−𝛼
𝑝∫

𝑝0

𝑝′𝛼−1 𝑝′−𝛼+𝛿 d𝑝′ (2.21)

=
𝛼

𝛿
𝑝−𝛼

(
𝑝𝛿 − 𝑝𝛿0

)
. (2.22)

Now, if the distribution function far upstream is steeper than 𝑝−𝛼, meaning that 𝛿 < 0, the second
term in the parenthesis of equation (2.22) will be dominant and the downstream spectrum will be
proportional to 𝑝−𝛼. In the opposite case, when 𝛿 > 0 and therefore 𝑓−(𝑝) is flatter than 𝑝−𝛼,
the resulting CR distribution far downstream will also be flattened and proportional to 𝑝−𝛼+𝛿.
Since the gas at 𝑥 = −∞ can be considered as ambient medium that has not been shocked yet,
one can safely assume that its distribution function is thermal, i.e. a exponentially suppressed
Maxwell-Boltzmann distribution, that is steeper than any power law. Consequently, we expect
that the CR spectrum far downstream is the simple power law 𝑓+(𝑝) ∝ 𝑝−𝛼.

It is remarkable, that the spectral slope 𝛼 does not dependent on the details of the diffusion
coefficient 𝐷 (𝑥, 𝑝), but solely on the compression ratio 𝜎. For strong shocks in a non-relativistic
monatomic gas with adiabatic index 𝛾ad = 5/3 we have 𝜎 = 4 as a consequence of the Rankine-
Hugoniot jump conditions for hydrodynamical shocks and thus 𝛼 = 4. For relativistic particle
energies the distribution function 𝑓 (𝑝) ∝ 𝑝−4 corresponds to an energy spectrum 𝑓 (𝐸) ∝ 𝐸−2

(see equation (C.17) in appendix C), is in good (but not exact) agreement with the slope of CRs
arriving at Earth.

Last but not least, we note that this standard result can also be obtained in an alternative
way, when the injection term in the transport equation is not neglected, but modelled as
𝑄(𝑥, 𝑝) ∝ 𝛿D(𝑥) 𝛿D(𝑝 − 𝑝inj), where the Dirac delta distribution is denoted by 𝛿D. So the
underlying assumption is that only particles with a certain momentum 𝑝inj are injected at the
shock front 𝑥 = 0 (for details see Blasi, 2013, sec. 3.3).

1In Drury (1983) the homogenous term is interpreted as injection of thermal particles from the background
plasma into the acceleration process. This viewpoint is criticized in Jones and Ellison (1991), because there is
no energy cut-off for the homogenous term, so it cannot be normalized. Additionally, Monte Carlo calculations
suggest that thermal leakage injection should not be treated differently than any other injection process. Since Jones’
arguments seem to be more stringent, we will also adopt this viewpoint in the remaining section.
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Figure 2.2: The probability that a randomly oriented (unit) vector has an angle in the range [𝜃, 𝜃 + Δ𝜃] with respect
to a fixed axis (horizontal line) is proportional to the thin grey area on the surface of the sphere, which is given by
circumference × thickness = 2π sin(𝜃)Δ𝜃. This sketch was kindly provided by Julian Sommer.

2.4 Microscopic approach
In this approach we will follow the motion of a test-particle across the shock front and calculate the
average momentum gain during each acceleration cycle. In this section the distribution function
is not used directly any more, but instead the particle density 𝑛(𝑥, 𝑡), which is simply 𝑓 (𝑥, 𝑝, 𝑡)
integrated over momentum space (see appendix C). Again, the configuration is essentially
one-dimensional. We already know from our elementary analysis of the stationary transport
equation that for any physical solution the downstream density has to be constant and identical
to the density at the shock front, which is denoted by 𝑛0(𝑝) B 𝑛(𝑥 = 0, 𝑝). Consequently,
the downstream flux, that tries to advect the particles away from the shock front, is given by
𝐹adv(𝑝) = 𝑛0(𝑝)𝑢2. At the beginning of each acceleration cycle the test particle crosses the shock
front from upstream to downstream, which is an inevitable consequence of the coupling to the
plasma’s motion. The question then is whether the particle can re-cross the shock front and get
back to the upstream side or whether it gets advected so far downstream that it will never again
return to the shock again, meaning that the acceleration process is terminated. This question can
be answered by considering the particle flux from downstream to upstream. By our fundamental
assumption of rapid momentum isotropisation, in the rest frame of the downstream fluid one half
of the test particles moves to the left and the other half moves to the right. Additionally, we make
the simplifying assumption that all particles have the same relativistic speed 𝑣 ≈ 𝑐, so that their
velocities only differ in orientation, but not in magnitude. Therefore, the particle flux averaged
over all angles is

𝐹cross =

2𝜋∫
0

d𝜑
𝜋/2∫

0

d𝜃
1
2
𝑛0𝑣 cos(𝜃)𝑃(𝜃, 𝜑) . (2.23)

As usual, 𝜑 is the azimuthal angle and 𝜃 is the angle between the particle’s velocity and the shock
normal (i.e. the unit vector ê𝑥), hence 𝑣 cos(𝜃) is the velocity projected onto the 𝑥-axis. Since
the geometry of our problem is azimuthally symmetric, the probability 𝑃(𝜃, 𝜑) that the particle’s
velocity vector points in the direction specified by the two angles, can only depend on 𝜃. By a
simple geometric argument (see figure 2.2) one can show that 𝑃(𝜃, 𝜑) = 𝐾 sin(𝜃). The constant
𝐾 can easily be determined from the condition that any probability density function must be
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normalized to one, so

1 !
=

2𝜋∫
0

d𝜑
𝜋/2∫

0

d𝜃 𝑃(𝜃, 𝜑) = 2𝜋𝐾
𝜋/2∫

0

d𝜃 sin(𝜃) = 2𝜋𝐾 =⇒ 𝐾 =
1

2𝜋
. (2.24)

As expected, the correct normalization cancels with the factor 2𝜋 from the trivial angular
integration over 𝜑. By taking this into account and using the common variable substitution
𝜇 B cos(𝜃), the flux of particles re-crossing the shock front is given by

𝐹cross =

𝜋/2∫
0

1
2
𝑛0𝑣 cos(𝜃) sin(𝜃) d𝜃 =

1∫
0

1
2
𝑛0𝑣𝜇 d𝜇 =

1
4
𝑛0𝑣 . (2.25)

This is an important result, because the ratio of the two fluxes yields the probability that the test
particle is advected far downstream and never returns to the shock front again:

𝑃 =
𝐹adv
𝐹cross

=
𝑢2𝑛0
𝑣𝑛0/4

=
4𝑢2
𝑣
. (2.26)

We also emphasize that in this derivation we do not allow that particles escape towards upstream
infinity, meaning that once a particle has made it to the upstream side again, it will eventually
be advected downstream with 100% probability. Conversely, a particle in the downstream fluid
recrosses the shock front only with a finite probability 𝑃 = 1 − 4𝑢2/𝑣.

If a particle has momentum 𝑝 and pitch angle 𝜇 in the rest frame of the upstream fluid, then it
sees the shock approaching with velocity 𝑣sh = 𝑢1 from the right to left. Hence, the particle’s
energy in the (primed) shock frame can be calculated by performing a Lorentz boost along the
relative velocity 𝑢1ê𝑥 between the two frames:

𝐸′

𝑐
= 𝛾𝑢1

(
𝐸

𝑐
+ 𝑢1𝑝𝑥

𝑐

)
= 𝛾𝑢1

(
𝐸

𝑐
+ 𝑢1𝑝 cos(𝜃)

𝑐

)
(2.27)

=⇒ 𝑝′ ≈ 𝑝 + 𝑢1𝑝 cos(𝜃)
𝑐

. (2.28)

In the last step we used that the shock is non-relativistic, i.e. 𝑢1 ≪ 𝑐 and therefore 𝛾𝑢1 ≈ 1, but
the test particle is already (mildly) relativistic, i.e. 𝐸 ≈ 𝑝𝑐 and 𝐸′ ≈ 𝑝′𝑐. Similarly, the upstream
particle momentum 𝑝 can be expressed in the rest frame of the downstream fluid by performing a
Lorentz boost along the relative velocity (𝑢1 − 𝑢2)e𝑥:

𝑝′ ≈ 𝑝 + (𝑢1 − 𝑢2)𝑝 cos(𝜃)
𝑐

⇐⇒ Δ𝑝 ≈ (𝑢1 − 𝑢2)𝑝 cos(𝜃)
𝑐

. (2.29)

In the last step we introduced the momentum changeΔ𝑝 that a particle experiences when it crosses
the shock front from upstream to downstream. Thus the flux-averaged change in momentum is

⟨Δ𝑝⟩ =
∫ 1

0 Δ𝑝(𝜇) 𝑛0𝑣
2 𝜇 d𝜇∫ 1

0
𝑛0𝑣
2 𝜇 d𝜇

=

∫ 1
0 Δ𝑝(𝜇) 𝜇 d𝜇∫ 1

0 𝜇 d𝜇
=

(𝑢1 − 𝑢2)𝑝
𝑐

∫ 1
0 𝜇2 d𝜇∫ 1
0 𝜇 d𝜇

(2.30)

=
(𝑢1 − 𝑢2)𝑝

𝑐

1/3
1/2

=
2(𝑢1 − 𝑢2)𝑝

3𝑐
. (2.31)

The same can be repeated analogously for the opposite case when a particle crosses the shock
from downstream to upstream. There are only two differences, namely that the relative velocity
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changes sign and is then given by 𝑢2 − 𝑢1, but so does the angle 𝜇, which then runs from 𝜇 = −1
to 𝜇 = 0. Therefore, the total flux-averaged momentum gain during one acceleration cycle, i.e.
one forward and one reverse crossing of the shock front, is given by

⟨Δ𝑝⟩ = 4(𝑢1 − 𝑢2)𝑝
3𝑐

. (2.32)

If we use 𝑝𝑛 to denote the momentum of a particle that returns from downstream 𝑘 times (and has
therefore crossed the shock 2𝑘 times), then for large 𝑘 and 𝑣 ≫ 𝑢1 it can be recursively written as

𝑝𝑘 = 𝑝𝑘 − 𝑝𝑘−1 + 𝑝𝑘−1 ≈ ⟨Δ𝑝⟩ + 𝑝𝑘−1 =

(
4(𝑢1 − 𝑢2)

3𝑐
+ 1

)
𝑝𝑘−1 (2.33)

=

(
4(𝑢1 − 𝑢2)

3𝑐
+ 1

)2
𝑝𝑘−2 = . . . =

(
4(𝑢1 − 𝑢2)

3𝑐
+ 1

) 𝑘
𝑝0 . (2.34)

By taking the logarithm on both sides and using (𝑢1−𝑢2)/𝑐 ≪ 1, we obtain an explicit expression
for 𝑘:

𝑘 = ln
(
𝑝𝑘

𝑝0

)
ln

(
4(𝑢1 − 𝑢2)

3𝑐
+ 1

)−1
≈ ln

(
𝑝𝑘

𝑝0

) (
4(𝑢1 − 𝑢2)

3𝑐

)−1
. (2.35)

From our above considerations we infer that the probability 𝑃𝑘 of the particle reaching at least
momentum 𝑝𝑘 , i.e. of returning at least 𝑘 times from downstream or equivalently not being
advected for 𝑘 acceleration cycles, is

𝑃𝑘 =

𝑘∏
𝑗=1

(
1 − 4𝑢2

𝑣 𝑗

)
≈

𝑘∏
𝑗=1

(
1 − 4𝑢2

𝑐

)
=

(
1 − 4𝑢2

𝑐

) 𝑘
, (2.36)

where we assumed that the particle velocity 𝑣 𝑗 in every cycle is already close to the speed of light.
We can now eliminate 𝑘 from the above expressions by taking the logarithm:

ln(𝑃𝑘 ) = 𝑘 ln
(
1 − 4𝑢2

𝑐

)
≈ −𝑘 4𝑢2

𝑐
= − ln

(
𝑝𝑘

𝑝0

)
3𝑐

4(𝑢1 − 𝑢2)
4𝑢2
𝑐

= − ln
(
𝑝𝑘

𝑝0

)
3𝑢2

𝑢1 − 𝑢2
(2.37)

=⇒ 𝑃𝑘 =

(
𝑝𝑘

𝑝0

)−3𝑢2/(𝑢1−𝑢2)
=

(
𝑝𝑘

𝑝0

)−3/(𝜎−1)
. (2.38)

It is now convenient to define the integral spectrum 𝑁 (𝑥, 𝑝) as the number density of particles
that have been accelerated at least to a momentum 𝑝 (or higher):

𝑁 (𝑥, 𝑝) B
∞∫
𝑝

4π𝑝′2 𝑓 (𝑥, 𝑝′) d𝑝′ . (2.39)

Note that we already encountered this quantity, but expressed in energy space, in section 2.2. For
simplicity, we assume that all particles, which are initially advected from the upstream side, have
a distribution function that is peaked around a certain momentum 𝑝0,

𝑓−(𝑝) = 𝑓 (𝑥 = −∞, 𝑝) = 𝑛0 𝛿D(𝑝 − 𝑝0) , (2.40)

where 𝑛0 is the number density at upstream infinity. The corresponding integral spectrum is then
a step function:

𝑁−(𝑝) = 𝑁 (𝑥 = −∞, 𝑝) =
{

0 for 𝑝 > 𝑝0 ,

𝑛0 for 𝑝 ≤ 𝑝0 .
(2.41)
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From the Rankine-Hugoniot jump conditions for the (number) density we then infer that
𝑁+(𝑝) = 𝑁 (𝑥 = +∞, 𝑝) = 𝜎𝑛0 for 𝑝 ≤ 𝑝0. The downstream integral spectrum is the initial
number density 𝑁+(𝑝0) = 𝜎𝑛0 multiplied by the probability of crossing the shock sufficiently
often to reach at least a certain momentum 𝑝𝑘 > 𝑝0:

𝑁+(𝑝𝑘 ) = 𝑃𝑘 𝑁+(𝑝0) = 𝜎𝑛0

(
𝑝𝑘

𝑝0

)−3/(𝜎−1)
. (2.42)

Finally, the distribution function 𝑓 (𝑝) can be obtained by differentiating equation (2.39):

𝑓 (𝑝) = − 1
4π𝑝2

𝜕𝑁+(𝑝)
𝜕𝑝

∝
(
𝑝

𝑝0

)−3/(𝜎−1)−3
=

(
𝑝

𝑝0

)−3𝜎/(𝜎−1)
, 𝑝 > 𝑝0 . (2.43)

which is again a power-law with the same slope as in our previous derivation (2.20). An
alternative discussion of the microscopic approach that emphasizes more the role of particle
number conservation in phase space is presented in Jones and Ellison (1991).

2.5 Summary of assumptions
We just introduced the two most common approaches to diffusive shock acceleration; alternatives
can be found in the extensive literature, like in Blandford and Eichler (1987). As it turned out,
the universal power-law spectrum resulting from DSA only depends on the compression ratio
of the shock and not on the detailed microphysical aspects of particle scattering and diffusion
caused by plasma waves. In the following we list some of the simplifying assumption the went
into this elementary test-particle approach:

1. The shock front was assumed to be a sharp discontinuity that leaves the velocity of crossing
particles unaffected. In reality, every physical shock wave has a finite thickness that is
of the same order of magnitude as the particle mean free path, which corresponds to a
few gyroradii of thermal protons. For a spherical shock wave, one would expect that
particles with a high enough energy have such a large diffusion length ahead of the shock
that it exceeds the shock’s radius of curvature. In that case the particle is expected to
escape upstream, which is not incorporated in our discussion above. In fact, the underlying
assumption is that every particle upstream will eventually be advected downstream.

2. The distribution function was assumed to be isotropic in the upstream and downstream
reference frame, which means that the particle momentum has to get isotropized through
elastic and random scattering at plasma waves very rapidly after crossing the shock front.

3. We assumed that cosmic rays are isotropised in the fluid rest frame both upstream and
downstream through pitch-angle scattering at plasma waves, but those scattering centres do
not have to move with the same velocity as the fluid. Hence, the relative velocity between
upstream and downstream scattering centres does not have to be 𝑢1 − 𝑢2, which would also
change the power-law slope 𝛼.

4. A rather problematic aspect of the derivations above is the assumption that the test particle
is already relativistic, which was made in equation (2.28), where we set 𝐸 = 𝑝𝑐. Therefore,
we emphasize that the distribution function expected from the test-particle approach
to diffusive shock acceleration is an exact power-law in momentum and not in energy
space, because the conversion 𝐸 (𝑝) =

√︁
(𝑝𝑐)2 + (𝑚𝑐2)2 introduces a non-linearity at
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low momenta. However, for ultra-relativistic energies this effect becomes negligible and
𝑓 (𝑝) ∝ 𝑝−𝛼 indeed transforms into 𝑓 (𝐸) ∝ 𝐸−𝛼+2, as can be seen from equation (C.17).

5. A related problem concerns injection of particles from the thermal pool into the DSA
process – the so-called “injection problem”. To better understand this issue, we again
emphasize that in the above derivations we assumed that the shock front was an infinitely
thin discontinuity that particles cross unaffectedly during an acceleration cycle. However,
a real collisionless shock wave has of course a finite thickness of a few scattering mean
free paths, which is of the same order-of-magnitude as a few thermal gyroradii . Therefore,
only high-momentum particles with gyroradii significantly larger than those of the thermal
population can cross the shock without major deflections. The whole point is that such a
supra-thermal seed population of particles able to participate in DSA was assumed to exist
a priori. By contrast, in real astrophysical shock waves there are separate mechanisms that
pre-accelerate particles strong enough such that DSA can finally take over. The responsible
processes are inherently linked to the microphysical details of collisionless shocks and
must therefore be investigated with (particle-in-cell) simulations (for further details see
Caprioli et al., 2015). From now on, we treat the injection momentum as some model
parameter that has to be specified a priori or related to other (time-dependent) quantities,
like the shock velocity. We will return to this topic at the end of chapter 3.

There is an additional issue with the standard prediction of DSA: the distribution function
does not have a natural momentum cut-off, which leads to a diverging CR energy for 𝛼 ≤ 4 if the
CR spectrum is integrated from the injection momentum up to infinity:

𝐸tot = 4π
∞∫

𝑝min

𝑓 (𝑝)𝑝2𝐸CR,kin(𝑝) d𝑝 (2.44)

∝
∞∫

𝑝min

𝑝−𝛼+2
(√︃

(𝑝𝑐)2 + (𝑚p𝑐2)2 − 𝑚p𝑐
2
)

d𝑝 (2.45)

𝑝min≫𝑚p𝑐−−−−−−−−→
𝐸≈𝑝𝑐

𝐸tot ∝
∞∫

𝑝min

𝑝−𝛼+2+1 d𝑝 =

{
𝑝4−𝛼��∞

𝑝min
for 𝛼 ≠ 4

ln(𝑝)
��∞
𝑝min

for 𝛼 = 4
→ ∞ for 𝛼 ≤ 4 . (2.46)

This problem cannot be curated by the simple argument that 𝛼 = 3𝜎/(𝜎 − 1) > 4 for 𝜎 < 4
and 𝜎 = 4 is never reached exactly, because it would require an infinitely high Mach number.
The reason is twofold – firstly, upstream escape of relativistic protons, which was neglected so
far, will increase the compression ratio from 𝜎 = 4 to 𝜎 = 7, because the gas in front of the
shock is then relativistic and has an adiabatic index of 𝛾 = 4/3 instead of 𝛾 = 5/3, which will be
discussed in the next section??. Subsequently, the total CR energy would hopelessly diverge.
Secondly, no real acceleration process, no matter how efficient, is able to accelerate a particle
from the thermal pool to infinite energy within a finite amount of time. Hence, imposing an
upper cut-off of the distribution function is physically well motivated.

As pointed out e.g. by Blasi (2013) the absence of a maximum energy is related to the
assumption of stationarity, meaning that a time-independent distribution function is imposed,
which can only be fulfilled if particles can escape from the accelerator. It was nicely demonstrated
by Caprioli et al. (2009) that a maximum momentum 𝑝max naturally arises from the solution of
the stationary CR transport equation if the boundary condition 𝑓 (𝑥 = 𝑥0, 𝑝) = 0 is used, where
𝑥0 < 0 is some finite location upstream of the shock. In fact, the resulting distribution function
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at the shock front 𝑓0(𝑝) converges to a power law 𝑓0(𝑝) ∝ (𝑝/𝑝max)−𝛼 for 𝑝 ≪ 𝑝max, but is
exponentially suppressed for 𝑝 ≫ 𝑝max, where 𝑓0(𝑝) ∝ exp(−𝑝/𝑝max). It can be shown that this
really corresponds to an upstream particle escape by calculating the CR flux at 𝑥 = 𝑥0, which is
indeed non-zero and directed towards upstream infinity. Note, however, that this procedure differs
significantly from the derivation in section 2.3, where we integrated up to upstream infinity and
expressed the solution of the transport equation in terms of 𝑓−(𝑝) B 𝑓 (𝑥 = −∞, 𝑝). Moreover,
setting a free escape boundary at a finite distance ahead of the shock is only appropriate when
the shock speed is constant in time, which is of course not the case for the decelerating forward
shock of a supernova remnant.





3 A model for cosmic ray spectra from
supernova remnants

In the main chapter of this Master’s thesis, we introduce a model for the cosmic ray spectrum
that is released into the interstellar medium by a supernova remnant. It will serve as a sub-grid
recipe for CR seeding by supernova remnants in cosmological hydrodynamical simulations, as
explained in chapter 4. The basic theory behind all this is of course by no means original, but has
been published several years, if not decades ago. However, two crucial papers on this subject
appeared fairly recently, namely Cristofari et al. (2021) and Morlino and Celli (2021). Each of
them contains a model for cosmic rays produced by supernova remnants that takes new results
from plasma physics into account (especially the latest findings of particle-in-cell simulations)
and allows estimating to what extent energies above the knee in the PeV range can be achieved
by CR protons. The model in this thesis is a mixture of these two articles and therefore relies
heavily on them – they are the most important references in the bibliography by far.

Of course, any model that is still simple enough to allow a semi-analytical treatment, can only
be a caricature of reality. This deficit lies in the very nature of virtually all sub-grid recipes that
are used in large-scale cosmological simulations of systems as complex as whole galaxies or even
galaxy clusters. Immediately the question arises how reliable, realistic and useful this model
really is. A big advantage of an analytical model, that is build step by step from basic principles,
is of course its transparency with respect to all assumptions and simplifications that went into it.
They will be discussed in great detail throughout this thesis. The model’s usefulness can only be
addressed a posteriori after running simulations and investigating if there are any new insights or
differences to simpler models. From the famous philosophical principle of “Ockham’s razor” it
is clear that a complicated model that essentially leads to the same conclusions as a simpler one
does not really have a scientific value, apart from demonstrating that the simplifications were not
too crude in the first place.

3.1 Different types of supernovae
We follow the notation of Cristofari et al. (2020, 2021), who distinguish amongst three types
of SNe in their cosmic-ray model, which they call Ia, II and II* (see table 3.1 for a general
overview). As already mentioned in section 1.1, there is an ambiguity between the physical
explosion mechanism and the spectral classification. Since the proposed abbreviations are quite
handy, we will also adopt them here and emphasize their precise meaning:

1. Thermonuclear supernovae have the unique spectral type Ia (so in this case the notation
above is “unproblematic”). Although no progenitor star has been certainly identified
through observations, there are strong hints (e.g. from SN 2011fe) that the exploding star
is a carbon-oxygen white dwarf that accretes matter from a binary companion until the
Chandrasekhar mass of ∼ 1.4 M⊙ is reached. When this happens a runaway thermonuclear
fusion is triggered that tears the white dwarf apart, so that no stellar remnant (besides a
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surviving companion) is left. An alternative scenario is provided by so-called double-
degenerated models, where the exploding star is a carbon-oxygen white dwarf and its
companion is also a white dwarf. According to Maguire (2017), “there are many theoretical
predictions of what exactly triggers the primary white dwarf to explode: the steady accretion
of the secondary white dwarf onto the primary which reaches the Chandrasekhar mass and
explodes, the violent merger of the two white dwarfs which triggers a carbon detonation,
or the so-called “double-detonation” scenario, where the detonation of He on the primary
white-dwarf surface triggers a carbon detonation in its core that unbinds the star.”

2. Core-collapse supernovae are here referred to as type II. Their progenitors are massive
stars (above ∼8 M⊙) in the final stages of nuclear burning when silicon is fused to iron.
Typically, the progenitors are red supergiants, but in rare cases also a blue supergiant can
explode – a famous example is SN 1987A in the Large Magellanic Cloud. Since iron
has the highest binding energy of all nuclei, no energy release through nuclear fusion is
possible after this stage. If the inactive iron core exceeds the Chandrasekhar mass, it can no
longer be supported through electron degeneracy pressure and will start to collapse into a
neutron star or a black hole. The bounce-back of the infalling stellar envelope together with
heating from neutrinos (released through electron capture of protons) trigger an explosion.

3. To illustrate the wide range of explosion energies resulting from type II, Cristofari et al.
(2020) also introduce a class of very rare, high-energy core-collapse SNe that they call
II*. In the following we assume that the ejecta of these special supernovae have a kinetic
energy that is five times larger than the benchmark value of 𝐸SN ≈ 1044 J. By contrast, the
ejecta mass is set to a rather low value of just 1 M⊙, which enables the cosmic rays to gain
very high energies, as found by the parameter study in Cristofari et al. (2020).

One of the most important differences between thermonuclear and core-collapse supernovae
is that the former expand in a uniform interstellar medium, whereas the latter expand in the
circumstellar wind caused by the massive progenitor star. Building a realistic model for shock
waves of type II supernovae is extremely challenging, because stellar winds of high-mass (red
giant) stars are known to be clumpy and asymmetrical. Moreover, the mass loss does not happen
at a constant rate, but might vary significantly over time. Consequently, it is important to keep
in mind that the simple density profile of the ambient medium, which is discussed in the next
section, is not very adequate for core-collapse SNe.

Additionally, one should take into account that type II supernovae can only occur in galaxies
with ongoing star formation, because stars with masses ≳8 M⊙ have main-sequence lifetimes
of ≲35 Myr. On the contrary, SNe Ia will explode between a few 100 Myr and a few Gyr after
formation. That is why in numerical simulations a SN II is treated as prompt event that occurs in
the same timestep as star formation (see chapter 4). One should also keep in mind that the usually
quoted SN frequencies of 2 (or 3) per century (II) and 1 per century (Ia) are estimates for spiral
galaxies similar to the Milky Way. In elliptical galaxies with no current star formation and an old
stellar population one would expect that almost 100% of all SNe are of type Ia. Last but not least,
we assume that 1.5% of all core-collapse supernovae are of type II*, which is the value required
by Cristofari et al. (2020) to reproduce the observed CR spectrum with their model. Note that
all these considerations on the frequency of certain supernova events are actually not needed
for the computation of the CR spectrum, but it is very important for the stochastic seeding in a
cosmological model.
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3.2 Evolution of supernova remnants
The temporal evolution of a supernova remnant is often simplified by dividing it into four phases
(see e.g. Longair, 2011, chap. 16.7; Vink, 2020, chap. 5 and references therein):

1. Ejecta-dominated phase (also called free-expansion phase): During the earliest phase of
the supernova remnant evolution the ejected material from the progenitor star is accelerated
to very high velocities of about 104 km s−1. This greatly exceeds the speed of sound in the
interstellar medium (∼15 km s−1), which leads to the formation of a shock wave. Since the
ejecta mass is larger than the swept-up mass in this early stage, the shock front expands
with nearly constant velocity.

2. Sedov-Taylor phase (also called adiabatic phase): Once the swept-up mass becomes larger
than the ejecta-mass the expansion velocity slows down and the supernova remnant enters
the second phase. The shock radius is described by the self-similar adiabatic blast-wave
solution 𝑅sh ∝ 𝑡2/5 that was found independently by Sedov and Taylor1. Since the shock
wave created by the outermost, fastest moving ejecta slows down, the inner unshocked
material will eventually catch up with the supernova blast wave (also called forward shock).
If this collision happens with supersonic speed (relative to the sound speed inside the
remnant), then a second shock wave (the so-called reverse shock) will form on the inner
edge of the compressed outer layers. The reverse shock then propagates inward to the
origin while reheating the ejected gas.

3. Pressure-driven phase (also called snowplough phase): In this phase radiative losses
through line emission of heavy ions become important and the evolution of the remnant is
now determined by conservation of momentum (instead of energy). In the inner region
of the remnant the decreasing temperature leads to a compression in order to preserve
pressure balance at the shock front with the ambient medium. Consequently, the shell
turns into a dense “snowplough”.

4. Merging phase: Once the expansion velocity of the supernova remnant becomes smaller
than the speed of sound or the Alfvén velocity it will start to disperse in the interstellar
medium.

When modelling the cosmic ray spectra produced by supernova remnant, only the first two phases
are relevant, because we will assume that diffusive shock acceleration stops after the Sedov-Taylor
phase, i.e. when the snowplough phase begins at. To calculate the snowplough time 𝑡SP, we use
the parametrisation from Cioffi et al. (1988), which was also reused by Morlino and Celli (2021):

𝑡SP = 9.685 · 107
(
𝐸SN

1044 J

)3/14 (𝑛ISM

m−3

)−4/7
yr . (3.1)

However, one should keep in mind that the Mach number at 𝑡SP is still ≳10 and it is not entirely
clear, why DSA does not continue thereafter. Possible reasons might be a fragmentation of
the shell behind the shock or strong ion-neutral damping of MHD perturbations (meaning
less efficient CR scattering) when the shock wave propagates in ordinary ISM during the late
evolutionary stages (cf. Morlino and Celli, 2021, and references therein).

1Note that the exponent 2/5 only holds for a uniform ambient medium. Below, we will encounter a generalized
Sedov-Taylor solution for power-law density profiles.
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A special class of self-similar solutions that describe the temporal evolution of supernova
remnants from the beginning of the ejecta-dominated phase until the end of the Sedov-Taylor
phase is extensively discussed in Truelove and McKee (1999) (see also the erratum Truelove and
McKee, 2000). Roughly speaking, a self-similar phenomenon reproduces itself in time and space,
meaning that it looks similar on different scales. A prototypical example for this behaviour are
fractal structures, like the Koch curve or the Mandelbrot set. To be more precise, a self-similar
function 𝑓 (𝑥) of one variable fulfils the scaling relation

𝑓 (𝜆𝑥) = 𝜆𝑎 𝑓 (𝑥) (3.2)

for arbitrary 𝜆 and fixed 𝑎. For one-dimensional functions self-similarity corresponds to
power-laws; a generalization to higher dimensional functions can be found in Barenblatt (2003).

In the following, we model the internal structure of the supernova remnant at 𝑟 < 𝑅sh as a
spherically symmetric, blast wave with a linear velocity profile, which was introduced by Ostriker
and McKee (1988) and is also similar to the initial conditions in Truelove and McKee (1999):

𝑣(𝑟, 𝑡) =
(
1 − 1

𝜎

)
𝑣sh(𝑡)
𝑅sh(𝑡)

𝑟 , 𝑟 < 𝑅sh . (3.3)

As pointed out in Ptuskin and Zirakashvili (2005), this is a good approximation for Sedov’s
solution and a very good description of the ejecta-dominated phase. The normalization is chosen
such that 𝑣(𝑡, 𝑅sh(𝑡)) = (1 − 1/𝜎)𝑣sh(𝑡). This is the velocity of the downstream plasma right
behind the shock front as seen in the (observer’s) reference frame, where the shock front moves
with velocity 𝑣sh; in the shock rest frame the downstream velocity would be 𝑣2 = 𝑣1/𝜎 = 𝑣sh/𝜎.

The initial density profile is a bit more complicated and consists of two contributions, namely
(1) the ejecta profile 𝜌ej that is characterized by a “structure function” 𝑓 (𝑟/𝑅ej) and (2) the
density 𝜌amb of the ambient medium, which we assume to be a power-law with index 𝑠 and
normalization 𝜌𝑠:

𝜌(𝑟, 𝑡) =
{
𝜌ej(𝑟) =

𝑀ej

𝑅3
ej (𝑡)

𝑓

(
𝑟

𝑅ej (𝑡)

)
𝑟 ≤ 𝑅ej(𝑡) ,

𝜌amb(𝑟) = 𝜌s𝑟
−𝑠 𝑟 > 𝑅ej(𝑡) .

(3.4)

The dimensionless structure function again consists of two contributions, namely (1) an inner
uniform core region from 𝑟 = 0 to 𝑟 = 𝑅core and (2) an outer power-law envelope region with
exponent 𝑘 from 𝑟 = 𝑅core to 𝑟 = 𝑅ej:

𝑓 (𝑤) =
{
𝑓0, 0 ≤ 𝑤 ≤ 𝑤core ,

𝑓0(𝑤/𝑤core)−𝑘 𝑤core ≤ 𝑤 ≤ 1 . (3.5)

Here we introduced the dimensionless radii 𝑤 = 𝑟/𝑅ej and 𝑤core = 𝑅core/𝑅ej. The ejecta radius
in equation (3.4) is defined as 𝑅ej(𝑡) B 𝑣ej𝑡, where 𝑣ej is the initial maximum ejecta velocity, i.e.
the gas velocity at the outermost surface of the ejecta at the beginning of the free-expansion
phase. For the hypothetical situation where there is no ambient medium that could decelerate the
expanding material, the radius of the outermost ejecta surface will be exactly 𝑅ej(𝑡). On the other
hand, the core radius 𝑅core(𝑡) appearing in the structure function (3.5) is introduced to define the
boundary between the inner uniform core region and an outer power-law envelope region. Again,
the time dependency can be understood in terms of a constant core velocity, i.e. 𝑅core(𝑡) B 𝑣core𝑡.

As discussed in Truelove and McKee (1999), a power-law ejecta envelope with index 𝑘 ≥ 3
requires the presence of a core in order for 𝑀ej to be finite. Similarly, 𝑠 < 3 is required so that the
swept-up ambient mass 𝑀ej remains finite. This can be understood from the general definition of
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the integrated mass 𝑀 (𝑅) for a spherically symmetric density profile,

𝑀 (𝑅, 𝑡) =
𝑅∫

0

4π𝑟′2𝜌(𝑟′, 𝑡) d𝑟′ , (3.6)

which corresponds to the sum of all mass shells up to a certain radius 𝑅. By making the
simplifying assumption that 𝜌 is time-independent, we define the ejecta mass 𝑀ej and the mass
𝑀swep of ambient material the has been swept-up until a certain time 𝑡 as

𝑀ej B 𝑀 (𝑅ej) , 𝑀swep(𝑡) B 𝑀 (𝑅sh(𝑡)) . (3.7)

Consequently, the above constraints for 𝑘 and 𝑠 come from the requirement that 𝑟2𝜌(𝑟) should be
locally integrable around 𝑟 = 0.

For the ambient density profile we only consider two cases in this thesis, namely 𝑠 = 0 and
𝑠 = 2. The first case corresponds to the explosion of a thermonuclear supernova of type Ia within
a uniform medium, so one just sets 𝜌𝑠 = 𝜌ISM = 𝑚 𝑛ISM, where 𝑚 = 𝑚p(1 + 4 𝑓He)/(1 + 𝑓He)
is the mean molecular weight of the interstellar medium when elements heavier than helium
are neglected, as shown in equation (1.4). The second case corresponds to the density profile
of a circumstellar wind with constant velocity 𝑣wind (in the following we will always assume
𝑣wind = 10 km s−1). This can be seen as follows: From the continuity equation in spherical
coordinates one gets the mass-loss rate

¤𝑀 = 4π𝑟2𝜌(𝑟)𝑣wind ⇐⇒ 𝜌(𝑟) =
¤𝑀

4π𝑣wind
𝑟−2 , (3.8)

which implies 𝜌𝑠 = ¤𝑀/(4π𝑣wind) and 𝑠 = 2. Indeed, it is expected that the progenitor star of a
core collapse supernova (e.g. type II) is a red supergiant with a strong, slow and dust-driven wind
causing high-mass loss rates of up to 10−4 M⊙ yr−1. However, in rare cases the progenitor can
also be a blue supergiant, as mentioned before. In summary, we use the following parameters for
modelling the density profile of the ejected material, 𝜌ej(𝑟) ∝ 𝑟−𝑘 , and of the ambient medium,
𝜌amb(𝑟) ∝ 𝑟−𝑠:

𝑘 =

{
7 for type Ia SNe ,
9 for type II SNe ,

𝑠 =

{
0 for type Ia SNe ,
2 for type II SNe .

(3.9)

In accordance with Cardillo et al. (2015) we choose the parameter combinations 𝑠 = 0, 𝑘 = 7 and
𝑠 = 2, 𝑘 = 9. They can be motivated by matching measurements of the shock radii and velocities
for Cassiopeia A, the remnant of a core-collapse supernova that took place ∼350 years ago (see
Vink, 2020, chap. 5.6 and references therein).

As pointed out in Truelove and McKee (1999), the initial conditions of the supernova remnant
evolution introduce the three independent dimensional parameters, namely the ejecta mass
𝑀ej, the normalization 𝜌𝑠 of the ambient density profile and the kinetic energy 𝐸SN of the
ejecta. A simple dimensional analysis shows that they can be combined in a unique way to form
characteristic scales of length, time, and mass:

𝑀ch = 𝑀ej , (3.10)
𝑅ch = (𝑀ej/𝜌𝑠)1/(3−𝑠) , (3.11)

𝑡ch = 𝐸
−1/2
SN 𝑀

(5−𝑠)/(6−2𝑠)
ej 𝜌

−1/(3−𝑠)
𝑠 . (3.12)
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Figure 3.1: Evolution of the shock front of type Ia supernova remnant. Left: shock velocity 𝑣sh (𝑡). Right: shock
radius 𝑅sh (𝑡) (blue line). Note that after 𝑡 = 𝑡ST the function converges to the Sedov-Taylor solution 𝑅sh ∝ 𝑡2/(5−𝑠)
(orange line), where the normalization was chosen arbitrarily to make both lines coincide. The grey dashed line
marks the beginning of the snowplough phase at 𝑡SP ≈ 50 kyr (equation 3.1).

Tang and Chevalier (2017) proposed a simple analytical expression for the shock radius 𝑅sh(𝑡)
that is motivated by dimensional analysis and the asymptotic behaviour of 𝑅sh(𝑡). For 𝑘 > 5 they
obtain the following expression for the forward shock using two dimensionless quantities 𝜁 and 𝜉
that depend on the density profile:

𝑅sh(𝑡) = 𝑅ch
©«
(
𝜁

(
𝑡

𝑡ch

) (𝑘−3/(𝑘−𝑠))
)−𝑎

+
(
𝜉

(
𝑡

𝑡ch

)2
)−𝑎/(5−𝑠)ª®¬

−1/𝑎

. (3.13)

We now introduce the modified quantities 𝜁 B 𝜁 (𝑘−𝑠)/(𝑘−3) and 𝜉 B
√
𝜉 to slightly simplify the

notation and derive an expression for the shock velocity:

𝑅sh(𝑡) = 𝑅ch

((
𝜁
𝑡

𝑡ch

)−𝑎𝜆ED

+
(
𝜉
𝑡

𝑡ch

)−𝑎𝜆ST
)−1/𝑎

, (3.14)

𝑣sh(𝑡) =
d𝑅sh(𝑡)

d𝑡
=
𝑅ch
𝑡ch

(
𝑅sh(𝑡)
𝑅ch

)1+𝑎
(
𝜆ED𝜁

(
𝜁
𝑡

𝑡ch

)−𝑎𝜆ED−1
+ 𝜆ST𝜉

(
𝜉
𝑡

𝑡ch

)−𝑎𝜆ST−1
)
. (3.15)

The value for 𝑎 can be inferred from table 3.1 below and the exponent 𝜆 is given by

𝜆 =

{
𝑘−3
𝑘−𝑠 in the ED phase ,
2

5−𝑠 in the ST phase .
(3.16)

Plots of the shock radius and velocity for the parameters of a type Ia supernova are shown in
figure 3.1.

We now have a look at the limiting cases for short and long timescales, which were imposed a
priori in Tang and Chevalier (2017) in orderto obtain an explicit solution for the shock radius. For
this purpose, it is important to note that for the parameters in table 3.1 we always have 𝜆ED > 𝜆ST.
Hence, at early times the first term in parenthesis in equation (3.14) will dominate and vice
versa for late times. In particular, for 𝑡 → 0 the evolution of the forward shock is described by
the so-called self-similar driven wave (SSDW) solution with 𝑅sh(𝑡) ∝ 𝑡 (𝑘−3)/(𝑘−𝑠) that was first
introduced by Chevalier (1982) and is typical for an ejecta envelope with a steep (𝑘 > 5) density
profile, which is the case we are interested in. On the other hand, when 𝑡 → ∞ the shock radius
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Table 3.1: Parameters for the three different types of supernovae in our model: kinetic energy of ejecta 𝐸SN; ejecta
mass 𝑀ej; mass loss rate ¤𝑀 of progenitor star; rate of supernova events 𝜈SN (for a Milky Way like spiral galaxy);
power-law indices 𝑘 and 𝑠 of ejecta and ambient density profile; exponents 𝜆ED and 𝜆ST determining the shock
evolution during ED and ST phase; dimensionless normalization constants 𝜉 and 𝜁 used for 𝑅sh (𝑡); time 𝑡trans and
radius 𝑅trans at transition between ED and ST phase. Most of the parameters were directly copied from Tang and
Chevalier (2017).

Ia II II*
𝐸SN (J) 1044 1044 5 · 1044

𝑀ej (M⊙) 1 5 1
¤𝑀 (M⊙ yr−1) - 10−5 10−4

𝑣wind (km s−1) - 10 10
𝜈SN (yr−1) 1/100 1/50 0.015/50

𝑘 7 9 9
𝑠 0 2 2
𝜆ED 4/7 6/7 6/7
𝜆ST 2/5 2/3 2/3
𝑎 20.3 5.16 5.16
𝜉 2.026 3/(2π) 3/(2π)
𝜁 1.06 0.97 0.97

𝑡tran/𝑡ch 1.62 0.32 0.32
𝑅tran/𝑅ch 1.35 0.32 0.32

approaches the Sedov-Taylor solution, 𝑅sh(𝑡) ∝ 𝑡2/(5−𝑠) . Moreover, if the exponent 𝑎 → ∞,
then equation (3.14) represents an instantaneous transition form ED to ST phase (similar to the
piecewise definition of 𝑅sh(𝑡) in Truelove and McKee, 1999), whereas for 𝑎 → 0 this transition
happens infinitely slowly. This can be quantified by defining the transition time 𝑡trans and radius
𝑅trans = 𝑅sh(𝑡trans) as the time when the two terms on the right-hand side of equation (3.14) are
equal. A straightforward computation leads to the identity

𝜆ED − 𝜆ST =
(𝑘 − 5) (3 − 𝑠)
(5 − 𝑠) (𝑘 − 𝑠) , (3.17)

which yields

𝑡ST ≡ 𝑡tran = 𝑡ch

(
𝜉𝜆ST𝜁−𝜆ED

) 1
𝜆ED−𝜆ST

= 𝑡ch

(
𝜉

𝜁5−𝑠

) (𝑘−𝑠)/[(𝑘−5) (3−𝑠)]
, (3.18)

𝑅tran = 𝑅sh(𝑡trans) = 𝑅ch
𝜁

21/𝛼

(
𝑡tran
𝑡ch

) (𝑘−3)/(𝑘−𝑠)
= 𝑅ch

𝜁

21/𝛼

(
𝜉

𝜁5−𝑠

) (𝑘−3)/[(𝑘−5) (3−𝑠)]
. (3.19)

In the following, we will use the term “Sedov-Taylor time” rather than “transition time”, since the
former is more common in the scientific literature. It was also emphasized in equation 3.18 that
both terms stand for the same quantity.

3.3 Cosmic ray spectrum at the shock front
In our discussion about diffusive shock acceleration in chapter 2 it was assumed that the CR
distribution function is isotropic in momentum (in the fluid rest frame) and essentially one-
dimensional in its spatial coordinates. Since we consider a spherically symmetric supernova
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Figure 3.2: Downstream magnetization (magnetic energy per unit mass, expressed in CGS units) as a function of
shock velocity 𝑣sh. The black dotted-dashed lines correspond to calculations that use different values for the CR
efficiency 𝜉CR. In general, the data points seem to be better described when the acceleration efficiency is around
5%–10% (from Cristofari et al., 2022).

remnant, it is natural to write the CR distribution function as 𝑓 (𝑟, 𝑝, 𝑡), where 𝑟 is the radial
distance from the remnant centre and 𝑝 is the particle’s momentum in the rest frame of the
ambient ISM (upstream rest frame). Note that the momentum is essentially the same in the
upstream, downstream and shock rest frame, because the shock is non-relativistic, but the particle
is highly relativistic. Therefore, we will from now on simply refer to 𝑝 as the particle momentum
without any further (unnecessary) specifications concerning the reference frame. In chapter 2 we
saw that (to first order) particles accelerated at the shock have a power-law spectrum

𝑓sh(𝑝, 𝑡) B 𝑓 (𝑅sh(𝑡), 𝑝, 𝑡) = 𝐴(𝑡) (𝑝/𝑚p𝑐)−𝛼 Θ(𝑝 − 𝑝inj(𝑡)) exp(−𝑝/𝑝max(𝑡)) , (3.20)

so we neglect the spectral curvature that may arise if there is a strong precursor and particles of
different 𝑝 feel different compression ratios. The lower cut-off at the injection momentum 𝑝inj(𝑡)
is modelled with a Heaviside function, which could also be adopted for the upper cut-off (like
in Ptuskin and Zirakashvili, 2005). However, here we use an upper cut-off at some maximum
momentum 𝑝max (like in Morlino and Celli, 2021), which is not naturally embedded in standard
DSA, but introduced for physical reasons, as already mentioned in section 2.5. We also noted that
a maximum momentum and the exponential spectral cut-off naturally arise if the stationary CR
transport equation is solved by imposing a boundary condition at some finite location upstream
(cf. Caprioli et al., 2009).

Besides the two spectral cut-offs, we also include the time dependence of 𝑝inj(𝑡) and 𝑝max(𝑡)
a priori. The normalization function 𝐴(𝑡) can be determined by demanding that the total CR
energy is either ∼10% of the kinetic energy stored in the ejecta material2 or a fraction 𝜉CR of the
ram pressure at the shock. Here, we choose the second approach and therefore set

𝑃CR(𝑅sh)
!
= 𝜉CR 𝑃ram = 𝜉CR 𝜌amb 𝑣

2
sh , (3.21)

where 𝜌amb is the mass density of the ambient gas (cf. equation (3.4)) and 𝜉CR is also called
“acceleration efficiency”. This choice for the spectral normalization has the advantage that 𝜉CR

2This was part of the “energy argument” in section 1.4.1 supporting the paradigm that supernova remnants are
the main source of Galactic cosmic rays.
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can roughly be inferred from observations of SNRs, as shown in figure 3.2. Besides that, the
total CR energy of the final spectrum can then be calculated as a consistency check.

By inserting equation (C.13) for the CR pressure from appendix C (which is exact for ultra-
relativistic particles) into equation 3.21 and using the simple cut-off Θ(𝑝max(𝑡) − 𝑝) instead of
the exponential factor in equation (3.20), one obtains

𝜉CR 𝜌amb 𝑣
2
sh = 𝑃CR(𝑅sh) =

4π
3

∞∫
0

𝑓sh(𝑝) 𝑝3 𝑣(𝑝) d𝑝 =
4π
3

𝑝max (𝑡)∫
𝑝inj (𝑡)

𝐴(𝑡)
(
𝑝

𝑚p𝑐

)−𝛼
𝑝3 𝑣(𝑝) d𝑝

(3.22)

=⇒ 𝐴(𝑡) =
3𝜉CR𝜌amb𝑣

2
sh

4𝜋𝑐(𝑚p𝑐)4 Λ(𝛼, 𝑡)
, (3.23)

where we introduced the auxiliary function

Λ(𝛼, 𝑡) B
𝑝(𝑡)/(𝑚p𝑐)∫

𝑝inj (𝑡)/(𝑚p𝑐)

𝑥4−𝛼
√

1 + 𝑥2
d𝑥 . (3.24)

This normalization is frequently quoted in the literature, but strictly speaking only sensible for a
cut-off modelled by a step function. Instead, we use the following more consistent equation for
an exponential cut-off (the derivation is analogous):

Λ(𝛼, 𝑡) =
∞∫

𝑝inj (𝑡)/(𝑚p𝑐)

𝑥4−𝛼
√

1 + 𝑥2
exp

(
− 𝑥

𝑝max(𝑡)/(𝑚p𝑐)

)
d𝑥 . (3.25)

It turns out that Λ only weakly depends on the integral boundaries 𝑝inj(𝑡) and 𝑝max(𝑡), so they
affect the spectral shape more than the normalization. As discussed in section ??, it was expected
that non-linear effects of diffusive shock acceleration should result in a concave spectrum, which
is flatter than 𝑝−4. Although this is not compatible with the measured slope of the CR spectrum
detected in the Earth’s neighbourhood, it was still used in the earlier papers on cosmic ray
acceleration in SNRs. One example is Ptuskin and Zirakashvili (2005), where the parametrization
𝑓sh(𝑝) ∝ 𝑝−4+𝑎 with 0 < 𝑎 < 0.5 was used for the distribution of ultra-relativistic particles at
the shock. However, state-of-the-art PIC simulations strongly suggest a steeper spectrum at the
shock, so we adopt 𝑓sh(𝑝) ∝ 𝑝−4.3.

3.4 Magnetic field amplification
An important ingredient in our CR model is the description of 𝑝max,0(𝑡), which is defined as
the maximum proton momentum, which can be achieved through acceleration at the shock at a
certain time. There are several possibilities to model 𝑝max,0(𝑡). A particularly simple description,
that will be used in the following and was proposed by Celli et al. (2019); Morlino and Celli
(2021) assumes that 𝑝max,0(𝑡) increases linearly from the beginning of the SNR evolution up
to the Sedov-Taylor time (or the transition time, as it was called in section 3.2), where the
maximum momentum 𝑝M is reached. After that, the decreasing strength of the shock wave leads
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Figure 3.3: Parametrization for the maximum pro-
ton momentum at the shock 𝑝max,0 (𝑡) according to
equation (3.26). This is one of the key ingredients
of the whole CR model!
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Figure 3.4: Power spectrum F (𝑡) per unit log-
arithmic bandwidth for the perturbed component
𝛿𝐵1 (𝑡) of the upstream magnetic field according
to equation (3.36).

to less effective particle acceleration and hence to a decline of 𝑝max,0(𝑡), which is modelled by a
power-law with index 𝛿. Hence, we have (see figure 3.3)

𝑝max,0(𝑡) =
{
𝑝M (𝑡/𝑡ST) if 𝑡 ≤ 𝑡ST ,

𝑝M (𝑡/𝑡ST)−𝛿 if 𝑡 > 𝑡ST .
(3.26)

The momentum-dependent escape time 𝑡esc(𝑝) can be obtained through the following argument.
Before the transition time is reached, no escape is possible, because the maximum momentum
of particles that can still be confined at the shock (and therefore inside the SNR) increases
monotonically. Since every CR particle has a momentum 𝑝 ≤ 𝑝M, after 𝑡ST there will be a time
𝑡esc ≥ 𝑡ST, where

𝑝 > 𝑝max,0(𝑡esc) = 𝑝M (𝑡esc/𝑡ST)−𝛿 . (3.27)

This condition can be written explicitly in terms of the escape time, yielding

𝑡esc(𝑝) =
{
𝑡SP if 𝑝 ≤ 𝑝max,0(𝑡SP) ,
𝑡ST (𝑝/𝑝M)−1/𝛿 if 𝑝 > 𝑝max,0(𝑡SP) .

(3.28)

The case distinction is made, because it is assumed that the lowest energy particles escape at
latest when the snowplough phase begins at 𝑡SP and particle acceleration stops (as mentioned
before, particles are only accelerated during the first two phases of the SNR evolution).

Another way to obtain the maximum permissible proton momentum as a function of time
was proposed by Cristofari et al. (2020, 2021) and relies on the microphysics of plasma waves
that enable efficient CR scattering, which is required for DSA. Since we will not directly use
this approach in this Master’s thesis, we will only discuss the basic ideas very briefly; detailed
explanations can be found e.g. in Schure and Bell (2013) or in the review Schure et al. (2012).
The preferred instabilities responsible for the generation of plasma waves are caused by CRs that
either escape upstream or are reflected back into the inflowing gas when the shock is supercritical,
which is always the case for high-Mach number shocks of supernova remnants. On the one
hand, streaming instabilities can produce resonant plasma modes, whose wavelengths coincide
with the Larmor radius 𝑟L of a CR proton with given momentum. As a consequence, CRs can
efficiently scatter at those waves, allowing for diffusive confinement at the shock and therefore
efficient particle acceleration. This resonance condition is visualized quite intuitively in figure 3.5.
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Figure 3.5: Schematic picture of a charged particle travelling through different magnetic field configurations. This
figure was taken from Reichherzer et al. (2022) and contains much more information than is required in this section.
The main point is the following: if the charged particle has a large Larmor radius compared to magnetic field
irregularities (top left), then it will just spiral around the filed lines and propagate quasi-ballistically. However,
if the Larmor radius becomes comparable to the magnetic field perturbations, the particle will gradually change
its pitch-angle, which results in resonant scattering. This is a pictorial explanation for the resonance condition
𝑘max = 1/𝑟L mentioned in the text.

However, Bell (2004) found that non-resonant hybrid modes grow much faster, with the caveat
that the fastest growing mode has a wave number 𝑘max much smaller than 1/𝑟L. Nevertheless,
cosmic ray scattering becomes possible thanks to the growth of eddies that saturate when the
resonance condition 𝑘max ≈ 1/𝑟L is reached. Typically, saturation is reached after a few (∼5)
e-folds of growth, which translates into the following condition for the maximum momentum:(

𝑝max,0(𝑡)
𝑚p𝑐

)𝛼−3
=

3𝑒𝑅sh(𝑡)
10𝑚p𝑐

√
𝜇0𝜌

𝑐

𝜉CR𝑣sh(𝑡)2

(𝛼 − 3)Λ(𝛼, 𝑡) . (3.29)

Without question this approach is more physical, since it is based on a consistent treatment
of the Bell instability and no free parameter 𝑝M describing the maximum achievable proton
momentum has to be introduced by hand. However, the resulting expression for 𝑝max,0 is more
complicated than the simple power-law (3.26) from above, so the escape time cannot be obtained
by an explicit inversion and other strategies have to be used, which might be explored in future
work. Another complication arises, because the fast growing Bell instability cannot be excited if
the shock speed drops below a critical value, 𝑣sh < 𝑣

∗
sh, which is derived from the condition that

saturation pressure of the resonantly amplified upstream magnetic field equals that of the Bell
instability, i.e. 𝑃B1,res = 𝑃B1,Bell. As shown in Diesing and Caprioli (2021), the critical velocity
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can be expressed through the Alfvén speed,

𝑣∗sh =

√︂
𝑐 𝑣𝐴

6
≈ 570 km s−1 , (3.30)

where the numerical result holds for typical values of 𝐵ISM and 𝑛ISM. Consequently, 𝑝max,0(𝑡)
has to be calculated from the resonant streaming instability once the shock speed has dropped
below 𝑣∗sh, which will typically happen before the snowplough phase is reached (cf. figure 3.1).

After clarifying the treatment of the maximum proton momentum at the shock 𝑝max,0(𝑡) in
equation (3.26), we now discuss how the amplified magnetic fields upstream and downstream
are calculated. Since we follow exactly the detailed treatment in Morlino and Celli (2021), only
the main points will be repeated here. First of all, the time 𝑡acc(𝑝) that is needed to accelerate a
proton to a given momentum 𝑝 via DSA is given by (see Vink, 2020, chap. 11.2 for a detailed
derivation)

𝑡acc ≈
8𝐷1

𝑣2
sh
. (3.31)

The upstream diffusion coefficient 𝐷1 resulting from pitch-angle scattering of CRs at magnetic
turbulences is (see Blasi, 2013, for a derivation from pitch-angle scattering)

𝐷1(𝑝, 𝑡) =
𝐷B(𝑝)
F (𝑡) . (3.32)

The so-called Bohm diffusion coefficient, which we already encountered in section 1.4, is defined
as

𝐷B B
1
3
𝑟L𝑐 . (3.33)

This is the minimum possible value for the CR diffusion coefficient, because the scattering mean
free path is assumed to be equal to the CR Larmor radius, which requires that the magnetic
field is disordered on this length-scale. For even smaller irregularities in the magnetic field, CR
scattering becomes inefficient (see figure 3.5). F (𝑡) is the magnetic logarithmic power spectrum,
which is usually defined as a function of wave number 𝑘:(

𝛿𝐵(𝑘)
𝐵0

)2
=

∫ F (𝑘′)
𝑘′

d𝑘′ =
∫

F (𝑘′) d ln(𝑘′) . (3.34)

Hence, F (𝑘) is the energy density of the turbulent magnetic field component 𝛿𝐵 normalized
by that of the ordered field 𝐵0 per unit logarithmic bandwidth. This can be understood as a
function of time by evaluating F at the resonant wave number 𝑘res(𝑡) = 1/𝑟L(𝑝max,0(𝑡)), where
CR scattering is most efficient.

By assuming that 𝑝max,0(𝑡) is determined by the age-limited condition that 𝑡acc corresponds to
the momentary age of the SNR, an explicit expression for F (𝑡) can be obtained as follows:

F (𝑡) = 𝐷𝐵

𝐷1
=
𝑟L𝑐

3

(
𝑡𝑣2

sh
8

)−1

=
𝑝max,0(𝑡)𝑐

3𝑒𝐵0

8
𝑡𝑣sh(𝑡)2 =

8
3𝑒𝑐𝐵0𝑡

(
𝑣sh(𝑡)
𝑐

)−2
𝑝max,0(𝑡) . (3.35)

Inserting equation (3.26) for 𝑝max,0(𝑡) yields (see figure 3.4)

F (𝑡) = 8 𝑝M
3 𝑒𝐵0 𝑐 𝑡ST


( 𝑣sh
𝑐

)−2
𝑡 < 𝑡ST ,( 𝑣sh

𝑐

)−2
(
𝑡
𝑡ST

)−𝛿−1
𝑡 ≥ 𝑡ST .

(3.36)
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Figure 3.6: Amplified magnetic flux density of the supernova remnant. Left: amplified, perturbed component of
the upstream magnetic field 𝛿𝐵1 (cf. equation 3.39). Right: total amplified downstream magnetic field 𝐵2,tot (cf.
equation 3.44).

After these preparations we come to the magnetic flux density. The total magnetic field
upstream of the shock can be written as the geometric sum of the ordered background field 𝐵0
in the ISM (typically 𝐵0 ≈ 0.3 nT) and the self-generated magnetic field 𝛿𝐵1 caused by CR
streaming instabilities immediately upstream of the shock:

𝐵1,tot(𝑡) =
√︃
𝐵2

0 + 𝛿𝐵
2
1(𝑡) . (3.37)

In Morlino and Celli (2021) Bohm-like diffusion of CRs was assumed, meaning that the power
spectrum is related to the magnetic field via

F −1 =

(
𝐵0
𝛿𝐵1

)
+

(
𝐵0
𝛿𝐵1

)2
. (3.38)

This quadratic equation has one positive root, namely

𝛿𝐵1(𝑡) =
𝐵0
2

(
F (𝑡) +

√︁
4F (𝑡) + F 2(𝑡)

)
. (3.39)

This allows us to calculate 𝛿𝐵1(𝑡) (and therefore also 𝐵1,tot(𝑡)) from (3.36). The result is plotted
in figure 3.39.

Calculating the downstream magnetic field is a bit more trickier, since several effects play a
role, namely adiabatic losses and damping. The ordered component is diluted as

𝐵2
2,0(𝑟, 𝑡) =

𝐵2
0

3

[(
𝑅sh(𝑡)
𝑟

)4
+ 2𝜎2𝐿6(𝑡0, 𝑡)

(
𝑅sh(𝑡)
𝑟

)2
]
, 𝑡0 = 𝑡0(𝑟, 𝑡) , (3.40)

whereas the turbulent component of the downstream field suffers adiabatic losses and non-linear
damping (given by the exponential suppression):

𝛿𝐵2
2(𝑡) =

𝛿𝐵2
1

3

[(
𝑅sh(𝑡)
𝑟

)4
+ 2𝜎2𝐿6(𝑡0, 𝑡)

(
𝑅sh(𝑡)
𝑟

)2
]

e−(𝑡−𝑡0)Γnld , 𝑡0 = 𝑡0(𝑟, 𝑡) . (3.41)

The simplest approach towards the damping term is to assume that it is a constant, so Γnld =

1/(3 · 103 yr), but see also the more involved treatment of Ptuskin and Zirakashvili (2003). The
adiabatic loss function 𝐿 (𝑡0, 𝑡) and the time 𝑡0(𝑟, 𝑡), when a plasma element was shocked, will
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be properly introduced in the next section. Additionally, turbulent magnetic field amplification
downstream of the shock is included through a very elementary ansatz, where the magnetic
energy density is assumed to be a fixed fraction 𝜉B of the shock kinetic energy:

𝛿𝐵2
2,turb(𝑡)
2𝜇0

= 𝜉B
𝜌amb𝑣

2
sh(𝑡)

2
. (3.42)

The resulting turbulently amplified field is calculated by including damping, whereas compression
is neglected (𝜎 = 1):

𝐵2
2,turb =

𝛿𝐵2
1,turb

3

[(
𝑅sh(𝑡)
𝑟

)4
+ 2𝐿6(𝑡0, 𝑡)

(
𝑅sh(𝑡)
𝑟

)2
]

e−(𝑡−𝑡0)Γnld , 𝑡0 = 𝑡0(𝑟, 𝑡) . (3.43)

Finally, the total magnetic field strength is the geometric sum of the ordered, the self-generated
and the turbulent components, resulting into

𝐵2
2,tot(𝑟, 𝑡) = 𝐵

2
2,0 + 𝛿𝐵

2
2 + 𝐵

2
2,turb

=

[(
𝑅sh(𝑡)
𝑟

)4
+ 2𝜎2𝐿6(𝑡0, 𝑡)

(
𝑅sh(𝑡)
𝑟

)2
]

1
3

(
𝐵2

0 + 𝛿𝐵
2
1(𝑡) e−(𝑡−𝑡0)Γnld

)
+

[(
𝑅sh(𝑡)
𝑟

)4
+ 2𝐿6(𝑡0, 𝑡)

(
𝑅sh(𝑡)
𝑟

)2
]
𝛿𝐵2

2,turb

3
e−(𝑡−𝑡0)Γnld .

(3.44)

In figure 3.6 the total downstream magnetic field is plotted as function of radius for different
fixed values of 𝑡.

3.5 Energy loss mechanisms
In this section we discuss three energy loss mechanisms that are important for cosmic rays trapped
inside a SNR, namely synchrotron, inverse Compton and adiabatic losses. Other processes,
like ionization losses or bremsstrahlung will not be treated here, because they are much less
significant. For an extensive overview and numerical values of typical loss timescales we refer to
Longair (2011, chap. 16.2).

We begin with radiative losses from (1) synchrotron radiation that is emitted by high-energy
charged particles gyrating in a magnetic field and (2) inverse Compton scattering of cosmic rays
with photons from the interstellar radiation field, where the photon gains energy that is lost by
the cosmic ray particle. Here, we solely focus on CR electrons, as will be explained below. The
pitch angle-averaged energy loss of both types of radiation can be written most generally as:

d𝐸
d𝑡

= −4
3
𝜎𝑇𝑐𝑢𝛾

2
( 𝑣
𝑐

)2
= − 2

3𝜇0
𝜎𝑇𝑐𝐵

2
(
𝐸

𝑚e𝑐2

)2 ( 𝑣
𝑐

)2
, (3.45)

where 𝑢 is the energy density of either the magnetic field or the radiation field. 𝐸 = 𝛾𝑚e𝑐
2 is the

total relativistic energy (rest mass plus kinetic energy) of an electron with charge 𝑞 = −𝑒, mass
𝑚e and Lorentz factor 𝛾 B (1 − 𝑣2/𝑐2)−1/2. The Thomson cross section is defined as

𝜎𝑇 =
8π
3

(
𝑒2

4π𝜀0𝑚e𝑐2

)2

.
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In the following we adopt the approach in Morlino and Celli (2021) and use the ultra-relativistic
approximation (𝑣 ≈ 𝑐) of equation (3.45):

d𝐸
d𝑡

= −4
3
𝜎𝑇𝑐𝑢𝛾

2 = −32π
9

(
𝑒2

4π𝜀0𝑚e𝑐2

)2

𝑐𝑢𝛾2 (3.46)

=⇒
(
d𝐸
d𝑡

)
syn

= − 2
3𝜇0

𝜎𝑇𝑐𝐵
2𝛾2 . (3.47)

In the first line the general mass dependence d𝐸 /d𝑡 ∝ 𝑚−2 is explicitly shown. One sees
immediately, that energy losses are significantly stronger for electrons than for protons. In the
second line we set 𝑢 = 𝑢𝐵 = 𝐵2/(2𝜇0) in order to express the synchrotron power through the
magnetic flux density, which has a typical ISM value of 𝐵 ≈ 0.3 nT. As discussed in the previous
section, the downstream magnetic field 𝐵2 in a SNR is expected to be significantly amplified.

On the other hand, the interstellar radiation field is strongly dependent on the position within
a galaxy and consists of several different sources, like the CMB, starlight, dust emission or
non-thermal radio synchrotron emission (for details see e.g. Draine, 2011, chap. 12). Here we
consider an ISRF consisting of the CMB and an infrared, an optical and an ultraviolet component:

𝑢rad = 𝑢CMB + 𝑢IR + 𝑢opt + 𝑢UV = (0.26 + 0.02 + 0.2 + 0.43) MeV m−3 . (3.48)

The numerical values are from Morlino and Celli (2021), who considered an arbitrary source
distance of 4 kpc from the galactic centre. Since synchrotron and inverse Compton loss rates are
described by the same formula (3.46), it is convenient to define a so-called equivalent magnetic
field 𝐵eq for a given radiation field 𝑢rad via 𝐵eq B

√︁
2𝜇0𝑢rad ≈ 0.61 nT. Therefore, both types of

radiative energy losses can be combined as(
d𝐸
d𝑡

)
rad

=

(
d𝐸
d𝑡

)
syn

+
(
d𝐸
d𝑡

)
IC

= − 2
3𝜇0

𝜎𝑇𝑐

(
𝐸

𝑚e𝑐2

)2 (
𝐵2

2,tot + 𝐵
2
eq

)
= −𝐴rad𝐸

2𝐵2
eff . (3.49)

In the last step we defined the constant 𝐴rad B 2𝜎𝑇/(3𝜇0𝑚
2
e𝑐

3) and the “effective magnetic field”
𝐵2

eff (𝑡) B 𝐵2
2,tot(𝑡) + 𝐵

2
eq. This ordinary differential equation is quite handy and allows us to

motivate the loss time as

𝜏loss B

����𝐸¤𝐸
���� = (

𝐴rad𝐸 𝐵
2
eff

)−1
. (3.50)

This definition is indeed plausible and natural, since for a time-independent magnetic flux density
the differential equation ¤𝐸 = −𝐴rad𝐸

2𝐵2
eff has the exact solution 𝐸 (𝑡) = 𝐸 (𝑡0) (1 + (𝑡 − 𝑡0)/𝜏)−1

with 𝜏 B (𝐴rad𝐵
2𝐸 (𝑡0))−1, which is essentially the same time scale as above. More specifically,

one obtains the total/synchrotron/IC loss time if one replaces ¤𝐸 by ¤𝐸rad/ ¤𝐸syn/ ¤𝐸IC and if one
inserts 𝐵eff/𝐵2,tot/𝐵eq for 𝐵. Note that although the ISM magnetic flux density 𝐵ISM ≈ 0.3 nT
and the equivalent field of the ISRF 𝐵eq = 0.61 nT are comparable in magnitude, within a SNR
the magnetic field is significantly amplified so that synchrotron losses will dominate over IC
losses due to the shorter timescale. Hence, only in galactic environments with a high radiation
field, like the central region, IC losses will be important.

As already emphasized, the radiative losses are only considered for electrons inside the SNR
and ignored for protons, because the timescales differ by a factor (𝑚p/𝑚e)2 ≈3.4 · 106. However,
both particle species equally suffer from adiabatic losses that originate from the work that has
to be done against the expanding shell (see the detailed discussion in appendix E). Again, we
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Figure 3.7: Adiabatic loss function 𝐿 (𝑡0, 𝑡) as calculated from the approximation (3.53). It is shown as a function of
time 𝑡 for different values of the shock crossing time 𝑡0. Note that the required condition 𝐿 (𝑡0, 𝑡 = 𝑡0) = 1 is fulfilled
for all curves.

consider the ultra-relativistic limit, where the kinetic energy is close to the total energy 𝐸 and
can therefore be replaced in equation (E.6):

d𝐸
d𝑡

=
𝐸

𝐿 (𝑡0, 𝑡)
d𝐿 (𝑡0, 𝑡)

d𝑡
, (3.51)

where the adiabatic loss function 𝐿 (𝑡0, 𝑡) is given by

𝐿 (𝑡0, 𝑡) B
(
𝜌2(𝑡)
𝜌2(𝑡0)

)1/3
. (3.52)

However, the problem is that a model for the internal density structure at all times is needed in
order to calculate 𝐿 (𝑡0, 𝑡), which can usually only be obtained from hydrodynamical simulations
of the SNR – even if the initial conditions are as simple as in equation (3.4). Instead, we
approximate the adiabatic loss function by just using the known shock radius as

𝐿 (𝑡0, 𝑡) ≈
(
𝑅sh(𝑡0)
𝑅sh(𝑡)

)1−1/𝜎
. (3.53)

It will be demonstrated in the next section, that the right-hand side of equation (3.53), which is
plotted in figure 3.7, naturally arises when the CR transport equation is solved without considering
the diffusion term.

By combing adiabatic and radiative losses, we obtain the total energy loss-rate(
d𝐸
d𝑡

)
tot

=

(
d𝐸
d𝑡

)
rad

+
(
d𝐸
d𝑡

)
ad

= −𝐴rad𝐸
2𝐵2

eff + 𝐸

𝐿 (𝑡0, 𝑡)
d𝐿 (𝑡0, 𝑡)

d𝑡
. (3.54)

This differential equation can be solved by defining the auxiliary function 𝑤(𝑡) B 𝐸 (𝑡)/𝐿 (𝑡0, 𝑡)
(see Reynolds, 1998). Differentiating after time yields

d𝑤
d𝑡

=
1
𝐿

d𝐸
d𝑡

− 𝐸

𝐿2
d𝐿
d𝑡

= −
𝐴rad𝐸

2𝐵2
eff

𝐿
+ 𝐸

𝐿2
d𝐿
d𝑡

− 𝐸

𝐿2
d𝐿
d𝑡

= −𝐴rad𝐿𝐵
2
eff𝑤

2 . (3.55)

A straightforward integration of both sides leads to
𝑡∫

𝑡0

−𝐴rad𝐿 (𝑡0, 𝑡′)𝐵2
eff (𝑡

′) d𝑡′ =
𝑡∫

𝑡0

1
𝑤2(𝑡′)

d𝑤(𝑡′)
d𝑡′

d𝑡′ (3.56)
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d
d𝑡

(
1

𝑤(𝑡′)
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d𝑡′ =

1
𝑤(𝑡0)

− 1
𝑤(𝑡) (3.57)

=⇒ 𝑤(𝑡) = ©« 1
𝑤(𝑡0)

+
𝑡∫

𝑡0

𝐴rad𝐿 (𝑡0, 𝑡′)𝐵2
eff (𝑡

′) d𝑡′ª®¬
−1

. (3.58)

Now we can re-substitute 𝑤(𝑡) and use the identity 𝑤(𝑡0) = 𝐸0:

𝐸 (𝑡) = 𝐿 (𝑡0, 𝑡)𝐸0

1 + 𝐴rad 𝐸0

𝑡∫
𝑡0

𝐿 (𝑡0, 𝑡′)𝐵2
eff (𝑡′) d𝑡′

=
𝐿 (𝑡0, 𝑡)𝐸0

1 + 𝐸0 𝐼 (𝑡0, 𝑡)
, (3.59)

where the integral in the denominator was abbreviated as

𝐼 (𝑡0, 𝑡) B 𝐴rad

𝑡∫
𝑡0

𝐿 (𝑡0, 𝑡′)𝐵2
eff (𝑡

′) d𝑡′ . (3.60)

Although 𝑡0 was introduced just as an arbitrary initial time (integration constant), from now on
it will be associated with the time 𝑡0(𝑟, 𝑡) when the plasma layer located at time 𝑡 in position 𝑟
was shocked – an important quantity that already appeared in the last section when the amplified
downstream magnetic flux density was calculated.

Following Morlino and Celli (2021), we write the distribution function as a function of
energy instead of momentum, which can be achieved by a simple variable substitution.3 This
choice is more convenient, because the total loss rate 3.54 is expressed in terms of energy. The
interpretation of 𝑡0(𝑟, 𝑡) as the time when a plasma element was shocked implies that

𝑓 (𝑟, 𝐸, 𝑡)
��
𝑡=𝑡0

= 𝑓 (𝑅sh(𝑡0), 𝐸0, 𝑡0) = 𝑓sh(𝐸0, 𝑡0) . (3.61)

From particle conservation in phase space one can then determine the electron spectrum at an
arbitrary time 𝑡:

𝑓 (𝑟, 𝐸, 𝑡) d𝐸 d𝑉 = ( 𝑓 (𝑟, 𝐸, 𝑡) d𝐸 d𝑉)
��
𝑡=𝑡0

= 𝑓sh(𝐸0, 𝑡0) d𝐸0 d𝑉0 . (3.62)

By inverting equation (3.59) we find the “energy ratio” (under the condition that 𝐿 (𝑡0, 𝑡) −
𝐸𝐼 (𝑡0, 𝑡) > 0)

𝐸0 =
𝐸

𝐿 (𝑡0, 𝑡) − 𝐸𝐼 (𝑡0, 𝑡)
=⇒ d𝐸0

d𝐸
=

𝐿 (𝑡0, 𝑡)
(𝐿 (𝑡0, 𝑡) − 𝐸𝐼 (𝑡0, 𝑡))2 . (3.63)

Since both 𝐸 and 𝐸0 are positive, the fist equation implies that 𝐿 (𝑡0, 𝑡) − 𝐸𝐼 (𝑡0, 𝑡) > 0. On the
other hand, the “volume ratio” can be expressed in terms of the adiabatic loss function:

d𝑉0
d𝑉

=
𝜌

𝜌0
= 𝐿 (𝑡0, 𝑡)3 . (3.64)

Therefore, the spectrum of confined electrons is

𝑓conf (𝑟, 𝐸, 𝑡) = 𝑓sh(𝐸0, 𝑡0)
d𝐸0
d𝐸

d𝑉0
d𝑉

(3.65)

3See equation (C.17) in appendix C. However, here we just write the distribution function in energy space as
𝑓 (𝑟, 𝐸, 𝑡) (without a tilde), because no confusion with 𝑓 (𝑟, 𝑝, 𝑡) should arise.
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= 𝑓sh

(
𝐸

𝐿 (𝑡0, 𝑡) − 𝐸𝐼 (𝑡0, 𝑡)
, 𝑡0

)
𝐿 (𝑡0, 𝑡)

(𝐿 (𝑡0, 𝑡) − 𝐸𝐼 (𝑡0, 𝑡))2 𝐿 (𝑡0, 𝑡)
3 , (3.66)

if 𝐸 < 𝐿 (𝑡0, 𝑡)/𝐼 (𝑡0, 𝑡) and 𝑡0 is again interpreted as the function 𝑡0(𝑟, 𝑡). In the case of CR
protons, where radiative losses are negligible and only adiabatic effects have to be considered, we
simply set 𝐼 (𝑡0, 𝑡) = 0 in the above equation, because ¤𝐸rad = 0 if and only if 𝐵eff = 0, implying
that 𝐼 (𝑡0, 𝑡) = 0.

3.6 Contributions to the overall CR spectrum
In this section we bring together all ingredients that were discussed so far and describe how the
final CR spectrum of a SNR, which will be released into the ISM, is obtained according to the
analytical model of Morlino and Celli (2021). The total spectrum of cosmic rays that are injected
into the ISM by a supernova remnant is the sum of two contributions:

1. Cosmic rays that are confined within the SNR due to strong scattering at self-generated
MHD turbulence. They can only be released (i.e. escape upstream) if their momenta are
high-enough to overcome this diffusion barrier, which happens at latest at the beginning of
the snowplough phase (by assumption). However, since the shock is constantly decelerating
after the Sedov-Taylor phase starts, not only its efficiency for particle acceleration declines,
but also the threshold CR momentum where escape is possible. On the other hand, during
confinement CRs will undergo a number of energy-loss mechanisms. In fact, adiabatic
losses will affect both protons and electrons, whereas the latter ones also suffer significant
radiative losses.

2. A flux consisting of high-energy particles that permanently escape from the precursor
(with momenta around 𝑝max(𝑡)), because they cannot be confined within the remnant.
This “precursor contribution” makes up the high-energy tail of the final spectrum and is
absolutely crucial for the supernova paradigm, because if all particles were confined within
the remnant and would suffer significant losses one would require an extreme magnetic
field amplification and efficiency in order to be able to accelerate CRs to PeV energies.
This energy argument was emphasized in Cristofari et al. (2020, 2021), but the detailed
microphysics of particle escape is still not fully understood (e.g. Bell et al., 2013).

We first discuss the proton spectrum and then point out the differences with respect to electrons.
By following Celli et al. (2019) we ignore diffusion for confined protons, which is a good
approximation if the diffusion length is smaller than the SNR size, which is a necessary condition
for confinement. The CR transport equation then simplifies to

𝜕 𝑓conf
𝜕𝑡

+ 𝑢 𝜕 𝑓conf
𝜕𝑟

=
1
𝑟2
𝜕 (𝑟2𝑢)
𝜕𝑟

𝑝

3
𝜕 𝑓conf
𝜕𝑝

(3.67)

and has the solution

𝑓conf (𝑟, 𝑝, 𝑡) = 𝑓sh

((
𝑅sh(𝑡)

𝑅sh(𝑡0(𝑟, 𝑡))

)1−1/𝜎
𝑝, 𝑡0(𝑟, 𝑡)

)
Θ(𝑅sh(𝑡) − 𝑟) Θ

(
𝑝max,int(𝑟, 𝑡) − 𝑝

)
, (3.68)

where the two Θ-functions ensure that only particles with 𝑟 < 𝑅sh(𝑡) and 𝑝 < 𝑝max,int(𝑟, 𝑡)
contribute to the confined spectrum. The maximum internal momentum 𝑝max,int(𝑟, 𝑡) is obtained
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from the maximum momentum at time 𝑡0(𝑟, 𝑡) (when the plasma layer at time 𝑡 and position 𝑟
was shocked) diminished by adiabatic losses that occurred between 𝑡0 and 𝑡:

𝑝max,int(𝑟, 𝑡) = 𝑝max(𝑡0(𝑟, 𝑡))
(

𝑅sh(𝑡)
𝑅sh(𝑡0(𝑟, 𝑡))

)−(1−1/𝜎)
= 𝑝max(𝑡0(𝑟, 𝑡))𝐿 (𝑡0(𝑟, 𝑡), 𝑡) . (3.69)

In the last step we used the approximation for the adiabatic loss function that is motivated
by the solution of the simplified transport equation (3.67) and was already introduced in
equation (3.53). The distribution function 𝑓sh at the shock front can be obtained explicitly by
combining equations (3.20) and (3.25):

𝑓sh(𝑝, 𝑡) =
3𝜉CR𝜌amb𝑣

2
sh

4𝜋𝑐(𝑚p𝑐)4Λ(𝛼, 𝑡)

(
𝑝

𝑚p𝑐

)−𝛼
exp

(
− 𝑝

𝑝max,0(𝑡)

)
Θ(𝑝 − 𝑝inj) . (3.70)

The second contribution to the total CR spectrum, namely from particles escaping upstream at
the shock precursor region, results from the steady-state solution of the CR transport equation in
plane-shock approximation and with a spatially constant diffusion coefficient 𝐷 (𝑝, 𝑡):

𝑓prec(𝑟, 𝑝, 𝑡) = 𝑓sh(𝑝, 𝑡) exp
(
− 𝑣sh(𝑡)
𝐷1(𝑝, 𝑡)

(𝑟 − 𝑅sh(𝑡))
)

at 𝑟 ≥ 𝑅sh(𝑡) . (3.71)

This was already obtained in equation (2.14), where the integral in the exponent is of course
trivial. Amato and Blasi (2005) present a solution (in implicit form) for the more general case,
where neither the fluid velocity field 𝑢(𝑥) nor the diffusion coefficient 𝐷 (𝑥, 𝑝, 𝑡) are independent
of position. However, it is also demonstrated that even for this more general case the distribution
function can be approximated in a similar way as above. Another convenient approximation is to
replace the exponential factor by a delta distribution (cf. Celli et al., 2019):

𝑓prec(𝑟, 𝑝, 𝑡) ≈ 𝑓sh(𝑝, 𝑡) 𝛿D

(
− 𝑣sh(𝑡)
𝐷1(𝑝, 𝑡)

(𝑟 − 𝑅sh(𝑡))
)

(3.72)

= 𝑓sh(𝑝, 𝑡)
𝐷1(𝑝, 𝑡)
𝑣sh(𝑡)

𝛿D(𝑟 − 𝑅sh(𝑡)) . (3.73)

Physically, this can be interpreted as the momentary distribution function of cosmic rays, which
are accelerated at the shock and concentrated in a precursor around 𝑟 = 𝑅sh(𝑡) with thickness
𝑙diff = 𝐷1(𝑝, 𝑡)/𝑣sh(𝑡) (diffusion length). Finally, the total momentum space density 𝑁 (𝑝) of
cosmic rays that are injected into the ISM by a supernova remnant is the sum of both contributions,
namely (1) an escape flux of high-energy particles with released at the precursor and (2) confined
particles that are released after the escape time (3.28) from a spherical volume with radius
𝑅esc(𝑝) B 𝑅sh(𝑡esc(𝑝)):

𝑁 (𝑝) = 𝑁conf (𝑝) + 𝑁prec(𝑝) =
𝑅esc (𝑝)∫
0

(
𝑓conf (𝑟, 𝑝, 𝑡esc(𝑝)) + 𝑓prec(𝑟, 𝑝, 𝑡esc(𝑝))

)
4π𝑟2 d𝑟

≈
𝑅esc (𝑝)∫
0

𝑓conf (𝑟, 𝑝, 𝑡esc(𝑝)) 4π𝑟2 d𝑟 + 4π𝑅2
esc(𝑝)

𝐷1(𝑝, 𝑡esc(𝑝))
𝑣sh(𝑡esc(𝑝))

𝑓sh(𝑝, 𝑡esc(𝑝)) .

(3.74)

We now come to the differences between electron and proton spectrum. As already mentioned,
electrons suffer stronger energy losses, especially through synchrotron emission, while the energy
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Figure 3.8: Final spectra of CR protons (left) and electrons (right) that are released into the ISM by a supernova of
type Ia (the bump in the electron spectrum is a numerical artefact). Note that three lines with different colours are
used to distinguish the individual components of the spectra: (1) the high-energy precursor contribution is orange
and (2) the cosmic rays, which have been trapped in the remnant’s inside and are finally released after suffering
energy losses, are represented by the blue line. Last but not least, (3) the total spectrum, which is the sum of both
contributions, is shown in green

decrease of confined protons is almost purely adiabatically due to the remnant’s expansion.
Moreover, the spectral cut-off for electrons, where the power-law turns into a rapid decline, occurs
at lower energies than for protons. This is expected from equation (3.54), since they cool faster
than protons with the same initial energy. Despite these considerable differences near the cut-off
at the highest energies, it should not be forgotten that the spectral shape of electrons and protons
resembles a universal power-law ranging from the injection energy up to a few TeV, which is
indeed expected from DSA.

Apart from that, we also have to take the different normalization of the electron spectrum into
account. The simplest approach is to introduce the electron-to-proton ratio as a free parameter
𝐾ep. If we were merely interested in the qualitative shape of the CR spectra of electrons and
protons, we could simply set 𝐾ep = 1 and ignore this aspect completely. However, since the
proposed CR model should be implemented in large-scale simulation, the energy content actually
matters. We therefore choose the following simple approach for the electron spectrum at the
shock front:

𝑓e,sh(𝑝, 𝑡) = 𝐾ep
3𝜉CR𝜌amb𝑣

2
sh

4𝜋𝑐(𝑚p𝑐)4Λ(𝛼, 𝑡)

(
𝑝

𝑚p𝑐

)−𝛼
exp

(
− 𝑝

𝑝max,e(𝑡)

)
Θ(𝑝 − 𝑝inj) . (3.75)

As pointed out in Zirakashvili and Aharonian (2007) the exact analytical solution for the electron
distribution accelerated at a non-relativistic stationary shock behaves as 𝑓e,sh(𝑝) ∝ 𝑝−𝛼 and
𝑓e,sh(𝑝) ∝ 𝑝1/2 exp

(
−𝑝2/𝑝2

max,e
)

at low and high energies, respectively, where in the latter case
the super exponential cut-off of course dominates over the positive (!) power-law slope. Although
both solutions can be combined through an analytical interpolation, we will use the simpler
distribution function from above. For an implementation of the more involved approach in a
spectral CR model of SNRs see Cristofari et al. (2021). For a model, where the normalization
𝐾ep depends on the shock velocity see (Morlino and Celli, 2021). Qualitatively, equation (3.75)
looks very similar to the proton spectrum (3.70) with two exceptions, namely (1) the constant
ratio 𝐾ep and (2) the different maximum momentum 𝑝max,e that defines the cut-off and is defined
as

𝑝max,e(𝑡) = min[𝑝max,0(𝑡), 𝐸max,e(𝑡)/𝑐] , (3.76)
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where 𝑝max,0(𝑡) is the time-limited maximum momentum at the shock (cf. equation 3.26) and
𝐸max,e(𝑡) is the loss-limited maximum electron energy, which can be obtained as follows.

If the energy loss rate in the upstream region is written as (d𝐸 (𝑡) /d𝑡)loss,1 and the particle
resides there for a duration 𝜏res,1, then the amount of energy, which the particle looses upstream
during this timespan, is simply the product 𝜏res,1(d𝐸 (𝑡) /d𝑡)loss,1. An analogous consideration
holds for the downstream region. On the other hand, the particle also gains energy at a rate
(d𝐸 (𝑡) /d𝑡)acc both upstream and downstream (i.e. over a time span 𝜏res,1 + 𝜏res,2). The particle
cannot be accelerated further once the energy gain balances the losses. Mathematically, this
condition reads (Blasi, 2010):

(𝜏res,1 + 𝜏res,2)
(
d𝐸
d𝑡

)
acc

= 𝜏res,1

(
d𝐸
d𝑡

)
loss,1

+ 𝜏res,2

(
d𝐸
d𝑡

)
loss,2

| · 𝐸−1 (3.77)

=⇒ (𝜏res,1 + 𝜏res,2)𝜏−1
acc = 𝜏res,1𝜏

−1
loss,1 + 𝜏res,2𝜏

−1
loss,2 (3.78)

⇐⇒ 𝜏acc =
𝜏res,1 + 𝜏res,2

𝜏res,1/𝜏loss,1 + 𝜏res,2/𝜏loss,2
. (3.79)

In the first step both sides of the equation were divided by the particle energy 𝐸 and in the second
step we used the definition (3.50) of the loss time (the acceleration time is defined analogously).
One can now insert the acceleration time 𝑡acc = 8𝐷1(𝑝, 𝑡)/𝑢2

sh and the loss times

𝜏loss,1 =

(
𝐴rad𝐸 (𝐵2

1,tot + 𝐵
2
eq)

)−1
, 𝜏loss,2 =

(
𝐴rad𝐸 (𝐵2

2,tot + 𝐵
2
eq)

)−1
. (3.80)

in order to obtain the maximum loss-limited energy 𝐸max,e(𝑡). As shown in Morlino and Celli
(2021), the final result is

𝐸max,e(𝑡)
𝑚e𝑐2 =

√︄
(𝜎 − 1)𝑟B

𝜎
[
𝑟B(1 + 𝜎2

eq) + 𝜎(𝑟2
B + 𝜎2

eq)
] 3𝑒𝑐𝐵0𝜇0F (𝑡)

2𝜎T𝐵
2
1,tot(𝑡)

𝑣sh(𝑡)
𝑐

. (3.81)

Now we have all ingredients needed for the electron distribution function at the shock as given
by equation (3.75). With this and the known expressions for 𝐿 (𝑡0, 𝑡) and 𝑡0(𝑟, 𝑡) the spectrum of
confined particles (equation 3.66) can be computed. In addition, the electron precursor spectrum
has the same functional form as in the case of protons. Therefore, the total electron spectrum
can also be obtained from equation (3.74) after making the aforementioned modifications and
replacing the escape time by 𝑡esc,e, which is given by

𝑡esc,e(𝐸) = min
[
𝑡SP,max

[
𝑡esc,0, 𝑡esc(𝐸/𝑐)

] ]
. (3.82)

Hence, the expression for the electron escape time is slightly more complicated than for protons,
because several things have to be taken into account. First of all, acceleration stops at latest at the
beginning of the snowplough phase (first bracket). Secondly, various loss mechanisms might
delay the time 𝑡esc,0, when the first electrons start escaping from the SNR or, in other words,
when the maximum permitted electron energy 𝐸max,e(𝑡) begins to exceed the maximum energy
𝑝max,0(𝑡)𝑐 of particles accelerated and confined at the shock:

𝐸max,e(𝑡∗) = 𝑝max,0(𝑡∗)𝑐 for 𝑡∗ = 𝑡esc,0 . (3.83)

This explains the second bracket in the definition above.
The final CR spectra for electrons and protons are shown in figure 3.8 for the case of a type Ia

supernova. One clearly sees that they resemble a power-law with slope 𝛼 for a large range of
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Table 3.2: Additional free model parameters with brief descriptions; see the main text for further details.

parameter value meaning
𝑛ISM (m−3) 105 mean number density of ISM
𝐵ISM (nT) 0.3 background magnetic field in the ISM
𝐵eq (nT) 0.61 magnetic field with energy density equivalent to the ISRF
𝜉CR 0.1 proton acceleration efficiency
𝛼 4.3 power-law slope of CR distribution at the shock
𝛿 2 power-law index to model time dependence of 𝑝max,0(𝑡)
𝜎 4 compression ratio of the shock
𝑝inj (𝑚p𝑐) 10−3 injection momentum
𝑝M (𝑚p𝑐) 106 maximum proton momentum at Sedov-Taylor time
𝐾ep 1 normalization constant for the electron spectrum at the shock

energies, which is only modified near the exponential cut-off. Note that for both electrons and
protons the highest-energy particles all come from the precursor contribution (orange line), which
demonstrates what has been claimed at the beginning of this section: without taking upstream
particle escape properly into account, it would be a severe theoretical challenge to explain how
supernova remnants can act as pevatrons.

Furthermore, the total kinetic energy of cosmic rays was calculated for the proton spectrum,
which is given by (see appendix C and the next section for details concerning the choice of 𝑝inj):

𝐸tot,CR =

∞∫
𝑝inj

4π𝑝2 𝑁 (𝑝)
(√︃

(𝑝𝑐)2 + (𝑚p𝑐2)2 − 𝑚p𝑐
2
)

d𝑝 . (3.84)

We obtained a value of 𝐸tot,CR ≈ 0.2 𝐸SN, which is not bad compared to the standard estimate
𝐸tot,CR = 0.1 𝐸SN. However, in the above integral we used the exact expression for the relativistic
kinetic energy and not the approximation 𝐸 = 𝑝𝑐, which would lead to completely wrong results.
However, we have often employed the ultra-relativistic limit so far; see e.g. the treatment of
energy losses in equation (3.54). Therefore, the calculated CR energy should not be considered
as a completely self-consistent outcome of the model; instead it serves as consistency check.
Besides that, the cosmic ray module in OpenGadget3 fully relies on the assumption 𝐸 = 𝑝𝑐,
which is wrong for proton momenta below 1 GeV/c. We will come back to this issue in chapter 4.

3.7 Constraining the model parameters
At the end of this chapter we reflect on some additional model parameters (besides those in
table 3.1) and how they might be constrained or at least chosen reasonably. The benchmark values
and short descriptions can be found in table 3.2. First of all, mean properties of the ISM, like
particle density, magnetic field strength or energy density of the ISRF are exclusively motivated
by typical observed values in the Milky Way. Of course, they are not constant throughout the
galaxy, which could be taken into account by calculating several CR spectra for different (but
still reasonable) sets of parameters and then using the available information in a cosmological
simulation (e.g. concerning the local gas density or magnetic field) to decide which spectrum
should be seeded at a given location.

Other parameters, like 𝑝M and 𝛿 in equation (3.26) are simply adopted from the specific model
by Morlino and Celli (2021) (in their work they also studied how changes in these two parameters
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affect the final CR spectrum). We already commented that a downside of this simple recipe for
𝑝max,0(𝑡) is that the additional free parameter 𝑝M = 1 PeV has to be introduced, whose value is
just motivated by the expectation that SNRs are pevatrons. This could be remedied with the more
physical (but also more complex) prescription by Cristofari et al. (2021), which is consistent
with the development of non-resonant Bell instabilities.

The slope 𝛼 is mainly motivated by results of recent particle-in-cell simulations of astrophysical
shock waves indicating that the injected spectrum is steeper than the standard prediction 𝛼 = 4
from DSA (cf. Diesing and Caprioli, 2021). For the compression ratio 𝜎 we choose the standard
value for strong shocks in a gas with adiabatic index 𝛾 = 5/3, but it should be kept in mind
that the presence of highly relativistic particles will affect the value of 𝛾; especially near the
shock. The electron-to-proton ratio 𝐾ep is set equal to one, because it is also implemented in
OpenGadget3, where the default setting is 𝐾ep = 10−2. Hence, the electron spectrum will not be
rescaled until it is imported in a cosmological simulation.

Last but not least, we briefly touch upon a highly interesting model parameter that has been
neglected so far, namely the injection momentum 𝑝inj, which defines the lower boundary where
the cosmic ray spectrum starts. As already mentioned in chapter 2, it is one of the fundamental
problems of DSA to consistently describe how particles from the thermal pool can be injected
into the acceleration process (“injection problem”). A standard assumption is that a small fraction
of thermal particles from the tail of the Maxwellian4 velocity distribution reach high enough
energies to be able to take part in DSA. This is called “thermal leakage injection” and is usually
parametrized as 𝑝inj = 𝜉inj𝑝th, where 𝑝th =

√︁
2𝑚p𝑘𝐵𝑇2 is the downstream thermal momentum

(cf. Caprioli and Spitkovsky, 2014). Usually, the coefficient lies in the range 𝜉inj = 3–4, because
this yields 𝜉CR = 𝑃CR/(𝜌amb𝑣

2
sh) ≈ 0.1, which is the criterion we required in equation (3.21).

Alternatively, the injection momentum can also be written as a function of the shock velocity, i.e.
𝑝inj = 𝜉inj𝑚p𝑣sh (cf. Caprioli et al., 2015).

4One should be cautious, because the shocks of supernova remnants are collisionless, so it is not a priori clear
whether the shock-heated particles even have a Maxwellian velocity distribution.





4 Numerical implementation
By following the steps described in the previous chapter, one can calculate the final CR
momentum space distributions 𝑁 (𝑝) for CR protons and electrons that are released into the
ISM by a supernova remnant. Of course, the many parameters of our model are by no means
“engraved in stone” and for realistic simulations a certain variation from supernova to supernova
is indeed expected. The most prominent examples are the remnant’s kinetic energy and the ejecta
mass, which strongly affect the maximum achievable proton energy and therefore the remnant’s
possibility to act as a Pevatron, which was investigated by Cristofari (2021). As mentioned
before, Cristofari et al. (2021) proposed a crude approach to illustrate the variety in parameter
space, namely to generate, for the time being, spectra for the three benchmark cases in table 3.1,
which were called Ia, II and II*. This was indeed done in this Master’s project. The logical next
steps would be to (1) refine the CR model even more by generating dozens of spectra, each for
a slightly different set of parameters and (2) include environmental properties of a given SPH
particle, like ambient ISM density, background magnetic field or local radiation field, to make
reasonable choices on which spectra should be seeded at a given time and location.

Since there is always room for model refinements, the question arises if this is worth the effort
or just an uninteresting over-complication of the “standard approach”, where supernova remnants
are treated as sub-grid CR sources that inject simple power-law spectra with (exponential) cut-offs
at a minimum and maximum momentum and a normalization such that the integrated CR energy
is 0.1 𝐸SN = 1043 J. On the one hand, the calculated spectra, that were shown in the last chapter,
closely resemble a power-law over a large momentum range. In fact, only at the highest momenta
close to the exponential cut-off, subtle spectral features become noticeable. Hence, a first guess
would be that large-scale simulations with our CR model only differ quantitatively from results
in the scientific literature, but not qualitatively. On the other hand, the model introduced in this
thesis is largely based on first principles, so it is much more difficult to “cheat” by simply shifting
the cut-offs or changing the spectrum’s normalization in order to obtain the desired simulation
output. This was nicely illustrated by calculating the total CR energies of the final spectra, which
were close to the expected 0.1 𝐸SN, although this was not introduced by hand! So from this point
of view, one could argue that state-of-the-art simulations used to investigate CR feedback on
galaxies should incorporate the most realistic SNR spectra, that can currently be constructed.
Hence, we are left with the question how much sense it makes to implement a CR model, which is
still strongly simplified compared to reality, but quite sophisticated compared to usual numerical
approaches, in a cosmological simulation code. Unfortunately, this cannot be answered in this
Master’s thesis, since test runs of galaxies using the proposed recipe for CRs from SNRs, were
not successful yet. However, the corresponding bug will be fixed in the near future to shed more
light on this issue. In the remainder of this chapter, we will therefore present all preliminary
results and describe some numerical aspects of this thesis project. A completed test run of a
Milky-Way-like galaxy with the pre-existing supernova seeding of OpenGadget3 will also be
shown in order to illustrate the further procedure.
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4.1 Cosmic ray model in OpenGadget3
The cosmological SPH N-body code OpenGadget3 is a derivative of GADGET-2 (GAlaxies with
Dark matter and Gas intEracT), as described by Springel (2005), and contains by now many
modules describing sub-grid physics, like star formation, supernova feedback, magnetic seeding,
chemical reaction networks, AGNs and, last but not least, cosmic rays. For a detailed description
of the current cosmic ray model in OpenGadget3 and accompanying simulations of an idealized
galaxy cluster merger, we refer to Böss et al. (2023). At its heart lies CRESCENDO (Cosmic
Ray Evolution with SpeCtral Electrons aND prOtons), which is an on-the-fly Fokker–Planck
solver to evolve the distribution functions of CR protons and electrons within every resolution
element of the simulation. As in the previous chapter, the CR distribution function is assumed to
be isotropic in momentum, so its temporal evolution can be described by

D 𝑓 (x, 𝑝, 𝑡)
D𝑡

=

(
1
3
∇ · u

)
𝑝
𝜕 𝑓 (x, 𝑝, 𝑡)

𝜕𝑝
+ 1
𝑝2

𝜕

𝜕𝑝

(
𝑝2

∑︁
𝑙

𝑏𝑙 𝑓 (x, 𝑝, 𝑡)
)
+𝑄(x, 𝑝, 𝑡) , (4.1)

where the left-hand side represents the advective time derivative of the distribution function
𝑓 (x, 𝑝, 𝑡) (in its Lagrangian form) and the terms on the right-hand side represent (1) momentum
advection related to adiabatic compression/expansion, (2) continuous energy loss processes (like
synchrotron and inverse Compton losses of electrons) and (3) CR injection through sources
(like supernova remnants). Other effects, like spatial transport (including diffusion), momentum
diffusion and catastrophic losses are not yet included in CRESCENDO.

The basic idea is to assign two distribution functions to each SPH gas particle (one for protons
and one for electrons) and then evolve them over time according to the (simplified) transport
equation above. Numerically, a distribution function is represented as a piecewise power-law in
momentum space

𝑓 (𝑝) = 𝑓 𝑗

(
𝑝

𝑝 𝑗

)−𝛼 𝑗

, 𝑗 = 1, . . . , 𝑁bins , (4.2)

where 𝑁bins is the number of bins (this is a parameter that has to be specified before a simulation
is started). In the test simulations that were carried out for this Master’s thesis we typically set
𝑁bins = 12 for protons and 𝑁bins = 48 for electrons. In logarithmic momentum space all bins
have the same width and typically range from 𝑝min = 0.1𝑚𝑖𝑐 to 𝑝max = 105 𝑚𝑖𝑐, where 𝑚𝑖 is
either proton or electron mass. The lower momentum boundary is fixed and open, which enables
particles to transition from relativistic energies to the thermal background if they loose enough
energy through cooling. On the other hand, the upper boundary is closed and must therefore
be able to move, which requires updating 𝑝max in every time step. This approach is motivated
by allowing particles to gain additional energy (beyond the initial boundary) and avoiding an
artificial pile-up in the last momentum bin.

The norms 𝑓 𝑗 and slopes 𝛼 𝑗 are updated in each time step by calculating both the total number
𝑁 𝑗 (not to be confused with momentum space density 𝑁 (𝑝)) and energy 𝐸 𝑗 of cosmic rays for
each bin, which is the so-called “two-moment approach”. For this, the corresponding integrals
are solved (see also appendix C):

𝑁 𝑗 =
1
𝜌

∫ 𝑝 𝑗+1

𝑝 𝑗

4π𝑝2 𝑓 (𝑝) d𝑝 =
4π 𝑓 𝑗 𝑝3

𝑗

𝜌

((
𝑝 𝑗+1
𝑝 𝑗

)3−𝛼 𝑗

− 1
)

3 − 𝛼 𝑗
, (4.3)
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Figure 4.1: Testcase for the discretization routine, which is applied to the oscillating function 𝑓 (𝑥) = sin
(
π(0.1 · 𝑥)2) .

The blue points are 26 tabulated data pairs {𝑥 𝑗 , 𝑓 (𝑥 𝑗 )} 𝑗=1,...,26 belonging to the test function, which are connected
through straight lines (a simple linear interpolation). The red crosses are the new pairs {𝑥𝑘 , 𝑓 (𝑥𝑘)}𝑘=1,...,10
corresponding to a decomposition of the 𝑥-range into 10 equal-width bins. As expected, the crosses lie on the
interpolation curve.
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. (4.4)

The integrals are divided by the density 𝜌 of the SPH particle, because CR energies and numbers
are expressed per unit mass in OpenGadget3 due to the Lagrangian reference frame in which the
equations are discretized. Their simple analytical solution is then used for updating norms and
slopes. Therefore, in CRESCENDO the spectrum is described by the four parameters 𝑓 𝑗 , 𝛼 𝑗 , 𝑁 𝑗

and 𝐸 𝑗 , where each of them is numerically represented by a one-dimensional array with length
𝑁bins. By contrast, the array of momentum boundaries 𝑝 𝑗 must of course have length 𝑁bin + 1.

A caveat is that in all calculations the assumption 𝐸 = 𝐸kin = 𝑝𝑐 is used, which leads to a
simple solution of the energy integral, but only holds in the ultra-relativistic limit. For example,
a particle with mass 𝑚 and momentum 𝑝 = 0.1𝑚𝑐 has a speed of only 0.01 𝑐, which is hardly
relativistic. As a consequence, in CRESCENDO the thermal pool of gas particles and the
high-energy cosmic rays are not connected through a “bridge” of suprathermal, mildly relativistic
particles, but treated as two separate fluids. All these limitations should be kept in mind for the
test simulation shown below.

Although Böss et al. (2023) mainly focussed on shock waves as sources of CRs, OpenGadget3
also contains a simplified recipe for CR seeding by supernova remnants, which is coupled to
the star formation model (see below). Whenever a supernova explodes, a simple power-law
spectrum with slope 𝛼 = 4.4 and initial cut-offs at 𝑝min and 𝑝max (with the same values as above)
is injected. The normalization of the spectrum is chosen such that the total CR proton energy
equals the standard value of 0.1 𝐸SN. Since the more advanced spectra have not been successfully
included yet in a large-scale simulation, we will show results from a test run of a Milky-Way-like
galaxy that was carried out by using this simpler model.

4.2 Sub-grid implementation of CR spectra
Roughly speaking, the numerical aspect of this thesis consists of two parts. Firstly, an imple-
mentation of the model described in chapter 3 is run in order to produce spectra for CR protons
and electrons for different types of supernovae. Secondly, those spectra are then saved in data
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files, which have to be processed by the newly developed module for improved CR seeding in
OpenGadget3.

First of all, a given CR spectrum is calculated by running a notebook that is heavily based on
the template kindly provided by Giovanni Morlino and used by Morlino and Celli (2021). More
precisely, for a given supernova type (and the corresponding set of parameters) the momentum
space distribution 𝑁 (𝑝) is calculated for a discrete set of momenta and then interpolated with
cubic splines between successive data points. The interpolating function can then be used to
generate an arbitrarily fine discretization of 𝑁 (𝑝), i.e data pairs of the form{

lg
(
𝑝 𝑗

𝑚𝑖𝑐

)
, lg

(
𝑁 (𝑝 𝑗 )
(𝑚𝑖𝑐)−3

)}
𝑗=1,...,𝑁dat

. (4.5)

Note that 𝑁dat is the given number of data points for which the condition 𝑁dat > 𝑁bins should hold
(for test runs 𝑁dat ≳ 100 is already sufficient). For convenience, 𝑚𝑖𝑐 is selected as momentum
unit, so that the logarithms of 𝑝 𝑗 and 𝑁 (𝑝 𝑗 ) can be expressed as dimensionless quantities. Again,
𝑚𝑖 either stands for the proton or electron mass, depending on the type of spectrum that shall be
computed.

Without doubt, this first numerical part of the thesis involves a large amount of theory and a
combination of different approaches from the literature. The second part is more technical in
nature and consists of modifications of the OpenGadget3 source code. The new module for CR
seeding mainly consists of two small routines, namely one that reads the columns from the text
file and saves them in arrays and a second one that converts the input data into a form that can
be processed by CRESCENDO. For this, a routine is required that accepts the tabulated data
and the given momentum boundaries as input and returns a more coarsely discretized spectrum,
whose number of momentum bins corresponds to the simulation settings. The new spectrum is
obtained from the input data through a simple linear interpolation of the data points in log-log
space. This works, because the input values from the text file are already logarithmic quantities
and the piecewise power-law becomes a piecewise linear function in log-log space. This linear
interpolation was tested for a oscillating function, where the result can easily be checked for
consistency (see figure 4.1). The new discretization consists of the pairs{

lg
(
𝑝𝑘

𝑚𝑖𝑐

)
, lg

(
𝑁 (𝑝𝑘 )
(𝑚𝑖𝑐)−3

)}
𝑘=1,...,𝑁bins

. (4.6)

and is used to calculate CR numbers 𝑁𝑘 and energies 𝐸𝑘 that are needed by CRESCENDO to
evolve the CR spectrum.

Although both routines seemed to work fine at the time of writing this thesis, no successful
galaxy simulation could be done due to some programming error that must have occurred during
the integration of the new module in CRESCENDO. We will therefore explain some further
numerical aspects in the remainder of this section and show a test simulation in the next chapter,
that still contains the old CR seeding model.

One prominent issue, that always arises when quantitative results are desired at the end of a
simulation, is the correct usage of physical units. In most scientific articles on CR spectra of
supernovae only the shape and cut-offs are discussed, but not the actual normalization. However,
this aspect is crucial for our implementation, because we need to know the correct energy content
of cosmic rays. Besides that, the quantity we obtain from our CR model is not the distribution
function 𝑓 (x, 𝑝, 𝑡), but the time-independent momentum space density 𝑁 (𝑝) that was calculated
through a spatial integration over 𝑓 (x, 𝑝, 𝑡) up to the escape radius according to equation (3.74).
These quantities have units

[ 𝑓 (x, 𝑝, 𝑡)] = [𝑥]−3 [𝑝]−3 , [𝑁 (𝑝)] = [𝑝]−3 , (4.7)
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and therefore the integrals (4.3) and (4.4) can be rewritten by replacing 𝑓 (𝑝) by 𝑁 (𝑝) and
dividing through the SPH particle’s mass instead of its density. If one would be interested in
the CR number density 𝑛(x), the following simple assumption could be made: If the supernova
releases a CR spectrum into the ISM that is described by 𝑁 (𝑝), then those particles propagate
freely, but diffusively and without adiabatic losses so that they distribute over the SPH particle’s
volume. When this happens sufficiently fast, i.e. during one time step, all cosmic rays will
be distributed uniformly over the entire volume so dividing 𝑁 (𝑝) by this volume leads to a
first approximation of 𝑓 (𝑝). Integrating this over momentum yields the constant CR density 𝑛.
However, assuming a Galactic diffusion coefficient of (cf. Celli et al., 2019)

𝐷 (𝑝) = 1024
( 𝑝𝑐

10 GeV

)1/3
m2 s−1 , (4.8)

a 1 PeV particle released during the early stages of SNR evolution would diffuse over a length
𝑙diff =

√
2𝐷𝑡 ≈ 740 pc for a propagation time of 50 kyr (the typical timescale after which the

snowplough phase starts). Since this length scale is already ten times larger than the minimum
hydrodynamical smoothing length in the galaxy simulation shown in the next chapter, one should
be cautious with this simplistic approach.

At the end of this section we also note that once the new CR module is running, it can easily
be extended to include a reasonable variety of different supernovae, which we briefly touched
upon in the introduction to this chapter. For example, one could tabulate 10 type II SNe with
slightly different parameters and store them in one text file. Then one of those spectra could be
picked for seeding based on either a random approach or on the local galactic environment of the
supernova event. Moreover, it was so far only attempted to couple the CR seeding to the simple
star formation model by Springel and Hernquist (2003) that only includes core-collapse SNe and
will briefly be described in the next section. However, OpenGadget3 also has a more advanced
model, as proposed by Tornatore et al. (2007), which also takes Ia SNe into account and would
therefore be more suitable to the variety of tabulated CR spectra.

4.3 Coupling supernova seeding to star formation in
OpenGadget3

In this section we will briefly and qualitatively describe the simplest star formation model available
in OpenGadget3, which is an implementation of the well-known Springel-Hernquist model (see
Springel and Hernquist, 2003, for an extensive description and simulations of small-scale, isolated
galaxies). This is insofar important for this Master’s thesis, as the model incorporates supernova
feedback to which the CR module can be linked.1 The basic idea is to describe global properties
of a multiphase interstellar medium with a sub-resolution model that only uses spatially averaged
properties of the ISM, namely the mass density and the internal energy per unit mass. Baryonic
matter is assumed to consist of three components, namely stars, a hot phase of the ISM and
cold molecular clouds that enable star formation. In OpenGadget3 there indeed exist separate
particle types for stars and gas, but the distinction between a hot and cold phase is made implicitly
through a “cold fraction” and a “hot gas temperature” that are attributed to every gas particle.

The temporal evolution of these quantities is described by a set of coupled ordinary differential
equations. More precisely, the density of cold molecular clouds decreases, because (1) gas is

1Strictly speaking, CR seeding from supernova remnants is coupled to magnetic dipole seeding from SNe (cf.
Beck et al., 2013), which itself is coupled to the Springel-Hernquist model. However, this is merely a numerical
aspect that is not significant for the further content of this thesis.
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converted into stars on a characteristic timescale, which is effectively the only free parameter of
the whole model, and (2) some cold gas is reheated by supernova feedback and returns to the hot
phase, whose density therefore increases by the same amount. Moreover, radiative energy losses
of the hot gas turn it into cold clouds, which is described by a cooling function. For the onset of
this thermal instability, which is necessary for creating clouds and continuing star formation, the
hot gas has to exceed a certain threshold density. This criterion is observationally motivated (see
references in Springel and Hernquist, 2003) and physically plausible, because the cooling power
is proportional to the squared density. Last but not least, the fraction of hot gas not only increases
through cloud evaporation triggered by supernova heating, but also through enrichment with
supernova ejecta. The latter contribution is proportional to the fraction of newly formed stars that
can undergo core-collapse supernovae, meaning that their masses lie above 8 M⊙, which depends
of course on the chosen initial mass function. Moreover, the stellar mass density decreases
accordingly, since exploding stars are assumed to be completely destroyed and turned into hot
gas; compact stellar remnants, like black holes or neutron stars, are not taken into account. In
reality there is a delay between star formation and core-collapse supernovae that corresponds to
the main-sequence lifetime of massive stars, which is ≲25 Myr. However, this delay is neglected
in the Springel-Hernquist model and supernovae appear “promptly” instead. This approximation
is fine if self-regulation is established quickly enough, meaning that star formation is “quiescent”.
In the code itself for each time step an effective supernova rate is calculated in order to determine
how many stars explode. If this rate drops below 1, a stochastic criterion decides if a supernova
will occur or not.

At the end we also note that the Springel-Hernquist model naturally leads to an overproduction
of stars in cosmological simulations, because cooling becomes very efficient in dense, low-mass
haloes, which leads to an overproduction of stars and a rapid depletion of the gas reservoir
(overcooling problem). To avoid this, galactic winds associated with star formation (and possibly
with cosmic rays, as noted in the introduction of this thesis) are included in the model.



5 Test simulations and results
Unfortunately, the cosmic ray model proposed in chapter 3 could not be successfully implemented
in OpenGadget3 at the time when this thesis was written, which was already mentioned before.
Therefore, this last chapter is a collection of simulation results, that were already obtained, and
some comments on future work.

5.1 Test environment for CR seeding
In order to test the implementation of the CR seeding model, we set up a very simple environment
with periodic boundary conditions, namely a box consisting of 20 × 20 × 20 gas particles that are
distributed on a grid with zero initial velocities. The density is chosen such that it is close to the
threshold required for star formation, whereas the initial gas temperature corresponds to typical
values of the hot ISM. The selected box length of 5 kpc leads to gas particle masses that are close
to those in the galaxy simulation of the next section, so both simulations have a similar mass
resolution. In order to increase the central gas density we place eight additional gas particles
around the particle in the middle of the box. This initial setup is shown in figure 5.1

In order to demonstrate the behaviour of this test bed, we switch on the simple sub-grid model
for CR injection by supernovae, which is just a power-law with slope 𝛼 = 4.4 and was already
described in section 4.1. As one can see in figure 5.2, the regular grid gets destroyed over time,
while the number of star particles and the CR pressure of gas particles increases. This shall
merely serve as a proof of concept, but the more advanced CR seeding does not produce any CR
pressure yet due to an error in the implementation. However, we are optimistic that this issue
will be fixed in the near future so that the simulation of a Milky-Way-like galaxy shown in the
next section can be repeated with the improved model. A significant advantage of this test bed is
that one can check very quickly if the simulation produces the desired output, because it already
finishes after around 10 minutes. In contrast, the galaxy simulation runs at least a few days.

5.2 Simulation of a galaxy with simple power-law seeding
In this section we show results from the simulation of a Milky-Way-like galaxy consisting of
∼ 3 · 106 particles (gas, dark matter, stars and one central black hole) with a total mass of
1012 M⊙. The initial conditions were kindly provided by Ulrich Steinwandel and the settings in
OpenGadget3 were adjusted by Ludwig Böss. The simulation includes a lot of sub-grid physics,
like cooling, star formation, galactic winds, magnetic field seeding and metal enrichment. Most
importantly, the CR module CRESCENDO is active, including the simple power-law injection of
cosmic rays by supernovae (cf. section 4.1). The simulation output is stored in snapshot files
(using the Gadget file format) that are analysed with Smac and g3read (see appendix B for a
detailed summary of used software and corresponding citations).

The galaxy is evolved over a total timespan of roughly 2 Gyr, which is shown in figure 5.4.
Each map was created with Smac and shows a certain physical quantity, namely:
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Figure 5.1: The simple initial conditions used for testing the implementation of CR seeding by supernovae consists of
a box with 20×20×20 gas particles at rest and a central over-density that is reached by inserting 8 additional particles.
Left: Box with the initial particle distribution. Right: 2D projection with clearly visible central over-density.
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Figure 5.2: Time development of gas particle distribution (light grey dots) in our test bed. The initial regular grid
(left) gets distorted over time (right), while the CR proton pressure increases (see colour bar). The eye-catching red
dot in the centre is a newly formed star particle.
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• Surface mass density of the gas Σe, which is called “electron density” in Smac (cf.
figure 5.7)

• Magnitude of the magnetic flux density ⟨|B|⟩ averaged along the line of sight (cf. figure 5.5)

• Temperature 𝑇 averaged along the line of sight, which is called “mass-weighted” in Smac
(cf. figure 5.8)

• Pressure of CR protons 𝑃CRp (cf. figure 5.9)

• Pressure of CR electrons 𝑃CRe (cf. figure 5.10)

The galaxy has a diameter of about 15 kpc (cf. figures 5.7 and 5.8), which is only half the size of
the Milky Way. Therefore, this simulation should not be regarded as replica of our own galaxy;
instead it serves as an advanced testcase for investigating the collective effects of sub-grid physics.
The density and temperature maps reveal that the morphology changes significantly over time:
The galaxy starts as a barred spiral, then develops a ring-like structure and finally reaches a quite
homogenous appearance with a central bar. On the other hand, the maps of the magnetic field
show how it grows in strength and spatial extent over time. At the end of the simulation the entire
magnetic field is distributed over a volume far larger than that of the gas (see the size comparison
in figure 5.4). The magnetic dipole seeding by supernovae is nicely illustrated by the clumpy
structure in the early snapshots. During this time, the maps of CR proton and electron pressure
also show local peaks that are related to the spatially discrete seeding by SNRs.

We also divided the galaxy into 25 concentric rings (radial bins), calculated the pressures of
different ISM components in each of them and plotted the result in figure 5.3. The CR proton
and electron pressure are directly stored in the snapshot file by the CRESCENDO module. As
expected, the proton pressure exceeds that of electrons, which is mainly caused by the different
normalizations of the distribution functions (in OpenGadget3 we have a typical electron-proton
ratio of 𝐾ep = 10−2). The other three pressures are calculated from the simulation output. In
particular, the thermal pressure 𝑃th = (𝛾 − 1)𝜌𝑢 is obtained from the mass density 𝜌 and the
internal energy 𝑢 per unit mass, where we further assumed a monatomic ideal gas with adiabatic
index 𝛾 = 5/3. The magnetic pressure is calculated with the same formula as the energy density,
namely 𝑃mag = 𝐵2/(2𝜇0). The turbulent pressure is given by 𝑃turb = 𝜌𝑣2

rms/2, where 𝑣rms is
the root-mean-square velocity for gas particles within the hydrodynamical smoothing kernel.
In figure 5.3 one clearly sees that an equilibrium amongst thermal, magnetic and turbulent
pressure is reached at the end of the simulation for inner regions of the galaxy. Equivalently
speaking, an equipartition of energy has taken place, which we touched upon in the introduction.
However, this does not hold for the cosmic ray pressure any more, because OpenGadget3 lacks
the corresponding sub-grid physics describing realistic CR feedback.

We conclude this chapter with some remarks on what else could be done with the outcome of
a galaxy simulation. Of course, the first thing would be to check if the improved CR spectra of
supernova remnants lead to comparable results and if there are relevant quantitative differences
(e.g. concerning the CR pressure). Moreover, one could compute maps of the synchrotron
and 𝛾-ray emission, where the former is caused by relativistic electrons, whereas the latter
originates from hadronic interactions of CR protons with gas particles. This would indeed
be very interesting, because the electromagnetic radiation can be directly associated with the
emitting source, which is generally not possible for cosmic rays due to their diffusive spatial
propagation (except at the highest energies). Additionally, galaxies and galaxy clusters are
well-observed in the radio and 𝛾-ray band, where the data quality is permanently increasing thanks
to various observatories, like the Fermi Gamma-Ray Space Telescope, INTEGRAL (International
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Figure 5.3: Radial profile for different pressures in the last snapshot of the galaxy simulation. Note that within the
inner galactic region an equipartition amongst thermal, magnetic and turbulent pressure is reached.

Gamma-Ray Astrophysics Laboratory), HAWC (High-Altitude Water Cherenkov Observatory),
LHAASO (Large High Altitude Air Shower Observatory), CTA (Cherenkov Telescope Array)
for high energies or MeerKAT, SKAO (Square Kilometre Array Observatory), ngVLA (Next
Generation Very Large Array) for the radio band.

Therefore, a good consistency test for the improved CR model would be to check if the
simulated synchrotron and 𝛾-ray emission is still compatible with observations or if some
significant tensions arise. For example, until today it has not been possible to identify a single
galaxy cluster that shows 𝛾-ray emission from CR protons, whereas the synchrotron radiation of
CR electrons is well-known. In fact, 𝛾-ray observatories were only able to provide upper limits
for the expected 𝛾-ray fluxes, which are already quite low. From a theoretical point of view,
it is hard to explain how electrons can be accelerated to energies high enough such that their
synchrotron emission is observable, while protons are not accelerated efficiently enough in the
same environment to cause detectable 𝛾-rays. The current explanations and observational data
concerning this “missing 𝛾-ray problem” are summarized in Wittor (2021). For us the question
remains if a large scale cluster simulation with an “advanced” model for sub-galactic CR sources
is still able to produce a 𝛾-ray luminosity in accordance with observational constraints or if those
limits are hopelessly exceeded. However, reliable insights can of course only be expected if
the whole simulation framework is sensible, which includes a proper treatment of CR diffusion
and a realistic model for 𝛾-ray emission. Last, but not least, supernova remnants are not the
only relevant sub-galactic CR sources and a model for CR injection by AGN is most certainly
also needed. Besides that, there are also large-scale shock waves from cluster mergers during
hierarchical structure formation that act as particle accelerators and are already incorporated in
CRESCENDO.
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Figure 5.4: 4 snapshots show the temporal evolution of different quantities in the simulated galaxy. Note that the
galaxy tends to move to the right over time, because the centre of mass does not remain located exactly at the origin.
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Figure 5.5: Average magnitude of magnetic flux density ⟨|B|⟩ along the line of sight (head-on projection).
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Figure 5.6: Average magnitude of magnetic flux density ⟨|B|⟩ along the line of sight (edge-on projection).
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Figure 5.7: Surface mass density.
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Figure 5.8: Gas temperature averaged along the line of sight.
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Figure 5.9: Cosmic ray proton pressure.
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Figure 5.10: Cosmic ray electron pressure. Note the clumpy structure in the early snapshots due to spatially discrete
seeding by SNRs.



6 Conclusions
The main purpose of this Master’s thesis was to develop a sub-grid model for CR seeding by
supernova remnants. This goal was partially reached, because spectra for different supernova
types could be successfully calculated and the early test simulations also seemed promising.
Running a Milky-Way-like galaxy with the improved CR model introduced in chapter 3 will be
an important goal for the near future. In this last chapter we will therefore look back on the most
important aspects of this Master’s thesis.

In the introduction we emphasized that cosmic-ray astrophysics is a very active research
topic; partly, because their feedback plays a non-negligible role for the evolution of galaxies
and partly because the accelerating sources themselves are exciting laboratories for extreme
physical processes. It was shown that supernova remnants are most likely the source of Galactic
cosmic rays due to their large energy output (compared to every other plausible source), but also
because observations of non-thermal radio and 𝛾-ray emission have firmly shown that protons and
electrons are accelerated to high energies in the shocks of historical SNRs. We also emphasized
that it is still debated if SNRs can act as pevatrons and are therefore able to accelerate protons up
to the “knee” in the CR energy spectrum.

Then we discussed some elements of diffusive shock acceleration in the test-particle limit and
carefully explained where the power-law spectrum comes from. The CR distribution function at
the shock front is also a central part of the proposed CR model discussed in chapter 3. Further
ingredients are descriptions of the shock radius and velocity, a recipe for particle escape from the
remnant, a treatment of magnetic field amplification and the inclusion of various energy-loss
processes. We tried to combine different approaches from the available literature, but largely
followed the steps in Morlino and Celli (2021). It should also be noted that some very important
papers on CR models of SNRs or realistic choices of the spectral slope have appeared quite
recently, so this Master’s thesis could not have been written five years ago (at least in this form).
The same holds of course for the simulations that were carried out with OpenGadget3: they
could only be done thanks to the combined efforts of numerous people who were involved in the
development of this mighty simulation code over the past decade.

An important lesson from the CR model is that the inclusion of magnetic field amplification
and the distinction between escaping and trapped particles is absolutely necessary in order to
reach the high energies that are required for an explanation of the Galactic cosmic ray spectrum.
Other effects that were included are of course also important in the sense that together they make
our sub-grid recipe more “realistic”. Despite the improvements compared to usual prescriptions
for CR seeding in cosmological simulations, there are still a lot of inconsistencies. The most
severe ones might be (1) the assumption of a remnant that stays spherically symmetric at least
until the snowplough phase, (2) ad-hoc simplifications concerning the evolution of the maximum
particle energy at the shock and (3) the inconsistent usage of ultra-relativistic approximations (like
𝐸 = 𝑝𝑐) even for low momenta. Therefore, there is still plenty of room for further improvements.





A List of abbreviations
The following table contains the most frequently used abbreviations in the text (most of them are
pretty common).

abbreviation meaning
AGN active galactic nucleus
CMB cosmic microwave background
CR cosmic ray
DSA diffusive shock acceleration
ED ejecta-dominated (first phase of SNR evolution)
IC inverse Compton (scattering)
ICM intracluster medium
ISM interstellar medium
ISRF interstellar radiation field
NLDSA non-linear diffusive shock acceleration
SN supernova
SNR supernova remnant
SP snowplough phase (third phase of SNR evolution)
SPH smoothed particle hydrodynamics
ST Sedov-Taylor (second phase of SNR evolution)
UHECR ultra-high-energy cosmic ray
UV ultraviolet





B Used software
The cosmic ray spectra and some of the plots were made by using a Mathematica notebook
(Wolfram Research Inc., 2021), which is based on a template that was kindly provided by Giovanni
Morlino (see Morlino and Celli, 2021). Simulations of galaxies were run with the cosmological
SPH N-body code OpenGadget3, which is written in C/C++ and based on the Gadget-2 code
by Volker Springel (cf. Springel, 2005). Cosmic ray seeding from supernovae was included in
the module CRESCENDO by Böss et al. (2023). The snapshot files of the simulations were
analyzed and visualized with Smac (Dolag et al., 2005) and Python3. More specifically, the
Python packages Astropy (Astropy Collaboration, 2022), numpy (Harris et al., 2020), matplotlib
(Hunter, 2007) and g3read1 were used.

1https://github.com/aragagnin/g3read

https://github.com/aragagnin/g3read




C The distribution function and its
moments

In this chapter we briefly summarize some properties of the distribution function and its moments.
We define the distribution function as the particle number density in six-dimensional phase space:

𝑓 (x, p, 𝑡) B d𝑁
dV𝑥 dV𝑝

. (C.1)

This quantity is widely used in kinetic theory and has the advantage that it is Lorentz-invariant.
Although this cannot be seen directly from the definition above, it follows from the relativistic
transformation laws for volumes in physical and in momentum space (e.g. Misner et al., 1973,
chap. 22.6; Thorne and Blandford, 2017, chap. 3.2.2). The basic argument is that when on goes
from the rest frame of the particles (primed) to some laboratory frame (unprimed) the volume
transforms as dV𝑥 = dV𝑥′/𝛾, because one side is Lorentz contracted. Similarly, one can show
that the volume in momentum space transforms as dV𝑝 = 𝛾 dV𝑝′ . Hence, for the product we
find dV𝑥 dV𝑝 = dV𝑥′ dV𝑝′ , meaning that it is Lorentz invariant. Since the number of particles
belonging to our selected set is also frame-independent, 𝑓 (x, p, 𝑡) itself is Lorentz invariant.

We now come to the different moments of the distribution function. Its first moment is
relativistic number-flux four-vector ®𝐽, defined as

®𝐽 (𝑡, x) ≡ 𝑐
∫

𝑓 ®𝑝
dV𝑝

𝐸
=

∫
𝑓 ®𝑝

dV𝑝

𝑝0 , (C.2)

𝐽0(𝑡, x) =
∫

𝑓 𝑝0 dV𝑝

𝑝0 =

∫
𝑓 dV𝑝 = 𝑛(𝑡, x) , (C.3)

J(𝑡, x) = 𝑐
∫

𝑓 p
dV𝑝

𝐸
=

1
𝑐

∫
𝑓 v dV𝑝 =

1
𝑐
𝑛(𝑡, x)⟨v⟩ = j

𝑐

𝑣≪𝑐−−−→ J ≡
∫

𝑓 ®𝑝
dV𝑝

𝑚
.

(C.4)

Here we used the identity 𝐸v = p𝑐2 for the relativistic momentum p and the total energy 𝐸 . In the
second and third line we performed a 3+1 split and wrote the temporal and spatial component of
®𝐽 separately. One sees that 𝐽0(𝑡, x) is equal to the number density, whereas J(𝑡, x) is proportional
to the number flux (see also the familiar non-relativistic limits).

The second moment of the distribution function is the stress-energy tensor T:

T(𝑡, x) = 𝑐2
∫

𝑓 ®𝑝 ⊗ ®𝑝
dV𝑝

𝐸

𝑣≪𝑐−−−→ T =

∫
𝑓 ®𝑝 ⊗ ®𝑝

dV𝑝

𝑚
, (C.5)

𝑢(𝑡, x) ≡ 𝑇00 = 𝑐2
∫

𝑓 𝑝0𝑝0 dV𝑝

𝐸
=

∫
𝑓 𝐸2 dV𝑝

𝐸
=

∫
𝑓 𝐸 dV𝑝 , (C.6)

S(𝑡, x) ≡ 𝑐𝑇0 𝑗 = 𝑐3
∫

𝑓 𝑝0𝑝 𝑗
dV𝑝

𝐸
= 𝑐2

∫
𝑓 𝑝 𝑗 dV𝑝 , (C.7)

G(𝑡, x) ≡ 𝑇 𝑗 𝑘 =
∫

𝑓 𝑝 𝑗 𝑝𝑘𝑐
dV𝑝

𝑝0 =

∫
𝑓 𝑣 𝑗 𝑝𝑘 dV𝑝 . (C.8)



72 C The distribution function and its moments

Again, by looking at the components separately one sees that 𝑇00 is the mass-energy density, 𝑇0 𝑗

is the momentum density or, equivalently, the energy flux and 𝑇 𝑗 𝑘 is the stress tensor.
So far, everything was kept quite general, but now we focus on the special case of an isotropic

distribution function 𝑓 = 𝑓 (x, 𝑝, 𝑡), which is most relevant for this thesis. More specifically, in
the particles’ mean rest frame at some event in spacetime (i.e. the frame in which the particle flux
J vanishes) and for a distribution function 𝑓 that is isotropic in this reference frame, meaning
that it only depends on |p|, we can easily work out the relativistic particle density 𝑛, mass-energy
density 𝑢 and pressure 𝑃 (for a detailed discussion see e.g. Bartelmann, 2021, chap. 3.1; Thorne
and Blandford, 2017, chap. 3):

𝑛 = 𝐽0 =

∫
𝑓 dV𝑝 = 4π

∞∫
0

𝑓 (𝑝) 𝑝2 d𝑝 , (C.9)

𝑢 ≡ 𝑇00 =

∫
𝑓 𝐸 dV𝑝 = 4π

∞∫
0

𝑓 (𝑝) 𝐸 (𝑝) 𝑝2 d𝑝 , (C.10)

𝑃 ≡ 1
3

3∑︁
𝑗=1
𝑇𝑗 𝑗 =

1
3

∫
𝑓 𝑝2𝑐2 dV𝑝

𝐸 (𝑝) =
4π
3

∞∫
0

𝑓 𝑝4𝑐2 d𝑝
𝐸 (𝑝) =

4π
3

∞∫
0

𝑓 (𝑝) 𝑝3 𝑣(𝑝) d𝑝 , (C.11)

where 𝐸 = 𝑝𝑐2/𝑣 was used in the last step. In the ultra-relativistic limit 𝑣 → 𝑐, the energy-density
and pressure simplify to

𝑢 = 4π
∞∫

0

𝑓 (𝑝) 𝑝3𝑐 d𝑝 , (C.12)

𝑃 =
4π
3

∞∫
0

𝑓 (𝑝) 𝑝3𝑐 d𝑝 , (C.13)

which coincides with the well-known relation 𝑢 = 3𝑃 of a photon gas. Both these equations will
be used extensively throughout the main text of this thesis.

For the calculation of the CR spectra in supernova remnants we obtain a different quantity,
namely the momentum density 𝑁 , defined by integrating the distribution function over the spatial
volume:

𝑁 (𝑝) =
∫

𝑓 dV𝑥 = 4π
∞∫

0

𝑓 (𝑟, 𝑝, 𝑡) 𝑟2 d𝑟 (C.14)

Last but not least, we show how the distribution function 𝑓 (𝑝) can be expressed as a function
of energy 𝑓 (𝐸) instead of momentum in the relativistic limit 𝐸 = 𝑝𝑐 (these are really different
functions with different arguments and units!). We just require that we have to obtain the same
number density, no matter if we integrate over momentum or energy:

𝑛(x, 𝑡) =
∫

𝑓 (x, 𝐸, 𝑡) d𝐸 !
=

∫
𝑓 (x, 𝑝, 𝑡) d3𝑝 = 4𝜋

∫
𝑓 (x, 𝑝, 𝑡)𝑝2 d𝑝 (C.15)

= 4𝜋
∫

𝑓 (x, 𝐸/𝑐, 𝑡) (𝐸/𝑐)2 d𝐸
𝑐
. (C.16)
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This implies that

𝑓 (x, 𝐸, 𝑡) = 4𝜋𝐸2

𝑐3 𝑓 (x, 𝐸/𝑐, 𝑡) . (C.17)

Similarly, the distribution function can also be expressed in terms of the Lorentz factor 𝛾:∫
𝑓 (x, 𝛾, 𝑡) d𝛾 !

= 4𝜋
∫

𝑓 (x, 𝑝, 𝑡)𝑝2 d𝑝 (C.18)

= 4𝜋
∫

𝑓 (x, 𝛾𝑚e𝑐, 𝑡) (𝛾𝑚e𝑐)2 d(𝛾𝑚e𝑐) (C.19)

= 4𝜋
∫

𝑓 (x, 𝛾𝑚e𝑐, 𝑡)𝛾2(𝑚e𝑐)3 d𝛾 (C.20)

=⇒ 𝑓 (x, 𝛾, 𝑡) = 4𝜋𝛾2(𝑚e𝑐)3 𝑓 (x, 𝛾𝑚e𝑐, 𝑡) . (C.21)





D Derivation of the time 𝑡0(𝑟, 𝑡)
In section 3.2 we introduced the linear velocity profile for matter inside the SNR (cf. equation 3.3).
We now do not treat 𝑟 as an independent variable any longer, but consider it as a function of
time instead. By following the approach in Morlino and Celli (2021) we rewrite the profile as a
differential equation for 𝑟 (𝑡):

d𝑟 (𝑡)
d𝑡

= 𝑣(𝑡) =
(
1 − 1

𝜎

)
𝑣sh(𝑡)
𝑅sh(𝑡)

𝑟 (𝑡) , 𝑟 < 𝑅sh . (D.1)

By inserting equations (3.14) and (3.15), we can write the right-hand side explicitly as

1
𝑟

d𝑟
d𝑡

=

(
1 − 1

𝜎

)
1

𝑅sh(𝑡)
𝑅ch
𝑡ch

(
𝑅sh(𝑡)
𝑅ch

)1+𝑎
(
𝜆ED𝜁

(
𝜁
𝑡

𝑡ch

)−𝑎𝜆ED−1
+ 𝜆ST𝜉

(
𝜉
𝑡

𝑡ch

)−𝑎𝜆ST−1
)

(D.2)

=

(
1 − 1

𝜎

)
1
𝑡ch

(
𝑅sh(𝑡)
𝑅ch

)𝑎 (
𝜆ED𝜁

(
𝜁
𝑡

𝑡ch

)−𝑎𝜆ED−1
+ 𝜆ST𝜉

(
𝜉
𝑡

𝑡ch

)−𝑎𝜆ST−1
)

(D.3)

=

(
1 − 1

𝜎

)
1
𝑡ch

𝜆ED𝜁
(
𝜁 𝑡
𝑡ch

)−𝑎𝜆ED−1
+ 𝜆ST𝜉

(
𝜉 𝑡
𝑡ch

)−𝑎𝜆ST−1(
𝜁 𝑡
𝑡ch

)−𝑎𝜆ED
+

(
𝜉 𝑡
𝑡ch

)−𝑎𝜆ST
. (D.4)

We then integrate both sides over time (between 𝑡0 and 𝑡). For the left-hand side we find
𝑡∫

𝑡0

1
𝑟

d𝑟
d𝑠

d𝑠 =
𝑡∫

𝑡0

d ln(𝑟)
d𝑠

d𝑠 = ln
(
𝑟 (𝑡)
𝑟 (𝑡0)

)
. (D.5)

For the right-hand side we introduce the variable substitution 𝑡∗ = 𝑡/𝑡ch and obtain

𝑡∫
𝑡0

(
1 − 1

𝜎

)
1
𝑡ch

𝜆ED𝜁
(
𝜁 𝑠
𝑡ch

)−𝑎𝜆ED−1
+ 𝜆ST𝜉

(
𝜉 𝑠
𝑡ch

)−𝑎𝜆ST−1(
𝜁 𝑠
𝑡ch

)−𝑎𝜆ED
+

(
𝜉 𝑠
𝑡ch

)−𝑎𝜆ST
d𝑠 (D.6)

=

𝑡/𝑡ch∫
𝑡0/𝑡ch

(
1 − 1

𝜎

)
𝜆ED𝜁

(
𝜁𝑡∗

)−𝑎𝜆ED−1 + 𝜆ST𝜉
(
𝜉𝑡∗

)−𝑎𝜆ST−1(
𝜁𝑡∗

)−𝑎𝜆ED +
(
𝜉𝑡∗

)−𝑎𝜆ST
d𝑡∗ (D.7)

= −1
𝑎

(
1 − 1

𝜎

)
ln

( (
𝜁𝑡∗

)−𝑎𝜆ED +
(
𝜉𝑡∗

)−𝑎𝜆ST
)����𝑡/𝑡ch

𝑡0/𝑡ch

(D.8)

= −1
𝑎

(
1 − 1

𝜎

)
ln

( (
𝜁𝑡/𝑡ch

)−𝑎𝜆ED +
(
𝜉𝑡/𝑡ch

)−𝑎𝜆ST(
𝜁𝑡0/𝑡ch

)−𝑎𝜆ED +
(
𝜉𝑡0/𝑡ch

)−𝑎𝜆ST

)
. (D.9)

Finally, we get the following implicit equation for the time 𝑡0(𝑟, 𝑡) when a plasma element at a
given radius 𝑟 and time 𝑡 was shocked:

𝜎𝑎

𝜎 − 1
ln

(
𝑟 (𝑡)
𝑟 (𝑡0)

)
= ln

( (
𝜁𝑡0/𝑡ch

)−𝑎𝜆ED +
(
𝜉𝑡0/𝑡ch

)−𝑎𝜆ST(
𝜁𝑡/𝑡ch

)−𝑎𝜆ED +
(
𝜉𝑡/𝑡ch

)−𝑎𝜆ST

)
. (D.10)



76 D Derivation of the time 𝑡0(𝑟, 𝑡)

0.0 0.2 0.4 0.6 0.8 1.0
10-6
10-5
10-4
0.001

0.010

0.100

1

rin/Rsh(tage)

t 0
(r
in
,t
ag
e
)/
t a
g
e

Figure D.1: Plot of 𝑡0 (𝑟in, 𝑡age) for a fixed time 𝑡age = 100 yr (the momentary SNR age) as a function of the internal
radius 𝑟in ≤ 𝑅sh (𝑡age). As expected 𝑡0 (𝑟in, 𝑡age) is monotonically increasing with radius and satisfies the condition
𝑡0 (𝑅sh (𝑡age), 𝑡age) = 𝑡age.

Although the logarithm could be removed by a simple exponentiation, the above form turns out
to be numerically more reliable when using standard root-finding routines to calculate 𝑡0(𝑟, 𝑡).
The dependence on radius of 𝑡0(𝑟, 𝑡) is shown in figure D.1.



E Adiabatic energy losses
In this chapter we will derive the equation for adiabatic energy losses, that was used in chapter 3.
They arise if high energy particles confined within an expanding volume do work at the cost of
the internal energy of the gas. In order to derive the loss equation, we start from the first law of
thermodynamics,

d𝑈 = 𝛿𝑊 + 𝛿𝑄 + 𝛿𝐸𝑁 = −𝑝 d𝑉 + 𝑇 d𝑆 + 𝜇 d𝑁 (E.1)

where 𝛿𝑊 , 𝛿𝑄 𝛿𝐸𝑁 denote the 1-forms (in the usual weird thermodynamical notation) of
mechanical work, heat exchange and energy increase by adding particles. Since we consider an
adiabatic process (𝛿𝑄 = 0) with a fixed number of particles (d𝑁 = 0), the first law reduces to

d𝑈 = −𝑃 d𝑉 = −𝑛𝑘B𝑇 d𝑉 = −1
3
𝐸kin𝑛 d𝑉 (E.2)

Here we used (1) the ideal-gas law 𝑃 = 𝑛𝑘B𝑇 , which holds for any classical system of non-
interacting particles (regardless of whether they are relativistic or non-relativistic) and (2) the
equipartition theorem for the mean kinetic energy per particle, 𝐸kin = 3𝑘B𝑇 . Alternatively,
one could continue the derivation by using the equation of state for a relativistic gas, namely
𝑈 = 3𝑛𝑉𝑘B𝑇 and𝑈 = 3𝑃𝑉 .

Note that the internal energy can be written as

d𝑈 = 𝑁 d𝐸kin = 𝑛𝑉 d𝐸kin , (E.3)

which directly follows from its definition. By combining those equations (E.2) and (E.3) one gets

d𝐸kin = −1
3
𝐸kin
𝑉

d𝑉 =⇒ d𝐸kin
d𝑡

= −1
3
𝐸kin
𝑉

d𝑉
d𝑡
. (E.4)

The time derivative of the volume can be written in terms of the velocity field’s divergence:

d𝑉
d𝑡

= (∇ · v)𝑉 = −1
𝜌

d𝜌
d𝑡
𝑉 (E.5)

In the last step we used the continuity equation in Lagrangian form. Finally, we get

1
𝐸kin

d𝐸kin
d𝑡

=
1
3

1
𝜌

d𝜌
d𝑡

=
1
𝜌1/3

d𝜌1/3

d𝑡
=

1
(𝜌/𝜌0)1/3

d(𝜌/𝜌0)1/3

d𝑡
=

1
𝐿 (𝑡0, 𝑡)

d𝐿 (𝑡0, 𝑡)
d𝑡

(E.6)

Here, we inserted the constant 𝜌0 B 𝜌(𝑡0) at an fixed, arbitrary time 𝑡0 and defined the adiabatic
loss function 𝐿 (𝑡0, 𝑡) as

𝐿 (𝑡0, 𝑡) B
(
𝜌(𝑡)
𝜌(𝑡0)

)1/3
(E.7)

Note that the above equation can be rewritten in terms of logarithmic derivatives and then
integrated from 𝑡0 to 𝑡:

d ln(𝐸kin(𝑡))
d𝑡

=
d ln(𝐿 (𝑡0, 𝑡))

d𝑡
(E.8)



78 E Adiabatic energy losses

⇐⇒ ln
(
𝐸kin(𝑡)
𝐸kin(𝑡0)

)
= ln

(
𝐿 (𝑡0, 𝑡)
𝐿 (𝑡0, 𝑡0)

)
= ln(𝐿 (𝑡0, 𝑡)) (E.9)

⇐⇒ 𝐸kin(𝑡) = 𝐸kin(𝑡0)𝐿 (𝑡0, 𝑡) (E.10)

At the end of this section, we briefly derive the average kinetic energy per particle for a
relativistic gas. More precisely, we derive the general equipartition theorem for a classical system
of particles described by a Hamiltonian 𝐻 and with phase space coordinates 𝑥𝑖 by following
Pathria and Beale (2022, chap. 3). The idea is to calculate the expectation value ⟨𝑥𝑖 𝜕𝐻𝜕𝑥 𝑗 ⟩ in the
canonical ensemble (which could similarly be done in the microcanonical ensemble):〈

𝑥𝑖
𝜕𝐻

𝜕𝑥 𝑗

〉
= 𝑍−1

∫
Γ

𝑥𝑖
𝜕𝐻

𝜕𝑥 𝑗
e−𝐻/(𝑘B𝑇) dΓ (E.11)

= −𝑘B𝑇 𝑍
−1

∫
Γ

𝑥𝑖
𝜕

𝜕𝑥 𝑗
e−𝐻/(𝑘B𝑇) dΓ (E.12)

= −𝑘B𝑇 𝑍
−1𝑥𝑖 e−𝐻/(𝑘B𝑇)

���
𝜕Γ

+ 𝑘B𝑇 𝑍
−1

∫
Γ

𝜕𝑥𝑖

𝜕𝑥 𝑗
e−𝐻/(𝑘B𝑇) dΓ (E.13)

= 𝑘B𝑇 𝑍
−1

∫
Γ

𝛿𝑖 𝑗e−𝐻/(𝑘B𝑇) dΓ = 𝑘B𝑇𝛿𝑖 𝑗 . (E.14)

Here 𝑍 B
∫
Γ

exp(−𝐻/(𝑘B𝑇)) dΓ is the partition function and the boundary term vanishes,
because the Hamiltonian becomes infinite when the generalized coordinates have “extreme
values”. For example, extreme values in momentum space are ±∞, so the kinetic energy diverges.
In physical space, boundary values correspond to walls confining the system, which is formally
described by an infinite potential. From the equipartition theorem above one finds the expectation
value for p · v:

⟨p · v⟩ =
〈 3∑︁
𝑖=1

𝑝𝑖 ¤𝑞𝑖
〉
=

3∑︁
𝑖=1

〈
𝑝𝑖
𝜕𝐻

𝜕𝑝𝑖

〉
= 3𝑘B𝑇 . (E.15)

In general, the product on the left-hand side is p · v = 𝛾𝑚𝑣2, so by using lim𝑣/𝑐→1 p · v = 𝛾𝑚𝑐2

and lim𝑣/𝑐→0 p · v = 𝑚𝑣2 one finds for the non-relativistic and the ultra-relativistic kinetic energy

𝑣 ≪ 𝑐 :
〈
𝐸kin, non-rel.

〉
=

〈
1
2
𝑚𝑣2

〉
≈ 1

2
⟨p · v⟩ = 3

2
𝑘B𝑇 , (E.16)

𝑣 ≈ 𝑐 :
〈
𝐸kin, ultra-rel.

〉
=

〈
(𝛾 − 1)𝑚𝑐2〉 ≈ 〈

𝛾𝑚𝑐2〉 ≈ ⟨p · v⟩ = 3𝑘B𝑇 . (E.17)
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