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Abstract

Cosmological simulations deal with very large structures and there is not enough resolu-
tion to couple all the dynamical range of processes taking place, so it is very important
to model consistently phenomena that occur in unresolved scales. One example of subres-
olution model is proposed by [Springel and Hernquist, 2003] in which the star formation
and the supernova feedback can be modeled by a multiphase structure of the Interstellar
Medium (ISM). In their approach, the ISM consists of cold and hot gas and includes radia-
tive heating, cooling, star formation and feedback from supernova. This model predicts a
self-regulated star formation quiescent mode for the gaseous part of disk galaxies and has
only one free parameter: the overall time-scale for star formation. First improvement of
this model is to express the star formation rate in terms of external pressure, which allows
to include further physical processes such as magnetic fields. This is done by assuming
that the cold and hot phase of the ISM are in pressure equilibrium [Murante et al., 2010]
and the star formation arises from the molecular fraction of the gas, which is proportional
to external pressure [Blitz and Rosolowsky, 2006]. After implementing the MHD exten-
sion of the star formation model in gadget code [Springel, 2005, Springel et al., 2001]
and having studied the behaviour of this model with simulations, we then can include
a more complicated feedback model including magnetic field seeding from Supernova
(SN) [Beck et al., 2013]. In particular, as it has already confirmed that the magnetic
field in protogalaxies can be produced by the dynamo effect in contracting protostars
[Bisnovatyi-Kogan et al., 1973]. Mass loss by stars and SN explosions can then enrich the
ISM with magnetic fields and provide a seed field in the galactic dynamo. It is interesting
to examine how this feedback model works with the MHD extension of the star formation
model in idealized disk galaxies.
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Chapter 1

Introduction

Galaxies have been a topic of extensive research in Astronomy and Astrophysics over many
years. The first observations of galaxies were done by ancient Greeks, Arabs and Persians
who noticed that the bright nebula along the night sky is a celestial and not an atmospheric
object. However was not until the late 16th century when Charles Messier cataloged var-
ious nebulae throughout the sky and classified several of them as spiral nebulae. At that
time, these ’nebulae’ were thought to be part of our Milky Way and only in 1924, Edwin
Hubble, could resolve their structure and the stars using a large telescope. Thus, he cal-
culated the distance of these objects which was found to be significantly larger than the
distance between the Earth and the center of the Milky Way. After that, the research in
galaxies remained particularly active since scientists used different wavebands in order to
observe them.
Apart from the rich observational data that we nowadays have for galaxies it is equally im-
portant to develop the theoretical understanding of the physics that governs these objects.
Gravitational dynamics cannot offer an analytic solution for a bound system of more than
2 objects. Therefore, the need of the development of numerical methods is inevitable. The
first methods to numerically solve physical problems were developed in the 1950s and with
the continuously rising computational power the progress is exponential. In the field of
galaxies and large structures the numerical methods are significant due to the large amount
of processes and coupled phenomena that are taking place. For example, particle-in-cell
(PIC) [Harlow and Evans, 1955] and particle-mesh (PM) [Hockney and Eastwood, 1988,
Efstathiou et al., 1985], direct N-body simulations [Press and Schechter, 1974], as well as
grid-free (particle methods) [Gingold and Monaghan, 1977, Lucy, 1977] methods for flu-
ids are used in the codes in order to solve the equations that describe the astrophysi-
cal systems. Initially, the numerical simulations of galaxies were performed taking only
into consideration the gravitational interaction between particles, i.e. stars and the gas
interactions which are described by hydrodynamics. However, recently, the codes for
galaxies include many more complicated processes, such as cooling [Katz et al., 1995],
star formation [Yepes et al., 1997, Hu et al., 2016, Springel and Hernquist, 2003], turbu-
lence [Chorin, 1967], magnetic fields [Dolag and Stasyszyn, 2009] or thermal conduction
[Dolag et al., 2004].
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With these two powerful tools, we are able to study in detail the formation and evolution
of galaxies. Thereby, it is important to be based on the acquired theoretical knowledge
but also to keep in mind the observational constrains in order to build realistic models for
galaxies. This is the main driven force of this thesis, in which we try to couple the mag-
netic field in the galaxies with the star formation processes in the framework of numerical
simulations.

1.1 Magnetic Fields in Galaxies

Magnetic Fields 1 are ubiquitous in the Universe and observed in different scales, from the
interior of stars to galaxies and galaxy clusters. They are always present where ionized
matter is involved and thus a major component of the dynamics in the visible matter. The
first detection of magnetic fields in galaxies came in 1932 when the radio emission of the
Milky Way was measured.

1.1.1 Detection Methods

There are various ways to measure the magnetic field in astrophysics. A very common
phenomenon is the optical and far-infrared polarization of the light from a distant luminous
source. The particles (usually dust grains) that are located between the source and the
observer can have random orientation but a few of them could be oriented with their
major axis parallel to the magnetic field. This leads to polarization of the light which is
an indicator of the perpendicular component of the magnetic field B⊥.
Synchrotron radiation is a smoking gun of the existence of magnetic fields since is produced
when charged particles are moving around magnetic field lines. In the Milky Way the
cosmic rays propagating through the interstellar magnetic fields are the origin of the diffuse
radio emission. The energy spectrum of the cosmic-ray electrons is linked to the resulting
energy spectrum of the synchrotron emission. To be more specific, a power-law energy
spectrum of cosmic-ray electrons with spectral index of γ produces a power-law synchrotron
spectrum I ∼ να, with spectral index α = (γ + 1)/2. The maximum of the synchrotron

radiation can be approximated as νo ≈
1

2π

qB

mc
γ2, which is written as νo ≈ 2 · 106Bγ2 Hz

for electrons with Lorentz factor γ. With this way we can estimate the magnetic field
if we know properties of the electron energy distribution and the other way around. In
order to determine the magnetic field, usually we make the assumption that is in energy
equipartition with the cosmic rays and the turbulent gas motions of the interstellar medium.
Thus, their energy densities are comparable :

Ucosmic rays ∼
B2

tot

8π
∼ ρv2

2
. (1.1)

1For this section we follow the review of [Beck, 2016]
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Another popular way of detecting magnetic field is through Faraday rotation, which causes
a rotation of the plane of polarization which is linearly proportional to the component of
the magnetic field in the direction of propagation. The rotation angle β is given by

β = λ2RM, (1.2)

where λ is the wavelength of the observation and RM the Rotation Measure, which is
calculated as

RM =
e3

2πm2c4

∫ d

o

ne(s)B‖(s)ds. (1.3)

In the last equation, e is the charge of the electron, c is the speed of light in vacuum, m is
the mass of the electron, ne(s) is the density of the electrons and B‖ is the magnetic field
along the line of sight. The magnetic field of the galaxy can be split into two components,
the regular and turbulent field. The regular field is sensitive to the field direction so only
these fields give rise to Faraday rotation.
The most direct way of detecting the magnetic field in astrophysical context is the Zeeman
effect [Zeeman, 1897]. When magnetic field is present, the spectral lines of an atom are
split into two components with frequency

νo ±
eB||

4πmc
(1.4)

with νo the frequency without any external field. Thus, knowing the theoretical values of
the emission lines we can easily determine the magnetic field in the line of sight.

1.1.2 Origin of magnetic fields in galaxies and amplification

In order to build up the observed magnetic field of a spiral galaxy we need a way to
seed it, a way to amplify it and finally a way to order and sustain it. The origin of
the first magnetic fields in the Universe is still highly debated. The large scale inter-
galactic magnetic field, in the order of 10−12 G could have primordial origin, i.e., could
be generated in the early Universe according to [Durrer and Neronov, 2013]. A common
belief is the well known Biermann battery [Biermann, 1950, Xu et al., 2008]. The Bier-
mann battery is a process to seed very week magnetic field from zero initial conditions,
which happens if we add an extra term in the Ohms law. However the large scale pri-
mordial field is hard to be maintained in galaxies due to their differential rotation which
winds up the magnetic field. A seed magnetic field is considered to be generated in proto-
galaxies or in the intergalactic medium due to Weibel-type instabilities [Lazar et al., 2009],
[Schlickeiser, 2012]. Another scenario is that seed fields came from the first black holes,
stars or supernovae explosions [Hanayama et al., 2005]. Whichever is the origin of the
seed or primordial fields, these should be amplified in order to reach observable values.
An efficient way to amplify the fields is the small scale dynamo within a timescale of 106

yrs. This includes turbulence in the gas produced by supernovae explosions [Ferriere, 1996]
or by spiral shocks [Kim et al., 2006]. The small scale dynamo can amplify seed fields in
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fields with strength of µG and results in a turbulent magnetic field configuration. The
ordering of the turbulent magnetic fields in galaxies is a result of the differential rotation
of the gas [Kotarba et al., 2009], which is supported by the magneto-rotational instability
[Pakmor and Springel, 2013]. The most prominent way to sustain the ordered magnetic
field in galactic scales is the α−Ω dynamo with a timescale of 108 yrs [Beck et al., 1996].
This occurs due to the differential rotation (Ω - effect) of gas flows driven by supernova
explosions or cosmic rays, carrying magnetic fields which are twisted from the Coriolis force
(α - effect) in addition to magnetic diffusivity. This is called mean field approximation,
because the small and large scale effects can be mathematically separated in the equation
following the evolution of the magnetic field, which is written as

∂B

∂t
= ∇× (v×B) +∇× αB + η∇2B. (1.5)

In equation (1.5) the first term in the left-hand side expresses the amplification through the
large-scale velocity field of the galaxy, the second term represents the α effect and the last
one the losses due to magnetic diffusivity. Studies [Beck et al., 1994], [Arshakian et al., 2009]
show that the mean field approximation in galactic disks generate large ordered fields from
turbulent magnetic fields within 1 Gyr. The total magnetic field of a galaxy is calculated
as the vector sum of the turbulent magnetic field that is generated from the small scale
dynamo and the ordered magnetic field which is generated from the large scale α − Ω
dynamo. Both actions are needed in order to reach observable values and configurations.
Among spirals the total magnetic field is found to be Btot = 9± 2 µG, [Niklas, 1995]. Gas
rich galaxies have total magnetic field strengths of 20− 30 µG while in starburst galaxies
the field strength can reach values up to 50−100 µG (i.e. [Adebahr et al., 2013]). In order
to estimate the significance of the magnetic fields, it is useful to compare the energy den-
sities of different components of the interstellar medium (ISM). These are: the magnetic
field, the turbulence of the neutral gas, the cosmic rays and the thermal energy density of
the warm ionized gas of the ISM.

An observational example is shown in figure 1.1, in which the radial variations of the
energy densities in the galaxy IC 342 are shown. The component of the turbulent motion
of the neutral gas in the ISM is shown in blue, the total magnetic field in black, the cosmic
rays, which are in equipartition with the ordered magnetic field, in green and the thermal
energy of the warm gas in red (T = 104 K). The radial profiles show that the ISM is a
low β plasma since the magnetic energy density is higher than the thermal. Although the
turbulence is higher near the center of the galaxy, the magnetic field dominates in the outer
parts. These results are similar to the observational observational outcomes of [Cox, 2005]
for the Milky way. Therefore, it is clear that the magnetic fields are dynamically important
for the physics of the interstellar medium and their presence and effects should be taken
into consideration in galaxy formation simulations.
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Figure 1.1: Energy densities of different components of the ISM. The component of the turbulent motion of
the neutral gas is shown in blue, the total magnetic field in black, the cosmic rays, which are in equipartition
with the ordered magnetic field, in green and the thermal energy of the warm was in red (T = 104 K).
Taken from [Beck, 2016]

1.1.3 Magnetic fields and Star Formation

As magnetic fields are a significant component of the ISM, it is important to understand
how they affect or are affected by the star formation in a galaxy. A global correlation holds
between the total radio emission of a galaxy, which has synchrotron origin, and the infrared
luminosity of star-forming galaxies. This is a tight correlation that holds for many orders
of magnitude and is slightly non-linear in log-log scale (exponent 1.09±0.005) [Bell, 2003].
[Schleicher and Beck, 2013] explain this correlation by relating star formation and magnetic
field strength in terms of turbulent magnetic field amplification, where turbulence is a
result of supernova feedback. Observations [Tabatabaei et al., 2013] show a correlation
between the magnetic fields and the star formation density of a galaxy. In this study they
investigated the correlation between the radio continuum (synchrotron) and the far-infrared
emission of NGC 6976 using Herschel. With these observations it is possible to determine
the magnetic field strengths of the galaxy and star formation activity. In figure 1.2 is shown
that the total and turbulent magnetic field strength are correlated with the star formation
density ΣSFR. This correlation points out that turbulent magnetic fields are efficiently
produced in active star forming regions, which agrees with previous studies [Chyży, 2008].
In star forming regions feedback mechanisms, such as supernovae, increase the turbulence
of the ISM. This can be a seed to the small scale dynamo that was previously discussed in
order to amplify the turbulent magnetic field.
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Figure 1.2: Magnetic field strengths (total and turbulent) measured by the degree of polarization versus
the surface density of the star formation rate. [Tabatabaei et al., 2013]

1.2 Numerical Simulations

Numerical simulations are an important tool in modern astrophysics that has shown rapid
progress over the last decades. Different methods have been developed in order to solve
the equations that govern the dynamics of the Universe. Cosmological simulations are
crucial in the understanding of structure formation and explaining the dynamics of large
structures such as galaxies and galaxy clusters. The first and simplest simulations of galax-
ies were the N-body simulations and were done considering only gravitational interactions
between particles [Press and Schechter, 1974], which was an evolution of the restricted 3
body problem [Toomre and Toomre, 1972]. Apart from the N-body simulations, the need
of understanding additional physical processes gave rise to the development of new hydro-
dynamic methods. The two general categories of numerical schemes in order to discretize
continuous quantities are the particle methods, which discretize mass and the grid methods,
which discretize space. Here we are using the particle based cosmological code gadget
[Springel et al., 2001, Springel, 2005]. Its basic characteristics will be explained bellow.

1.2.1 Gravitational Dynamics

Gravity is the main driving force of the structure formation, since dark matter dominates
over baryons in the Universe and thus is the core of any cosmological code. For the
calculation of the gravitational force between the particles the most obvious way is the
direct summation of the force between all the particles. This computation would result in
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Figure 1.3: Schematic representation of the oct-tree method (2D). The particles are first included in a
single cube (root node) and then are every time divided until one node includes one particle. Taken from
[Springel et al., 2001].

the accurate result that comes from the total gravitational potential, however, it is rather
expensive and requires O(N2) calculations. An alternative way to perform this calculation
is by computing the gravitational acceleration with a single interaction with a node of the
”tree structure”, where one node contains a corresponding set of particles. The number
of operations required for the calculation of the accelerations of all particles decreases
to O(NlogN). This method is called the Tree method and has many alternatives. The
main idea behind this method is that particles are grouped together into nodes so the
contribution of distant particles is computed as a single force. An example of a tree
algorithm is the oct tree, in which all particles are contained in a cube (node). Then this
cube is split in its 8 octants and each one of the smaller cube is split to its 8 octants as
well. This procedure ends when there is one or no particles in the last cube. The last
level of cubes are the ”leaves” of the tree. The calculation of the gravitational force is
done by starting at the first cube and then ”walking” in the different branches taking into
consideration the importance of each branch. An illustration in 2D of the oct-tree is shown
in figure 1.3. Another way of a tree algorithm is the binary tree which follows the opposite
procedure. First the calculation of the force starts at the leaves - i.e. final stages of the
tree - and stops at the root node.

1.2.2 Hydrodynamics

In particle codes like gadget the method to solve the hydrodynamic equations is called
Smooth particle Hydrodynamics (SPH) 2 and is a Lagrangian method. SPH is a technique
of solving numerically the hydrodynamic equations by discretizing the mass of the fluid.
Was developed in astrophysics by [Gingold and Monaghan, 1977] and [Lucy, 1977]. In this
case the particles are acting as markers in order to discretize and solve the equations of
hydrodynamics:

2For this section we follow the review of [Price, 2012]
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dρ

dt
+ ρ∇ · v = 0

dv

dt
+
∇P
ρ

= 0

du

dt
+
P

ρ
∇ · v = 0

with
d

dt
=

∂

∂t
+ v · ∇. From the last set of equations the first equation is the mass

continuity equation, the second are the Euler or momentum equations and the last is
the energy conservation equation. Before thinking how the hydrodynamic equations are
written in SPH formulation, we should answer the fundamental question, how to compute
the density from a random distribution of particles. The most simple approach is to
construct a grid including all the particle distribution and calculate the mean density in
each cell. This particle-mesh approach is shown in the left panel of figure 1.4. However
this method can easily over/underestimate regions of the system in the case of highly
anisotropic particle distribution. Another way, shown in the middle panel of figure 1.4, is
to remove the grid and calculate the density by sampling the local particle distribution.
This can be a noisy estimator since there is an uncertainty if one particle in the edge of the
sampling region is considered to be part of it or not. The further and natural evolution of
this method is to sample the local particle distribution by smoothing it according to the
distance between the central region and other particles. That means that particles that are
located further away have smaller contribution in the density calculation. This is called
kernel density estimator and the density is written as

ρi =
∑
j

mjWij(xij, h) (1.6)

for a particle with density ρi, position denoted by the vector ri and relative distance xij
between the particles i and j. W is the weight function (or smoothing kernel) and h is a
characteristic scale that is also function of density:

h(xi) = η

(
mi

ρi

)1/3

(1.7)

and η is the ratio of the smoothing length to the mean distance between particles. The
kernel function cannot be any random function but should fulfill a couple of properties.
The kernel should have:

• a positive weighting, should decrease monotonically with the relative distance of the
particles xij and have smooth derivatives

• symmetry with respect to the relative distance of 2 particles, i.e., W (xij, h) =
W (xji, h)
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Figure 1.4: Different approaches to calculate the density from a random particle distribution. Left panel:
particle-mesh method, central panel: calculation doing local sampling of the density, right panel: kernel
density estimator. Taken from [Price, 2012].

• a flat behaviour in the center of the particle distribution so with a small change in
the particle’s position will not affect the density estimation

For all the simulations performed here we use the Wendland C4 kernel [Dehnen and Aly, 2012].

If we write the kernel W as W (xij, h) =
1

hd
w(q). with q = xij/h, then the function w(q)

for the Wendland C4 kernel is

w(q) =
495

32π
(1− q)6

(
1 + 6q +

35

3
q2

)
(1.8)

For q > 1 the function w is set to w(q) = 0 and this kernel function needs 200 neighbours
in 3 dimensions.
The Lagrangian of a discretized system of point masses mi is written as

L =
∑
i

mi

(
1

2
v2
i − ui

)
(1.9)

where vi is the velocity of the particle i and ui its internal energy. The equations of
motion for the system are derived from the principle of least action S =

∫
Ldt such that

δS =
∫
δLdt = 0. Thus the SPH expression of the equations of motion is

dvi
dt

= −
∑
j

mj

(
f coi

Pi
ρ2
i

∂Wij(hi)

∂ri
+ f coj

Pj
ρ2
j

∂Wij(hj)

∂ri

)
(1.10)

with f co being a corrector factor given by

f coi,j =

(
1 +

hi,j
3ρi,j

∂ρi,j
∂hi,j

)−1

. (1.11)

The change of the energy of the system follows the equation

dui
dt

= f coi
Pi
ρ2
i

∑
j

mj(vi − vj) ·
∂Wij(hi)

∂ri
(1.12)
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in which we used the notation Wij(hi) = W (xij, hi). In the case of pure hydrodynamics
(equation (1.10) the energy), momentum and angular momentum are exactly conserved.
The SPH method solves these equations without any dissipation terms. Although, fluid
flows often develop discontinuities, for example shocks. In this case an extra term is needed
in order to describe correctly the fluid. This additional term in the velocity equation
equation (1.10) has the form

dvi
dt
|visc = −

∑
j

mjΠij
∂W ij

∂ri
(1.13)

where W ij is the arithmetic average of W (xij, hi) and W (xij, hj). This artificial viscosity
causes changes in the entropy of the system that follows

dAi
dt

=
1

2

γ − 1

ργ−1
i

∑
j

mjΠijvij ·
∂W ij

∂ri
(1.14)

with Πij the quantity which parametrizes the artificial viscosity. In gadget it follows
[Monaghan and Gingold, 1983] and [Balsara, 1995] and takes the form

Πij =

{
[−αcijµij + βµ2

ij]/ρij if vij · rij < 0
0 otherwise

(1.15)

with

µij =
hijvij · rij
|rij|

. (1.16)

In equation (1.15) and equation (1.16) the quantities µij and ρij are arithmetic means for
the particles i and j of the mean molecular weight and density respectively, and cij is the
sound speed. The parameters α and β are usually chosen to be α ' 0.5− 1.0, β = 2α and
they regulate the strength of the viscosity. In the equation of motion the viscosity acts as
an extra pressure term Pvisc ' ρ2

ijΠij/2.
So far the pure hydrodynamic case was examined. It is important though to consider full
MHD treatment for problems in which the magnetic field is dynamically important. The
MHD extension in gadget was implemented by [Dolag and Stasyszyn, 2009]. When the
magnetic field is included then the equation of motion changes and is written as

dvi
dt

= −
∑
j

mj

(
f coi

Pi +B2
i /2µo

ρ2
i

· ∂Wij(hi)

∂ri
+ f coj

Pj +B2
j /2µo

ρ2
j

· ∂Wij(hj)

∂ri

)
+

1

µo

∑
j

(
f coi
ρ2
i

Bi(Bi ·
∂Wij(hi)

∂ri
) +

f coj
ρ2
j

Bj(Bj ·
∂Wij(hi)

∂ri
)

)
.

(1.17)

The presence of the magnetic field adds an extra pressure term in the equation of motion
(second term of equation (1.17)) because we need to account for ∇·B = 0. It is important
to notice that in the MHD version of the Lagrangian

LMHD =
∑
i

mi

(
1

2
v2
i − ui −

1

2µo

B2
i

ρi

)
(1.18)
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the magnetic field and the change of the magnetic field cannot be written as function of
particle coordinates. Thus, is not possible to use directly the Euler-Lagrange equations to
derive the equation of motion equation (1.17). Instead, a more general variational principle
is employed, which is given by

δL = mjvj · δvj −
∑
i

mi

(
∂ui
∂ρi
|sδρi +

1

2µo

(
Bi

ρi

)2

δρi +
1

µo
Bi ·

(
Bi

ρi

))
. (1.19)

Now the variational principle is written with respect to an infinitesimal change in the spacial
coordinate of the particle and we are able to express the change in the magnetic field as
a function of the change in the particle coordinate. This is equivalent to a Lagrangian
expression for the time derivative of the magnetic field. That means that not only the
density calculation is needed for the equations of motion but also the evolution of the
magnetic field. In ideal MHD the induction equation in Lagrangian form is given by

d

dt

(
B

ρ

)
=

(
B · ∇
ρ

)
v. (1.20)

The last equation in SPH formulation is written as

d

dt

(
Bi

ρi

)
=
∑
j

mj(vi − vj)f
co
i

Bi

ρi
∇Wij(hi) (1.21)

A few tests of the MHD version of the code are presented in Chapter 3 and were extensively
tested in [Dolag and Stasyszyn, 2009]. According to [Dolag and Stasyszyn, 2009] the use
of regulation schemes are useful to suppress noise and div(B) errors but need careful
treatment so sharp features are not over-smoothed.

1.2.3 Additional Physics

In order to study structure formation problems it is essential to include various physical pro-
cesses in a cosmological code. In gadget, radiative cooling and heating is included as pre-
sented in [Katz et al., 1995] assuming collisional ionization equilibrium and optically thin
gas. Star formation and feedback are following the work of [Springel and Hernquist, 2003]
and are explained in detail in Chapter 2 as well. Other processes, such as thermal conduc-
tion [Dolag et al., 2004, Jubelgas et al., 2004] and growth of supermassive black holes as
implemented by [Di Matteo et al., 2005] and [Springel et al., 2005], are included but not
used in the simulations presented here.
Numerical galaxy formation and evolution is a complicated and multi-aspect problem. We
prefer high resolution simulations in order to understand the physics that is crucial in the
formation and evolution of the galaxy but also a realistic cosmological environment. The
critical aspects of a galaxy simulation is to use realistic initial conditions, to include phys-
ical processes that are relevant and important in the galaxy formation and to choose the
appropriate computational tools in order to produce results that can be compared with the
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observations. In galaxies, apart from gravity, it is significant to employ a realistic model for
the interstellar medium (ISM) that includes cooling and heating of the ISM, star formation,
supernovae feedback, winds from massive stars, cosmic rays and magnetic fields but also
the ubiquitous turbulence. Apart from the dynamical processes inside the galaxy, it is also
essential to include the interaction of the galaxy with its circum-galactic medium. This
involves inflowing gas but also outflows from the galaxy. The majority of the processes
that are taking place in a galaxy are coupled, for example the presence of the magnetic
field will alter the star formation in a galaxy and also the cosmic ray propagation. On the
other hand, the stellar population will influence the magnetic field structure and through
supernova explosions cosmic rays are affected as well. In simulations of cosmological boxes
(figure 1.5) or even for simulations of isolated galaxies, star formation is a process that
is taking place in scales far below the resolution limit. For this reason it is essential to
build realistic sub-grid models in order to reproduce the unresolved physics. However, so
far there has never been the attempt to adapt such sub-grid models for star formation
in order to include additional physics, for example magnetic fields, which summarizes the
motivation for this thesis. In the next chapter we will explain the star formation model
that the cosmological code gadget applies and then an extension which allows the cou-
pling of the magnetic field with the star formation in a galaxy. In the last chapter we
present simulations that were performed with the extention of the sug-grid model for star
formation.
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Figure 1.5: Visual representation of different components of cosmological simulations. The common
paradigm for cosmological simulations is to occupy a large box which includes large scale structures such
as galaxy and galaxy clusters. It is important to model the physics for the intergalactic medium, then
in lower scales the galaxies and the interstellar medium. Many physical processes are happening in small
scales, for example star and planet formation, but is not possible to resolve them in the cosmological
simulations. Therefore, we build realistic sub-grid models in order to mimic the unresolved physics. Taken
from: http://www.usm.uni-muenchen.de/Masterarbeiten.php
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Chapter 2

Star Formation models

2.1 Star Formation model in gadget

The cosmological code gadget uses the sub-grid, multiphase model for star formation
as proposed by [Springel and Hernquist, 2003]. According to this model, the gas in the
interstellar medium (ISM) consists of hot and cold gas, which interacts with processes
such as radiative cooling, supernova (SN) feedback in the form of thermal heating and
cloud evaporation, metal enrichment and star formation. From simulations is shown that
this model predicts a self-regulated, quiescent mode of star formation which stabilizes the
star formation in the gaseous part of the disk of the galaxies. The only free parameter
of this model, as will be shown later, is the overall timescale of star formation, which is
tuned using the observational Schmidt-Kennicutt relation, given by [Kennicutt Jr, 1998,
Schmidt, 1959]. The model has an extension that includes the generation of galactic winds,
however we do not use this option in this work.

2.1.1 The sub-grid model

This hybrid model is an attempt to describe the ISM by using the global dynamics and
spatially averaged properties of the medium and not to resolve the multiphase structure
of the ISM in small structures. They consider that one resolution element of the code -
a SPH particle in the current case - consists of hot and cold gas. The SPH fluid element
represents a region of the ISM and it is considered that there are cold clouds in pressure
equilibrium with the ambient hot gas. In the following, ρh is the density of the hot gas,
ρc is the density of the cold gas, the total gas density is written as ρ = ρh + ρc and ρ∗ is
the density of the stars that are formed. The thermal energy per unit volume is written as
ε = ρhuh + ρcuc, with uh, uc is the specific hot and cold energy respectively.
The star formation occurs in the cores of molecular clouds - that are not actually resolved
in the simulation - and for this model the star formation is the process that converts a part
of the cold gas of the ISM into stars at a characteristic timescale t∗. The time derivative
of the density of the stars is written as
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dρ∗
dt

=
ρc
t∗
− βρc

t∗
= (1− β)

ρc
t∗
. (2.1)

The parameter β is the fraction of the massive stars (> 8M�) that explode as super-
novae and is set to β = 0.1. This comes from a Salpeter Initial Mass Function (IMF)
[Salpeter, 1955] with slope of -1.35. This fraction is subtracted from the gas that forms
stars because the timescale of supernovae explosions, which is the typical lifetime of a
massive star, is negligible comparing the timescale of the star formation in the quiescent
mode.
The supernova feedback has two different effects on the ISM, i.e., heating of the ISM and
cold cloud evaporation. The blast wave of the supernova heats the surrounding gas through
the shocks that are created but also can destroy the cold and dense clouds that are located
near the explosion mainly by thermal conduction. As far as the heating is concerned, one
supernova releases 1051 erg, which corresponds to εSN = 4 · 1048 erg ·M−1

� for the adopted
IMF. Therefore, the heating rate of the ISM from the SN is written as

dρhuh
dt

= εSN
dρ∗
dt

= βuSN
ρc
t∗

(2.2)

where uSN = (1−β)β−1εSN. Apart from the heating of the hot phase of ISM, the supernova
explosion destroys the cold clouds that are located near to them and thus material from
the cold phase is transferred in the hot phase. This process in expressed by

dρc
dt
|EV = Aβ

ρc
t∗

(2.3)

A is the efficiency of the evaporation process and depends on the density as A ∝ ρ−4/5

[McKee and Ostriker, 1977].
The last process that describes the mass flow between the hot and the cold phase is the
radiative cooling. Assuming a thermal instability operating, a part of the hot ambient
medium cools and gives rise to the cold clouds. This process is described by the following
equation

dρc
dt
|TI = −dρh

dt
|TI =

1

uh − uc
Λnet(ρh, uh). (2.4)

The cooling function that gadget uses is described by [Katz et al., 1995] and contains
radiative processes appropriate for primordial plasma of hydrogen and helium.

In this formulation, the internal structure of the cold clouds is neglected and it is assumed
that the gas cannot cool below 103 − 104 K. Thus, the temperature of the cold clouds is
set to be constant at T = 103 K and the temperature and internal energy of the total
gas is essentially the temperature and internal energy of the hot ambient medium. Using
equation (2.1) to equation (2.4), the evolution of the masses of the hot and cold gas is
written as follows
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Figure 2.1: Mass flow and description of the processes taking place between the different phases of the gas.

dρc
dt

= −ρc
t∗
− Aβρc

t∗
+

1− f
uh − uc

Λnet(ρh, uh) (2.5)

dρh
dt

= β
ρc
t∗

+ Aβ
ρc
t∗
− 1− f
uh − uc

Λnet(ρh, uh) (2.6)

The factor f denotes the operation of the thermal instability and can take two values, 1
and 0. If f = 0 then the thermal instability is operating and if f = 1 then normal cooling
is taking place. For the onset of thermal instability and thus star formation, a density
criterion should be fulfilled, namely ρ > ρthr. This means that the star formation occurs
only when cold clouds are formed and the density exceeds the density threshold ρthr. In
the equation (2.5) and the equation (2.6) the first term on the right side accounts for
the star formation, the second for the cloud evaporation and the last one for the growth
of cold clouds through radiative cooling. The energy balance of the ISM including the
aforementioned processes is shown in the following equation

d(ρhuh + ρcuc)

dt
= −Λnet(ρhuh) + β

ρc
t∗
uSN − (1− β)

ρc
t∗
uc. (2.7)

In the equation (2.7) the left-hand side describes the energy rate per unit volume and in
the right-hand side the first term is the radiative cooling of the hot ambient medium, the
second term is the heating from supernovae explosions and the third term is the energy loss
by star formation. Considering that the multiphase structure of the ISM, the equation (2.7)
can be split into two components, i.e., the hot and cold components
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d(ρhuh)

dt
= −ρc

t∗
uc − Aβ

ρc
t∗
uc +

(1− f)uc
uh − uc

Λnet (2.8)

d(ρcuc)

dt
= β

ρc
t∗

(uSN + uc) + Aβ
ρc
t∗
uc +

uh − fuc
uh − uc

Λnet. (2.9)

In both equations the first term of the right-hand side corresponds to the star formation
and feedback, the second term to the cold cloud evaporation and the last term corresponds
to the effect of the thermal instability.
As was mentioned above, the temperature of the cold clouds is constant and thus uc
is constant as well. In the code the evolution of the hot phase is tracked, therefore,
equation (2.7), using equation (2.6) is written as

ρh
duh
dt

=
ρc
t∗

(uSN + uc − uh)− Aβ
ρc
t∗

(uh − uc)− fΛnet. (2.10)

Considering active star formation, i.e., thermal instability operating (f = 0), the equa-
tion (2.10) has an equilibrium solution. To be more specific, for f = 0 the solution of the
differential equation (2.10) is

uh(t) = exp(− β
t∗

ρc
ρh

(A+ 1) · t) +
uSN

A+ 1
+ uc. (2.11)

For timescales τh =
t∗ρh

β(1 + A)ρc
>> t the above solution reaches an equilibrium solution

uh =
uSN

1 + A
+ uc. (2.12)

Assuming that the star formation is quicker than the heating and cooling, the hot phase
will remain in temperature given by equation (2.12). Keeping this into consideration, a
self-regulated cycle of star formation is set. Cloud evaporation and star formation reduces
the density of the cold phase, which lowers the star formation rate. At the same time, the
high density of the hot phase increases the cooling rate which translates into further growth
of the cold clouds and increase of the star formation rate. Within this equilibrium phase,
the multiphase structure of the ISM is treated as an effective medium with a constant
effective pressure

Peff = (γ − 1)(ρhuh + ρcuc). (2.13)

The effective pressure is constant, hence from equation (2.7) we have

ρc
t∗

=
Λnet(ρh, uh)

βuSN − (1− β)uc
. (2.14)

Using Λnet(ρh, uh) = (ρh/ρ)2Λnet(ρ, uh), the ratio of the density of the cold gas over the
density of the hot gas is
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Figure 2.2: Temperature of the gas plotted against the baryonic overdensity. The temperature has 3
components, i.e., the upper thin line corresponds to the temperature of the hot phase of the gas, the middle
to the effective gas and the lower dashed line to the cold clouds. From [Springel and Hernquist, 2003].

ρc
ρh

=
ρh
ρ
y (2.15)

with y

y =
t∗Λnet(ρ, uh)

ρ[βuSN − (1− β)uc]
. (2.16)

Assuming that the parameters t∗ and A depend only on density, the fraction x = ρc/ρ of
the cold gas depends only on the gas density and is expressed in terms of y as

x = 1 +
1

2y
−
√

1

y
+

1

4y2
. (2.17)

The dependence of the fraction of the cold clouds on the density is shown in figure 2.3.
Using the quantity x the effective pressure is now written as

Peff = (γ − 1)ρ[(1− x)uh + xuc]. (2.18)

The effective temperature of the medium that corresponds to the pressure of equation (2.18)
is shown in figure 2.2 as a function of density. In the same figure is plotted the constant
temperature of the cold clouds (dashed lines) and the temperature of the hot phase (upper
solid line) of the ISM.
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Figure 2.3: Fraction of cold clouds as a function of the baryonic overdensity. From
[Springel and Hernquist, 2003].

2.1.2 Selection of parameters

As mentioned above, the parameters A and t∗ depend on the density. According to the
theoretical approach of [McKee and Ostriker, 1977] the SN evaporation parameter A can
be parametrized as

A(ρ) = A0

(
ρ

ρthr

)−4/5

. (2.19)

As far as the timescale for star formation is concerned, we correlate it with the local
dynamical time of the gas, so

t∗(ρ) = t∗0

(
ρ

ρthr

)
.−1/2 (2.20)

Therefore, the free parameters of the model so far, which moderate the ISM, are the nor-
malization parameter A0, the t∗0 and the density threshold ρthr. In order to constrain the
A0, one has to think the onset of the thermal instability. From the equilibrium solution
equation (2.12) the temperature of the hot phase is approximately 105 K. At this tem-
perature the thermal instability operates and the cooling function starts to fall. Thus
TSN/A0 = 105 K, which constrains the parameter A0 to be A0 = 1000, for a typical super-
nova ”temperature” of TSN = 2µuSNmH/3k = 108 K.
To continue, using equation (2.15) together with equation (2.16) and the fact that ρ =
ρh + ρc we have
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y =
t∗Λnet(ρ, uh)

ρ[βuSN − (1− β)uc]
⇒

ρcρ

ρ2
h

=
t∗Λnet(ρ, uh)

ρ[βuSN − (1− β)uc]
⇒

ρcρ

(ρ− ρc)2
=

t∗Λ(ρ, u)ρ2

ρ[βuSN − (1− β)uc]
⇒

ρc
ρ
· 1

(1− ρ/ρc)2
=

t∗Λ(ρ, u)ρ

ρ[βuSN − (1− β)uc]
.

Where the cooling function Λ is defined as Λ(ρ, u) = Λnet(ρ, u)/ρ2. Using the definition of
the cold fraction x = ρc/ρ, the expression of the density at the threshold is written as

ρthr =
xthr

(1− xthr)2

βuSN − (1− β)uc
t∗0Λ(uSN/A0)

(2.21)

where xthr is the cold fraction in the threshold and is calculated as xthr = 1 + (A0 +
1)(uc − u4)/uSN ' 1 − A0u4/uSN. The last expression comes from the condition of the
effective pressure being a continuous function of the density at the onset of self-regulated
star formation. The gas below the density threshold cools down to 104 K and is neutral.
Further cooling would require molecular cooling which is neglected in this model. Thus,
the condition is translated into ueff(ρthr) = u4, with u4 being the specific energy that
corresponds to a temperature of 104 K.
The last parameter that needs to be constrained is the overall timescale for star formation t∗0
which sets the overall gas consumption timescale in the galaxy. This parameter is correlated
to the efficiency of the star formation and will be constrained by the observations. It has
been observed that the star formation rate per unit area is strongly correlated to the
surface density of gas in galactic disks. This is known as the Schmidt-Kennicutt from
[Schmidt, 1959, Kennicutt Jr, 1998] and is given by the following equation

ΣSFR = (2.5± 0.7) · 10−4

(
Σgas

M�pc−2

)1.4±0.15
M�

yr · kpc2
. (2.22)

This relation holds for more than 4 orders of magnitudes in disk-averaged gas densities in
galaxies and shows a clear threshold in the star formation. As shown in the solid line of the
figure 2.4 the star formation rate per disk area is going quickly to zero for disk densities
lower than ∼ 9 M�pc−2. It is important that simulations of galaxies will reproduce this
correlation, as is a test to prove the correct behaviour of the star formation. In figure 2.4 the
observational Schmidt-Kennicutt relation (dashed inclined line, equation (2.22)) is plotted
and different predictions of the model (dotted lines) by changing the parameter of the
overall star formation t∗0. It is obvious that the model under discussion is very sensitive in
the change of the parameter t∗0. The best fit corresponds to t∗0 = 2.1Gyr, displayed by the
solid inclined line in figure 2.4.



22 2. Star Formation models

Figure 2.4: The star formation rate per unit area as a function of the gas density of the galaxy. The
dashed inclined line shows the observational Schmidt-Kennicutt relation while the vertical dashed line
indicates the observational cut-off. The upper dotted line is the prediction of the model for t∗0 = 0.53 Gyr,
the lower for t∗0 = 8.4 Gyr and the solid line is the best fit for t∗0 = 2.1 Gyr. Plot taken from
[Springel and Hernquist, 2003]
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2.1.3 Code implementation

According to the equations presented in the previous section, the hot phase of the ISM will
evolve towards an equilibrium solution and its temperature is given by equation (2.12). The
timescale of this process is smaller than the timescale of the star formation which means
that the self regulation regime is reached quickly and we can use the set of equation (2.12)-
equation (2.18) to describe the gas of the ISM in the code. The star formation rate is
calculated as

Ṁ∗ = (1− β)
x ·m
t∗

(2.23)

where x ·m is the mass of the cold clouds and t∗ is calculated from equation (2.20). For
each time-step a new star is formed in a stochastic way, i.e., when a random number drawn
uniformly from the interval [0,1] is bellow

p∗ =
m

m∗

[
1− exp

(
−(1− β)x∆t

t∗

)]
(2.24)

m∗ = m0/Ng is the mass of the star, m0 is the initial mass of the particle and Ng is the
number of generations of stars that each SPH particle can generate. In our case the number
of generations is chosen to be Ng = 1. This means that each gas particle can generate 1
star particle, which will have the same mass as the gas particle and will be initiated with
the same space variables. When the star is spawned will be decoupled from the sub-grid
model and will become one collisionless particle. With this simple way of generating stars
we avoid to have hybrid gas-stars particles because all the stellar mass is contained by the
stellar particle. Also the mass resolution remains constant for all particles.

2.2 An alternative formulation of the model

The aforementioned model predicts a self-regulated star formation model for cosmological
simulations of galaxy formation. It is based on rough approximations but is also physically
motivated from the basic processes that take place in the ISM. However, it doesn’t take
into account the non-thermal processes of the ISM, such as cosmic rays and magnetic
fields. A straightforward way to include further processes is to transform the density
threshold of the model into a pressure threshold or to include the hydrostatic pressure of
the ISM in the formula such that affects the threshold of star formation. Therefore, we
can add the different components of pressure beyond the thermal pressure and take into
consideration further processes that can be dynamically important for the ISM. This is
important because the magnetic fields, turbulent motion of gas and the cosmic rays are
dynamically important components of the ISM as was already shown in figure 1.1. In this
section we will present an alternative way to consider the sub-grid model of star formation
following the formulation of [Murante et al., 2010].
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2.2.1 Model equations

Following the idea of the multiphase structure of the ISM, the gas can be in the cold or the
hot phase. Based on the description presented in [Murante et al., 2010], the two phases
are in pressure equilibrium

nhTh = ncTc (2.25)

with nh,c being the number density and Th,c the temperature of each phase. The corre-
sponding number densities are computed as

nh,c = ρh,c/(µh,cmp), (2.26)

withmp being the proton mass and µh,c the mean molecular weight of the hot and cold phase
respectively. We assume that the fraction of neutral hydrogen is fHI = 0.76 and thus the
mean molecular weights are µh = 4/(5fHI + 3) = 0.6 for the hot phase and µc = 4/(3fHI +
3) = 1.2 for the cold phase. The temperature of the cold phase is set to Tc = 103 K and
is constant in accordance to the star formation model by [Springel and Hernquist, 2003]
(from here on referred as SH03). The physical densities are averaged quantities over the
volume and are written as

ρh =
Mh

fhV
(2.27)

ρc =
Mc

fcV
(2.28)

fh,c is the filling factor for the different gas phases and V the total volume of the resolution
element, which is the SPH particle in this work. Using the pressure equilibrium condition
from equation (2.25) and equation (2.27)-equation (2.28) we have

ρh
µhmp

Th =
ρc

µcmp

Tc ⇒

MhTh
fhV µh

=
McTc
fcV µc

⇒

fh = Mh
Th
Tc

µc
µh
fc.

The filling factors should hold the relation fc + fh = 1. Moreover, we define the mass
fraction of the hot phase as

Fh =
Mh

Mh +Mc

. (2.29)

From the equation (2.29) follows: Mh = Fh/(1 − Fh) and it is trivial that Fc + Fh = 1.
Thus, the filling factor of the hot phase is expressed by
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Figure 2.5: Mass flow and and physical processes between the different phases of the interstellar medium.

fh =
1

1 + (Fc/Fh)(µh/µc)(Tc/Th)
. (2.30)

Mass is exchanged by the different components of the gas with processes as in SH03 model.
In details, the hot gas cools into cold through radiative cooling and when the pressure is
high enough a fraction of the cold gas turns into molecular gas, from which the stars
are formed. When enough stars are formed then they become an individual colisionless
particle which does not interact with the gas hydrodynamically. Some of the stars are
very massive and thus explode as supernova. Part of the energy released in the supernova
explosions heats up the gas and restores the hot phase of the medium. Moreover, the
supernova explosion has an important effect in its surrounding medium as it destroys the
cold clouds that are located near to the explosion. These processes are shown in figure 2.5.
The crucial point in this description is the connection of the molecular fraction of the
gas to the pressure. It has been observationally proven that a tight correlation exists
between the external pressure of the ambient medium of the galaxy to the H2 gas by
[Blitz and Rosolowsky, 2006], namely

fmol =
1

1 + P0/P
(2.31)

with P0/kB = 35000 Kcm−3 and kB the Boltzmann constant. In [Blitz and Rosolowsky, 2006]
they use the pressure calculated from global gas and star properties and it corresponds in
the hydrostatic pressure. For this reason the thermal gas pressure and magnetic pressure
should be taken into account. As has already been mentioned, the stars are formed from
the molecular fraction of the cold gas. This is happening in a characteristic timescale,
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which it is chosen to be the dynamical time of the cold gas

tdyn =

√
3π

32Gρc
= 5.15 · 107(µcnc)

−1/2 yr (2.32)

with nc the number density of the cold gas in cgs. Including a star formation efficiency
parameter of f∗ = 0.02 the star formation rate will be

Ṁsfr = f∗
fmolMc

tdyn

. (2.33)

A part of the stars that are formed are massive and restore the hot phase in the form of
heating from supernova feedback, hence

ṀSN = fSNṀsfr (2.34)

with the parameter fSN set to be fSN = 0.2 according to a Salpeter stellar initial mass
function (IMF). To continue, the hot gas cools through radiative cooling. In this description
we neglect metal production, thus this process is defined as

Ṁcool =
Mh

tcool

(2.35)

where the cooling timescale tcool to be derived from the cooling function implemented in
gadget code that uses the tabulated cooling rates from [Katz et al., 1995]. In contrast
to the SH03 model, the evaporation of the cold clouds is not due to thermal conduction
but rather due to simple destruction of the molecular cloud from the supernova feedback.
According to [Monaco, 2004] for a supernova event, 10% of the cold clouds are destroyed.
Therefore, the evaporation processes is defined as

Ṁev = fevṀsfr (2.36)

with fev = 0.1.
Taking into consideration the figure 2.5 and equation (2.33) - equation (2.36) the differential
equations that describe the mass flows in our model are

Ṁ∗ = Ṁsfr − ṀSN (2.37)

Ṁc = Ṁcool − Ṁsfr − Ṁev (2.38)

Ṁh = −Ṁcool + ṀSN + Ṁev. (2.39)

Using the expressions for each term, the last set of equations is re-written as

Ṁ∗ = (1− fSN)Ṁsfr (2.40)

Ṁc =
Mh

tcool

− (1 + fev)Ṁsfr (2.41)

Ṁh = −Mh

tcool

+ (fSN + fev)Ṁsfr. (2.42)
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In contrast to [Murante et al., 2010] who solved the set of differential equations for each
timestep we want to obtain an equilibrium solution for the above system of equations. In
fact, the solution of the differential equation equation (2.42) is

Mh = C · e−t/tcool + (fSN + fev)
t

tdyn

f∗fmolMc (2.43)

with C being a normalization constant. In this solution, opposite to the equilibrium solu-
tion of [Springel and Hernquist, 2003], the mass of the hot phase depends on the mass of
the cold phase that is not constant, but is the solution of the differential equation equa-
tion (2.41). Since the mass of every component of the particle depends on the evolution
of a different component we should investigate if there is an equilibrium solution of the
system of equations. First we examine the case of equilibrium solution between the hot and
cold gas. To be more specific, to find an equilibrium solution similar to the approach of
[Springel and Hernquist, 2003]. To do so, the determinant of the system of the equations
should be zero for non trivial solution. To simplify the equations we write them as

ẋ = −αx+ βy (2.44)

ẏ = αx− γy (2.45)

where x = Mh, y = My and ẋ, ẏ their time derivatives respectively. The constants α =
1/tcool, β = (fSN + fev)f∗fmol/tdyn and γ = (1 + fev)f∗fmol/tdyn. The determinant of this
system is

det

∣∣∣∣ −α β
α −γ

∣∣∣∣ (2.46)

The determinant is zero only for γ = β which is obviously not the case. If the system had
solution then together with the condition Mgas = Mh +Mc we could determine the Mh,Mc

as a function of known quantities. The next step is to think if we could find a solution of
the system of the 3 equations that describe the mass flow between different components of
the ISM ( equation (2.40)-equation (2.42)). In a simplified form are written as

ẋ = −αx+ βy (2.47)

ẏ = αx− γy (2.48)

ż = δy (2.49)

with ż = M∗ and δ = f∗fmol/tdyn. The determinant of this system is calculated as

det

∣∣∣∣∣∣
−α β 0
α −γ 0
0 δ 0

∣∣∣∣∣∣ (2.50)

The determinant is zero and thus the system of differential equations has a non trivial
solution which is calculated by finding the eigenvectors of the system. However, we still
need 2 more constrains of the masses M∗,Mh and Mc. In this formulation we don’t have
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these constrains and consequently is not possible to implement a solution in an equilibrium
form, in which for each time step the masses of the cold and hot gas were calculated
in the framework of a self-regulated equilibrium state. We therefore conclude that these
equations should be solved for each timestep and obtain the desired quantities each timestep
accounting for the evolution of different components of the SPH particle. This is done by
[Murante et al., 2010] and the subresolution model that they implemented in gadget is
called muppi. For each particle they impose a density and temperature threshold in order
to enter the multiphase model. The density of the particle should be grater that a density
threshold n > nthr = 0.01 cm−3 and temperature below T < Tthr = 5 · 104 K. The density
threshold is relatively low such that most of the particles enter the multiphase regime. Even
though stars are not formed in temperatures in the order of the temperature threshold, the
threshold is imposed to prevent particles with high density and high temperature to enter
the star forming regime. When a particle enters this regime all its mass is assigned to be in
the hot phase. Then the hot phase cools and a fraction of cold clouds arise. If the pressure
is high enough then molecular clouds are formed which initiate the star formation. From
the stars that are formed, a couple of them are exploded as supernova and restore the hot
phase of the gas and destroy a part of the cold clouds. For this model the same timescale
regulates both the star formation and the time that the particle stays in the multiphase
regime. The last timescale is set to be 2 · tdyn which corresponds to the characteristic
timescale that the molecular cloud which produce stars is destroyed. The particle can also
exit the multiphase regime when its density is lower than nout < 2nthr/3. When the particle
exits this regime the supernova energy is distributed among its neighbours. The model
reproduces the Schmidt-Kennicutt relation and the basic properties of the ISM in disk
galaxies. An interesting extension would be to perform magneto-hydrodynamic (MHD)
simulations with this model and examine the differences with the pure hydrodynamic case.
Moreover, instead of using the observational relation by [Blitz and Rosolowsky, 2006] for
the molecular fraction, it would be interesting to follow the creation of molecular clouds in a
more detailed and physically motivated way. However this would require higher resolution
simulations since now we do not resolve molecular clouds. Last but not least, the timescale
for star formation could be also related to other time-scales, such as the turbulent crossing
time of a molecular cloud. This is useful if the star formation is regulated by turbulent
motions. The contribution of turbulent motions in the cold gas is neglected in the muppi
but the simple model that accounts only for the thermal energy of the cold gas is still an
adequate approximation.
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2.3 Pressure based star formation model

In the previous section we concluded that the alternative formulation of the star formation
model as presented by [Murante et al., 2010] cannot be implemented in the form of an
equilibrium solution. The idea however remains the same, we want couple the magnetic
field in the sub-grib model for star formation. An efficient way to do that is to include
the observational relation between the molecular fraction of the gas with the hydrostatic
pressure of the galaxy from [Blitz and Rosolowsky, 2006], as it has been already done by
[Murante et al., 2010]. In the following we will explain how this idea alters and extends
the model of [Springel and Hernquist, 2003].

2.3.1 Equations of the multiphase model

In this model we are following the idea of multiphase structure of the interstellar medium.
One gas particle consists of hot and cold gas and when the pressure is high enough a part
of the cold gas turns into molecular gas from which the stars are formed. The processes
that we include in this multiphase model are similar to the aforementioned models and are
described by the mass flow diagram in figure 2.5. The stars are formed in a characteristic
timescale that we choose to be the free fall timescale of the cold gas. The star formation
is described by the following equation

dρ∗
dt

= (1− β)f∗fmol
ρc
tdyn

(2.51)

with β being the fraction of stars that instantly die as supernova and do not contribute to
the star formation. The parameter β depends on the initial mass function (IMF) and we
choose β = 0.1 for a Salpeter IMF [Salpeter, 1955] as in [Springel and Hernquist, 2003].
The star formation is proportional to the mass of the molecular clouds and it has an
efficiency of f∗. This is associated to the stars that are formed given the gas reservoir
of the galaxy which are correlated through the observational Schmidt-Kennicutt relation
(equation (2.22), [Schmidt, 1959, Kennicutt Jr, 1998]). The overall time scale of the star
formation we assume that happens in the dynamical time of the cold gas

tdyn =

√
3π

32Gρc
. (2.52)

The molecular fraction of the gas is calculated given the observational relation found in
the study of [Blitz and Rosolowsky, 2006]. The molecular fraction is proportional to the
hydrostatic pressure of the galaxy and is given by

fmol =
1

1 + P0/P
(2.53)

with P0/kB = 35000 Kcm−3 which expresses the external pressure of the ISM when the
half of the gas is in molecular form. The external pressure is calculated from the midplane
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pressure of an infinite disk that consists of gas and stars under the assumption that the
gas scale height is much lower than the stellar scale height. The pressure according to
[Blitz and Rosolowsky, 2006] is given from the following expression

Pext = (2G)0.5Σgug

[
ρ0.5
∗ +

(π
4
ρg

)]
. (2.54)

In the last equation Σg is the surface density of the gas, ug is the vertical velocity dispersion
of the gas, ρ∗ is the midplane density of the stellar population and ρg the midplane density
of the gas. This pressure corresponds to the hydrostatic pressure of the galaxy and includes
the thermal pressure but also non thermal components. For the simulations we approximate
this pressure with the SPH pressure of the particle plus the magnetic pressure.
From the stars that are formed many of them explode as supernova. This heats the
surrounding medium in the form of thermal feedback. Thus the hot gas gains energy with
the rate

d

dt
(ρhuh)|SN = εSNf∗fmol

dρ∗
dt

= βuSNf∗fmol
dρc
tdyn

(2.55)

with εSN = 4·1048 erg ·M−1
� for the IMF adopted in this description [Salpeter, 1955]. Apart

from the heating the supernova destroys the star forming clouds around the explosion.
Thus, the cold phase loses mass as

dρc
dt
|EV = Aβf∗fmol

ρc
tdyn

(2.56)

with A the evaporation parameter that scales with density as A ∼ ρ−4/5. The growth of the
cold clouds is coming from the radiative cooling of the hot phase. We follow the formulation
of [Springel and Hernquist, 2003] that assumes the thermal instability operating as was also
explained in the first section of this chapter. The mass flow from one phase to the other
due to radiative cooling is described as

dρc
dt
|TI = −dρh

dt
|TI =

1

uh − uc
Λnet(ρh, uh) (2.57)

and the cooling function Λ(ρh, uh) is computed from radiative processes taking place in a
primordial plasma of Hydrogen and Helium, as presented by [Katz et al., 1995]. The gas
cannot cool below ' 104 K because lower temperatures would require proper treatment
of molecular cooling. Thus we set the temperature of cold clouds to remain constant at
Tc = 103 K. Taking into consideration all the processes being described, the density of the
hot and cold phases are changing as

dρc
dt

= −f∗fmol
ρc
tdyn

− Aβf∗fmol
ρc
tdyn

+
1− f
uh − uc

Λnet(ρh, uh) (2.58)

dρh
dt

= βf∗fmol
ρc
tdyn

+ Aβf∗fmol
ρc
tdyn

− 1− f
uh − uc

Λnet(ρh, uh). (2.59)
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In both equations the first term in the right-hand side represents the gain/lose from the
star formation, the second term accounts for the cold cloud evaporation and the last one
the effect of the thermal instability. The parameter f represents the onset of the thermal
instability. For f = 0 the thermal instability is operating and stars are forming. In
the opposite case, when f = 1 ordinary cooling takes place. To physically differentiate
the 2 cases we keep the density threshold as in [Springel and Hernquist, 2003]. Thus, star
formation is happening for regions that ρ > ρthr. The energy of the gas is changes according
to all the aforementioned processes and is described from the equation

d(ρhuh + ρcuc)

dt
= −Λnet(ρh, uh) + βf∗fmol

ρc
tdyn

uSN − (1− β)f∗fmol
ρc
tdyn

uc. (2.60)

If we want to consider separately the 2 gas components of the ISM then their energy
balance is written as

d(ρhuh)

dt
= −f∗fmol

ρc
tdyn

uc − Aβf∗fmol
ρc
tdyn

uc +
(1− f)uc
uh − uc

Λnet (2.61)

d(ρcuc)

dt
= βf∗fmol

ρc
tdyn

(uSN + uc) + Aβf∗fmol
ρc
tdyn

uc +
uh − fuc
uh − uc

Λnet. (2.62)

In equation (2.61) and equation (2.62) with the same way the first term of the right side
shows the effect of the star formation, the second term the cloud evaporation and the third
term the thermal instability. As was mentioned before, the temperature of the cold clouds
will remain constant to Tc = 103 K. Consequently, we assume that uc is constant in the
above equations and we can follow the evolution of the specific energy of the hot phase.
From equation (2.61), using equation (2.59), the hot phase will evolve according to the
equation

duh
dt

= −
(
β
f∗fmol

tdyn

ρc
ρh

+
Aβ

tdyn

ρc
ρh

)
uh + f∗fmol

β

tdyn

ρc
ρh

(uSN + uc) + f∗fmol
Aβ

tdyn

ρc
ρh
uc. (2.63)

Surprisingly the last equation results in the same equilibrium solution as in the case of
[Springel and Hernquist, 2003]. Therefore, the temperature of the hot phase will evolve
towards an equilibrium state, described by

uh =
uSN

A+ 1
+ uc. (2.64)

Deviations from this temperature decay in a characteristic timescale

τh =
tdynρh

β(A+ 1)f∗fmolρc
. (2.65)

It is interesting to notice that this timescale depends not only on the cold fraction x but also
on the molecular fraction that corresponds to each particle. Therefore, when the magnetic
fields are amplified enough to provide high magnetic pressure, the molecular fraction rises



32 2. Star Formation models

and differentiates the timescale from the timescale in a pure hydrodynamical case.
As shown in figure 2.5 the mass flows from one phase to another. The growth of cold
clouds is balanced from the star formation and supernova feedback towards an equilibrium
and self-regulated star formation. The gas is then behaving as an effective medium with
pressure

Peff = (γ − 1)(ρhuh + ρcuc). (2.66)

We assume that this pressure is constant. Thus, from equation (2.60) follows

ρc
tdyn

=
Λnet(ρh, uh)

f∗fmol(βuSN − (1− β)uc)
. (2.67)

Following the definitions by [Springel and Hernquist, 2003] we can derive the cold fraction
of the gas as a function of the gas density. The cooling function of the hot phase is
Λnet(ρh, uh) = (ρh/ρ)2Λnet(ρ, uh). Using the definition

y(x) =
tdyn(x)Λnet(ρh, uh)

f∗fmol(βuSN − (1− β)uc)
(2.68)

the ratio of the densities of the hot and cold phase is written as

ρc
ρh

=
ρh
ρ
y(x). (2.69)

The cold fraction is defined as
x =

ρc
ρ
. (2.70)

The general equation of the cold fraction as a function of the parameter y holds here as
well since is derived from the condition ρ = ρh + ρc and equation (2.69).

x = 1 +
1

2y(x)
−

√
1

y(x)
+

1

4y(x)2
. (2.71)

The difference in our case is that the cold fraction does not depend only on y but on the
cold fraction itself since the parameter y is a non linear function of x. The dependence
on the cold fraction comes from the fact that we chose the dynamical time of the cold gas
and non an arbitrary timescale as a characteristic timescale of the star formation. The
dynamical time depends on the cold fraction x as

tdyn = x−1/2

√
3π

32Gρ
. (2.72)

Given the non linearity of the dependencies, we can not solve for x but rather numerically
find its value. The cold fraction is the root of the function

f(x) = 1 +

√
x

2δ
−
√
x

δ
+

x

2δ2
− x (2.73)
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Figure 2.6: Cold fraction as a function of density. In orange points is the result of the new -pressure
based- star formation model and in green the result from [Springel and Hernquist, 2003] are shown for
comparison.

with δ

δ =

√
3π

32Gρ
· Λnet(ρh, uh)

f∗fmolρ(βuSN − (1− β)uc)
. (2.74)

After testing that the equation (2.73) has a solution we numerically solve is with a simple
bisection method. The dependence of the x on the density of the gas is shown infig-
ure 2.6. For comparison we also plot at the same figure the cold fraction as calculated
by [Springel and Hernquist, 2003]. The obvious difference is that in our case the cold gas
fraction reaches lower values and also does not convert to 1 for high densities. This is
coming from the dependence of the dynamical time on the cold fraction that inserts a
complicated form of correlation between x and ρ. Thus for high densities we don’t allow
all the gas to be in the cold phase and form more and more stars but we have included
other regulation factors such as the external pressure of the ISM through the molecular
fraction fmol. The gas particle enters the multiphase model once its density is higher than
a density threshold. Below this density we set the x = 0. This is calculated from the model
equations and will be discussed in the next section.
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2.3.2 Selection of parameters

The evaporation factor A scales with the local density of the ISM which is theoretically
motivated by [McKee and Ostriker, 1977]. We scale it with the density threshold as

A(ρ) = A0

(
ρ

ρthr

)−4/5

(2.75)

with the parameter being set to A0 = 1000 as explained in section 2.1.2. The density
threshold is calculated using equation (2.68). A straightforward way to compute the density
threshold is to use the fact that Λ(ρ, u) = Λnet(ρ, u)/ρ2 and ρ = ρh + ρc and then solve for
ρ. However the result is an un-physically high density threshold that does not allow the
majority of the particles to enter the multiphase model. We should also notice that the
cooling function Λ needs a density as an input in order to calculate its value and this is
not the density threshold that we are calculating here. The case is the same if we write
the cooling function as Λnet(ρ, uh)/ρ = uh/tcool since the cooling time requires the density
for its calculation as well. In order to solve this problem we assume an arbitrary baryon

over-density calculated as ρov = 105 3H2

8πG
and calculate the dynamical time and the cooling

function given this density. Therefore the density threshold is calculated as

ρthr =
xthr

(1− xthr)2

fmol(βuSN − (1− β)uc)

f∗tdyn(ρov)Λ(ρov, uSN/A0)
. (2.76)

The cooling function is calculated at the threshold where uh = uSN/A0 + uc ' uSN/A0

and the cold fraction at the threshold x = xthr, which is given by xthr = 1 + (A0 +
1)(uc−u4)/uSN ' 1−A0u4/uSN. The latter quantity is calculated by setting the condition
ueff(ρthr) = u4, where u4 is the specific energy that corresponds to temperature of T4 =
104 K. This implies that the pressure is a continuous function of density and should stay
constant before and after the onset of the star formation which happens at ρ = ρthr. A more
careful consideration would require the treatment of magnetic fields. To be more specific,
instead of taking into account only the effective specific energy of the gas we should include
the magnetic energy or alternatively to consider the sum of the magnetic pressure plus the
gas pressure being continuous function of density. The magnetic pressure and energy scales
with B2 which scales with the density as ρ2/3. This would include more complication in the
calculation of the cold fraction at the threshold and is not crucial for the simple approach
that we are adopting here. In equation (2.76) we notice that the density threshold depends
on the molecular fraction of the gas, which changes from particle to particle. There are
two options of setting the molecular fraction at the threshold. The first is to consider the
pressure of the gas particle (thermal pressure plus the magnetic pressure) in the calculation
of the molecular fraction. This means that the density threshold changes from gas particle
to gas particle. However, we have already set the condition of continuous pressure on
the onset of star formation to be P4, i.e., the pressure that corresponds to temperature
of 104 K. It is then a natural consequence to use this pressure in order to calculate the
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Figure 2.7: Star formation rate per surface as a function of the surface density of the gas in a galaxy for
different star formation efficiency parameters. The black solid line is the observational Schmidt Kennicutt
relation and the grey lines its errors. (The quantities are azimuthally averaged).

molecular fraction at the threshold, which will be

fmol(P4) =
1

1 + P0/P4

(2.77)

The density threshold is now calculated as

ρthr =
xthr

(1− xthr)2
fmol(P4)(βuSN − (1− β)uc)

f∗tdyn(ρov)Λ(ρov, uSN/A0)
(2.78)

Another parameter that we should specify, which is a free parameter of the model, is
the efficiency of the star formation process. This is equivalent with the idea to use the
dynamical time as a timescale of the star formation or a timescale proportional to the
dynamical timescale ∼ α · tdyn. The efficiency of the star formation is related with the gas
component of the galaxy and especially the cold gas. These two quantities are correlated,
as observations show, according to the Schmidt-Kennicutt relation (equation (2.22)), which
is a tight relation between the star formation of the galaxy and the surface density of the
gas of the galaxy. In order to constrain the efficiency parameter f∗ we run test simulations
of an isolated Milky Way type galaxy, with different predictions as shown in figure 2.7. In
order to reproduce the Schmidt Kennicutt relation the value of the efficiency parameter
should be f∗ = 0.1. This corresponds to a star formation timescale of 10 · tdyn.
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Moreover, as far as the molecular fraction is concerned, we set the parameter P0 to be
P0/k = 35000 cm−3K according to the observations of [Blitz and Rosolowsky, 2006]. How-
ever, in their observations they notice two different groups of galaxies and for each one of
them the parameter P0 changes significantly. There are three galaxies that on average they
find P0/k = 7700 cm−3K and for the rest of the galaxies they find P0/k = 43000 cm−3K.
They attribute this difference on the content of neutral hydrogen that each galaxy has. The
mean value of the projected surface density of the neutral hydrogen, as calculated from ob-
servations, may be low due to intense tidal or ram pressure stripping. We have to account
for all galaxies so we try to change this parameter and see its effect. To do that we run
three different simulations with parameters P0/k = 20000 cm−3K, P0/k = 35000 cm−3K
and P0/k = 43000 cm−3K and then we check how alters the relation between the star
formation and gas through the Schmidt-Kennicutt relation. The results are displayed in
figure 2.8. Even if the change of the value for the P0 is relatively wide, there is not
a significant change in the star formation and only an insignificant deviation from the
Schmidt-Kennicutt relation. Therefore we will chose P0/k = 35000 cm−3K as is the mean
value among all the galaxies that where examined in [Blitz and Rosolowsky, 2006].

Figure 2.8: Star formation rate per surface as a function of the surface density of the gas in a galaxy for
different values of the parameter P0. The black solid line is the observational Schmidt Kennicutt relation
and the grey lines its errors.

The last parameter that we examine is the assumption about the temperature of cold
clouds. This was assumed to be constant at Tc = 1000 K but this is not even close
to the temperatures that stars are formed in reality. Therefore, we examine the case of
lowering the temperature of the cold gas and we run a test simulation for Tc = 300 K,
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Figure 2.9: Cold fraction as a function of the gas density. In orange is the result of the new -pressure
based- star formation model and in green the case for lower temperature of the cold clouds.

Table 2.1: Table of model parameters

parameter f∗ P0/k β A0 Tc TSN

value 0.1 35000 cm−3K 0.1 1000 1000 K 108 K

which is motivated from [Murante et al., 2014]. In figure 2.9 is displayed the cold fraction
as a function of the density of the gas. The lower temperature barely affects the cold
fraction as is shown in it figure 2.9 and the overall star formation behaviour as is shown in
comparison to the Schmidt Kennicutt relation in figure 2.10. The density threshold changes
slightly because of its dependence on uc. However we should keep in mind that the gas at
temperatures lower than 103− 104 K need molecular cooling for a proper treatment. Since
this is not included in our simulations, we will keep the temperature of the cold clouds
constant to 103 K.
In table 2.1 a summary of the parameters of our model is shown.
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Figure 2.10: Star formation rate per surface as a function of the surface density of the gas in a galaxy for
different temperature of cold clouds. The black solid line is the observational Schmidt Kennicutt relation
and the grey lines its errors.

2.4 Magnetic seeding model

The main aim of this work is to study the interplay between star formation and magnetic
fields in galaxy simulations. The first part is to include the effect of the magnetic field in
the star formation recipe of the code that was done in section 2.3. The second part would
be to study how the star formation alters the magnetic field in a galaxy. This mostly
happens through the supernova feedback. For this reason we will use the magnetic seeding
model by [Beck et al., 2013]. According to this model, we do not assume primordial mag-
netic field in the galaxy, but we rather couple its seeding with the supernova explosions. In
the supernova remnants, a dipole-shaped magnetic field is injected in a rate 10−9 GGyr−1.
The magnetic field is then amplified and transported through turbulent diffusion, shocks
and gas motions.
The origin of magnetic field is still highly debated in the scientific community. The most
widely accepted idea is that primordial magnetic field was created during structure for-
mation and then was amplified and transported with different MHD processes. Battery
effects can create tiny seed magnetic fields during the formation of the first stars and were
locally enhanced by gravitational compression. Then through the evolution and death
of stars magnetic fields enrich the interstellar medium. Within the galaxy, the fact that
seed fields are connected with the supernova explosions and their existence has already
been studied by [Bisnovatyi-Kogan et al., 1973, Chyży, 2008, Kronberg et al., 1999]. In
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[Beck et al., 2013] they introduce a model for the seeding of the magnetic fields by SN
explosions. The model is coupled in the star formation model and here we will show a
basic description of the model and how this is coupled to the new star formation model
that we introduced in the previous section.

2.4.1 Supernova seeding model equations

In order to include the effect of the magnetic field seeding, an extra term in included in
the induction equation.

∂B

∂t
= ∇× (v × B) + η∇2B +

∂B

∂t
|seed (2.79)

with the seeding term
∂B

∂t
|seed =

√
N eff

SN

Binj

∆t
eB (2.80)

where eB is a unit vector in the direction of the seeding, Binj is the amplitude of the field
that is injected and N eff

SN is a normalization constant that is connected with the number
of supernova explosions. The last parameter is not a free parameter of the model but is
calculated directly from the star formation model of the code. For the new star formation
model, the mass of stars that are formed in each timestep ∆t is calculated as

m∗ = f∗fmolmc
∆t

tdyn

(2.81)

wheremc is the mass of the cold clouds, f∗ is the star formation efficiency, fmol the molecular
fraction and tdyn the dynamical time of the cold gas that is given by

tdyn = x−1/2

√
3π

32Gρ
(2.82)

and x is the cold fraction of the gas. The effective number of supernova explosions is given
by

N eff
SN = αm∗ (2.83)

with α being a parameter that specifies the number of supernova explosions per solar
mass. For our case we adopt the Salpeter IMF [Salpeter, 1955] with slope −1.35 and the
parameter α is α = 0.008 M−1

� . The total injected magnetic field for all SN explosions is
given by

Ball
inj =

√
N eff

SNBSN

(
rSN

rSB

)2(
rSB

rinj

)3

(2.84)

where BSN is the mean strength of magnetic fields in supernova explosions, rSB is the
superbubble of the explosion assuming spherical geometry for the remnant, rSN is a typical
radius of the supernova remnant and rinj is determined by the smoothing length of the
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simulation and shows the region where the superbubbles are placed. Thus, the magnetic
field seeding rate for this model is given by

Ḃseed ' BSN

(
rSN

rSB

)2(
rSB

rinj

)3
√

˙NSN∆t

∆t
(2.85)

The supernova radius is assumed to be rSN = 5pc, a typical value for the magnetic field
strength is BSN = 10−4G which is then distributed in a bubble of radius rSB = 25pc. The
magnetic field configuration that is added in the induction equation should be divergence
free. Therefore a straightforward way is to assume a dipole structure of the magnetic field
seed, so

∂B

∂t
|seed =

1

|r|3

[
3

(
∂m

∂t
· er
)

er −
∂m

∂t

]
(2.86)

with m the dipole magnetic moment, er is a unit vector in the r direction. The time
derivative of each dipole moment is written as

∂m

∂t
= σ

Ball
inj

∆t
eB (2.87)

where eB is the direction of the seed magnetic field which is chosen to be in the direction of
the acceleration of the particle, hence eB = a/|a|. The normalization constant σ is given
by

σ = r3
inj

√
1

2
f 3(1 + f 3) (2.88)

with f = rsoft/rinj is the ration between the softening and injection length. The parameter
σ is used to normalize the energy that is injected and also to soften the magnetic dipoles
in the center and be truncated in the scale of the injection length.
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Simulations

In this chapter we will present the simulations that were performed in order to study the
new star formation model and the interplay of magnetic fields and star formation processes.
Before moving in the galaxy simulations we perform a couple of shock tube tests in order
to ensure that the magnetohydrodynamics (MHD) is working properly in the code.

3.1 MHD shock tube tests

The MHD section of gadget was implemented by [Dolag and Stasyszyn, 2009]. Before
starting the full MHD simulation of galaxies we perform a few MHD shock tube test
selected from [Ryu et al., 1995]. These are the well known and well tested Ryu Jones (RJ)
shock tube tests. Here we chose the RJ1A, RJ2A and RJ5A which is also known as Brio
Wu test ([Brio and Wu, 1988]). For each of the tests we compare with the corresponding
results of the athena code [Stone et al., 2008]. The summary of the parameter of each
test are shown in table 3.1.
For the initial conditions set up we use glass-like [White et al., 1996] density distributions
in a 3D set up. To achieve that, the particles are randomly distributed in a volume and
then are left to relax until they reach an equilibrium state which is quasi force free and has
homogeneous density. From these glass density distributions we set up the initial conditions
for the three shock tube tests which are based in 53 particles for low-density regions and
103 particles for high-density regions. These unit volumes are combined together in order
to set up a large box in x direction, enough for the shock propagation. For these tests we
assume same particle mass, ideal gas with γ = 5/3 and an equivalent of 64 neighbors for
the calculation of the SPH smoothing length.
We start with the Ryu Jones 1A shock tube test or RJ1A which involves 2 fluids with same
density, two dimensional magnetic field and velocity in x-direction. In figure 3.1 the results
from the first MHD shock tube test are shown. We notice a strong shock that is manifested
in the vx as shown in the middle panel of the upper row in figure 3.1. This strong shock is
responsible for the notice in the energy, pressure and vy. The plot show two fast shocks, one
slow rarefaction (left-facing), one slow shock (right-facing) and a constant discontinuity.
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Table 3.1: Initial conditions for the left and right side of the shock tubes for the MHD tests.

Left Side
Test ρ v B P

RJ1A 1.00 [10.0,0.0,0.0] [5.0,5.0,0.0]/
√

4π 20.00

RJ2A 1.08 [1.2,0.01,0.5] [2.0,3.6,2.0]/
√

4π 0.95

RJ5A 1.00 [0.0,0.0,0.0] [0.75,1.0,0.0]/
√

4π 1.00
Right Side

ρ v B P

RJ1A 1.000 [-10.0,0.0,0.0] [5.0,5.0,0.0]/
√

4π 1.00

RJ2A 1.000 [0.0,0.0,0.0] [2.0,4.0,2.0]/
√

4π 1.00

RJ5A 0.125 [0.0,0.0,0.0] [0.75,-1.0,0.0]/
√

4π 0.10

The second shock tube test is the Ryu Jones 2A test problem which solution is presented
in figure 3.2. This test involves a three-dimensional magnetic field field structure and
three-dimensional velocity for the left fluid. In this case two fast shocks and two slow
shocks are propagating away from the contact discontinuity. The features of this MHD
shock are well captured and we do not notice over-smoothing of sharp characteristics. The
last but most important test for the MHD is the Ryu Jones 5A (RJ5A) or the Brio Wu
test. This an important test since it produces a compound structure, i.e., a rarefaction and
shock propagating together and therefore we can test the code at different regimes. These
shocks reverse the direction of By which leads to a flow that passes from super-Alvénic to
sub-Alvénic flow. The code reproduces accurately the expected features of the test and
any smoothing is a result of the regulation scheme of the magnetic field.
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Figure 3.1: RJ1A test, t = 5.25. In all plots the red line shows the result from ATHENA code while the
black lines are the results from the tests using GADGET code. From left to right in the upper row the
first panel shows the density, the middle shows the vx,z and the right panel the total energy and thermal
energy. In the low row the first panel shows the vy, the middle shows all the components of the magnetic
field and the last one shows the relative divergence error. In the x axis is always the x-direction of the
tube.
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Figure 3.2: Test RJ2A, t = 24.5. Same plots as in figure 3.1.

Figure 3.3: Test RJ5A, t = 7. Same plots as in figure 3.1
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3.2 Simulations of isolated disk galaxies

3.2.1 Numerical set up

In order to test how the new star formation model is working within the code we run simu-
lations of an isolated disk galaxy of total mass 1012 M�. We generate the initial conditions
for the galaxy using the galactic models that was first described in [Hernquist, 1993] and
further developed in [Springel and White, 1999] and [Springel et al., 2005]. The galactic
model consists of gas, a bulge, s stellar disk and dark matter. The dark matter and bulge
mass distribution is following a Hernquist profile [Hernquist, 1993], which radial density
distribution for the dark matter is given by

ρDM(r) =
MDM

2π

α

r(r + α)3
(3.1)

with α a parameter that related the concentration c with the scale length rs. The same
profile describes the bulge of the galaxy as well

ρb(r) =
Mb

2π

lb
r(r + lb)3

(3.2)

with lb the scale length of the bulge which is a free parameter. Mb is the mass of the bulge
and is calculated as Mb = mbM200, here the parameter mb is the mass fraction of the bulge
and M200 is the mass that is enclosed in a radius of r = 200 pc. The stellar disk follows
an exponential profile which is given from the following equation

Σ∗ =
M∗
2πl2d

e−r/rd (3.3)

The gaseous part of the disk follow an exponential profile as well

Σgas =
Mgas

2πl2d
e−r/rd (3.4)

In both equations ld has to be specified and is the scale length of the disk. Both components
compose the mass of the disk Md = M∗ + Mgas = mdM200, with md the mass fraction of
the disk. The rest of the mass is assigned to the dark matter component of the galaxy as
MDM = M200 − (mb + md)M200. The last parameter that we need to specify is the spin
parameter of the galaxy that is correlated with the total angular momentum of the galaxy
J as

λ =
J |E|1/2

GM5/2
(3.5)

with M the total mass of the galaxy. In table 3.2 we summarize the parameters for the
initial conditions of the Milky Way type galaxy that we use to test the 2 star formation
models. The numbers of different particle components were calculated from the mass
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Table 3.2: Parameters for the initial conditions of isolated Milky Way type galaxy

Disk Parameters
Total mass [1010 M�] M200 100

Virial radius r200 145
Halo concentration c 12

Spin parameter λ 0.033
Disk spin fraction jd 0.067
Disk mass fraction md 0.067
Bulge mass fraction mb 0.034

Disk scale length [kpc] ld 2.1
Disk height [ld] z0 0.2
Bulge size [ld] lb 0.2

Table 3.3: Number of different particle types

Particle Numbers [106]
Gas in the disk Ngd 1.2

Stellar Disk Nsd 4.8
Stellar Bulge Nb 2.0
Dark matter NDM 6.9

fraction parameter that we chose and are shown in section 3.2.1. The mass resolution
for the different particles are presented in table 3.4. Last but not least, the gravitational
softening is calculated as

ε = εold

(
m

mold

)1/3

(3.6)

with m the mass resolution of the simulation. As reference old we use the parameters from
the MAGNETICUM 1 simulations [Hirschmann et al., 2014]. For the gas particles the
gravitational softening is εgas = 0.1 kpc/h for the stellar particles εstars = 20 pc/h , and for
the dark matter particles εDM = 83 pc/h.

Table 3.4: Mass resolution

Mass resolution in M�
Gas particles mgas 4800

Stellar particles mstar 4800
Dark matter particles mDM 96000

1http://www.magneticum.org/simulations.html
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3.2.2 Results: Galaxy with SH03 star formation model

First of all, for comparison, we perform simulations of an isolated Milky Way disk galaxy
with the default star formation model in gadget ([Springel and Hernquist, 2003], SH03
hereafter). We perform simulations with the same setup and different magnetic field mod-
els. First, a pure hydrodynamical simulation without magnetic fields (noB), second a fully
magnetohydrodynamical (MHD) simulation assuming primordial origin of the magnetic
fields (B) and last, a MHD simulation with supernova seeding (snB) of the magnetic field, a
feedback model that was described in section 2.4. Thus for the High Mass Galaxy (HMG),
which is a Milky Way type galaxy, we follow the name conventions: HMG-noB-SH03,
HMG-B-SH03 and HMG-snB-SH03 for each of the aforementioned magnetic field configu-
rations. The ending SH03 is a reminder for the star formation that we are using, i.e., by
[Springel and Hernquist, 2003]. This star formation model is widely used in galaxy and cos-
mological simulations, for example in [Kotarba et al., 2009] and [Hirschmann et al., 2014].
Here we briefly present the basic results of the simulation.
In figure 3.4 the effective temperature of the gas as a function of the gas density is dis-
played. The color code corresponds to the star formation rate per particle. From the
plot it is obvious that the density threshold is at ρthr = 2.75 · 10−25 g · cm−3. Particles
with density lower than the density threshold are not star-forming (purple color) and they
follow normal cooling. Contrary, particles with higher density enter the multiphase model
and they are star-forming with star formation rate higher for high densities. This phase
diagram is from the simulation without magnetic fields, however this plot barely changes
for the different simulations of this category. The phase diagrams for the different simula-
tions can be found in the Appendix. The star formation rate as a function of the galaxy
radius r is demonstrated in figure 3.5. The star formation is higher in the center of the
galaxy since there is more gas and drops in the outer parts of the galaxy. The different
models for the magnetic field have a slightly different behavior on the star formation rate
profile which is only visible after 1.5 Gyr. The star formation rate as a function of time
is shown in figure 3.6, which indicates the same tendency. In the beginning the model is
bursty, producing many stars and then gradually drops since it consumes the gas of the
galaxy. The only feedback is the supernova explosions which is enough to stabilize the star
formation but with low star formation rate. In figure 3.7 the radial profiles of the different
pressure components are displayed. We calculate the mean thermal pressure (dark blue)
and magnetic pressure (magenta) in radial bins. The thermal pressure falls with radius
since there is less gas in the outer parts of the galaxy and there is not enough pressure sup-
port. On the other hand, the magnetic field pressure rises in the outer parts of the galaxy.
This happens due to high velocities of the gas in the external parts of the galaxy, which
amplify the magnetic field through the α − Ω dynamo. In the case of HMG-B, we set a
primordial magnetic field in the x direction as B = (B0, 0, 0) with B0 = 10−9 G. From the
magnetic pressure (∼ B2) in figure 3.7 we notice that the magnetic field is indeed amplified.
However, a look at the face on projection of the galaxy for both models of the magnetic
field as shown in figure 3.8, reveals that the magnetic field is not amplified enough. To
be more specific, in figure 3.8a the galactic disk is magnetized with higher magnetic field
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Figure 3.4: Phase diagram at t = 0.01 Gyr for the high mass galaxy (HMG-SH) color coded by the star
formation rate per particle.

Figure 3.5: Radial profile of star formation rate for the HMG using SH03. As the legend implies, the
light blue line corresponds to the simulation without magnetic fields, the orange to the simulation with
magnetic fields and finally the green to the simulation with the supernova seeded magnetic fields.
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Figure 3.6: Star formation rate as a function of the time. The colors indicate the different set up for the
magnetic field. In blue the galaxy without magnetic field, in orange with primordial magnetic field and in
green the galaxy with supernova seeded magnetic field.

strength in the central region of the galaxy because of the higher star formation rate and
in the outer part of the disk due to the dynamo action. For this model we start with an
unmagnetized disk and the seed of the field is ∼ 10−9 G/Gyr in the supernova remnants.
Therefore, the magnetic field is further amplified through the turbulent dynamo which
is mainly supported from the supernova feedback. In the simulation with the primordial
magnetic field we notice that after 1 Gyr the magnetic field has not reached the typical
values of µG in the disk but rather in the outer parts of the galaxy. In figure 3.8a the high
amplification on the edge of the galaxy which is coming from the rotation of the galaxy is
shown. It is important to notice that in these plots the density of the particles is smoothed
according to the kernel that we use for the simulations (Wendland C4). This may make
this strange configuration of the high field strength on the edges seem particularly strong,
but in reality the density of the galaxy is very low on this region and there are just a few
particles with low density that gained the high magnetic field due to rotation. The absence
of any astrophysical environment around the galaxy is one of the reasons for this feature
as it will become obvious from further simulations. One has only to think that just in
the density interpolation in a SPH code. The kernel should be at least symmetrical in the
relative distance of 2 particles. This assumption totally breaks for the outer particles of
the disk due to the fact that there are a few particles (in the edge of the disk) which do
not have any neighbors. Therefore, the magnetic field calculation is not trusted in these
parts of the galaxy.



50 3. Simulations

Figure 3.7: Pressure radial profiles at different times for the simulation with primordial magnetic field
(solid lines) and with the simulation with the supernova seeding model (dashed lines). In blue the thermal
gas pressure is shown while in magenta is shown the magnetic pressure.

(a) HMG-snB-SH03 (b) HMG-B-SH03

Figure 3.8: High mass galaxy (HMG-SH03) at 1 Gyr with different magnetic field models. The panel (a)
shows the face on projection of the galaxy with supernova seeded magnetic field. The panel (b) shows
the face on projection of the galaxy with primordial magnetic field. The color bar shows the integrated
magnetic field strength over the z (vertical) direction.
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Figure 3.9: Phase diagram of the high mass galaxy (HMG-B) with magnetic fields and the new star
formation model at t = 0.01 Gyr. The color code shows the star formation rate that corresponds to each
particle.

3.2.3 Results: Galaxy with the new, pressure based, star forma-
tion model

In order to test the new star formation model (section 2.3), we use the same galaxy setup
for the initial conditions, as in section 3.2.2. We test different magnetic field configura-
tions, i.e. no magnetic field (noB), primordial magnetic field (B) and supernova seeded
magnetic field (snB). Thus for the high mass galaxy (HMG), which is a milky way type
galaxy we follow the name conventions: HMG-noB, HMG-B and HMG-snB for each of the
aforementioned magnetic field configurations.
Since the equilibrium solution that described the evolution of the hot phase remains the
same, we do not expect a significant difference in the phase diagram that results from a sim-
ulation with the new star formation model. Indeed, in figure 3.9 the effective temperature
as a function of the gas density is shown. The color code indicates the star formation rate
per particle. The density threshold calculation has changed but its value barely changed.

In the beginning of the galaxy evolution, when the magnetic field is low or absent the
molecular fraction is not very significant in the regulation of the star formation, since the
thermal gas pressure does not appear to change significantly during time as is shown in
figure 3.10. However, the molecular fraction makes the stars form from the molecular gas
of the interstellar medium and not only from just the cold gas. The importance of this
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Figure 3.10: Thermal and magnetic pressure as a function of the galactic radius. The thermal (blue)
and magnetic (magenta) are shown for the 2 different magnetic field models, i.e. the solid lines are from
the high mass galaxy with primordial magnetic field and the dashed lines are from the high mass galaxy
simulation with supernova seeded magnetic field.

change will be obvious when the magnetic fields are amplified enough in order to provide
a magnetic pressure comparable or higher than the thermal pressure. When this happens
it is essential to include the magnetic pressure in the star formation prescription. For this
set up, as is shown in figure 3.10 the magnetic fields are amplified sufficiently only on the
outer part of the galaxy in the case of the HMG-B, in which we initiate the magnetic
field as B = (B0, 0, 0) with B0 = 10−9 G. Face on cross sections of the magnetic field
structure from the two simulations, HMG-B and HMG-snB, are shown in figure 3.11. In
the left panel, the simulation with the supernova seeded magnetic field is shown. By the
time of 1 Gyr many stars have died as supernova which act as the magnetic field seed
to the galactic disk. As the star formation rate is higher in the center of the galaxy, the
magnetic field strength is higher in the central region of the galaxy. Also, the magnetic
field is easier amplified in the outer regions of the galaxy due to the α−Ω dynamo, which is
more efficient in regions with high rotation, i.e. the outer part of the galaxy. In the case of
the primordial magnetic field, right panel of figure 3.11, we notice the same configuration
of the magnetic field as in the case of SH03. As was already explained, this is mainly a
numerical effect because of the boundary conditions of the galactic disk.

In figure 3.12 the star formation rate as a function of the galactic radius is shown. It is
worth noticing that from the beginning (0.02 Gyr) the star formation is higher in the cases
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(a) HMG-snB (b) HMG-B

Figure 3.11: High mass galaxy, with the new star formation model, at 1 Gyr with different magnetic field
models. The panel (a) shows the face on projection of the galaxy with supernova seeded magnetic field.
The panel (b) shows the face on projection of the galaxy with primordial magnetic field. The color bar
shows the integrated magnetic field strength (in gauss) over the z (vertical) direction.

with MHD calculations (HMG-snB and HMG-B) comparing with the simulation without
magnetic fields (HMG-noB). Moreover, comparing to figure 3.5, the new star formation
model appears more bursty throughout the galaxy at earlier times in the case of the MHD
simulations. This is also obvious from figure 3.13, in which the projected galaxy is shown at
1 Gyr with color coded by the star formation rate. Between the MHD simulation and the
non-MHD simulation we notice that in the latter case the disk appears smoother and with
lower star formation rate. In general, the new star formation model creates a structured
disk with spiral arms and active star formation that follows the spiral structure of the disk.

In figure 3.14 the surface density of different components of the gas in the interstellar
medium is shown for the simulations with primordial magnetic field (solid lines) and for
the simulation with the magnetic seeding model (dashed lines). The cold gas is calculated
for every particle as the root of equation (2.73) and the molecular fraction is dependent only
on the total pressure of the gas at every position and is calculated from equation (2.53).
The gas density is high in the center of the galaxy and decays in the outer parts of the
galaxy. Despite the change in the magnetic pressure as shown in figure 3.10, the molecular
fraction does not change behaviour significantly since the thermal pressure is dominant and
is stably decaying with the galactic radius. The aforementioned behavior is also reflected
in the radial profile of the star formation rate as presented in figure 3.12. The total star
formation rate as a function of time is presented in figure 3.15. In the beginning of the
galactic evolution the star formation is very high because of the initial condition set up.
The galaxy is initiated with a lot of gas and already formed stars. There is a great amount
of cold gas in the initial conditions with density higher than the density threshold that
gives the first peak in the star formation rate. The feedback from this excessive process is
responsible for the dip right after. Then, after the second broader peak, the self-regulated
star formation regime is operating. The rate of star formation drops gradually and after
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Figure 3.12: Radial profile of the star formation rate of the high mass galaxy (HMG). The different colors
correspond to different magnetic field models, with no magnetic field (light blue), primordial magnetic
field (orange) and supernova seeded magnetic field (green).

approximately 2 Gyr is much lower than 1 M�yr
−1. This happens since at that timescale

the star formation has consumed the gas reservoir of the galaxy and does not receive
any inflowing gas from the galactic environment neither undergoes interactions with other
galaxies.

Another interesting fact of this star formation model is that galaxies with different masses
still follow the Schmidt-Kennicutt relation without the further tuning of parameters. This
is obvious from figure 3.16, in which the result from different galaxy masses is shown
compared to the observational relation. The observational Schmidt-Kennicutt relation
[Schmidt, 1959, Kennicutt Jr, 1998] is a global property of galaxies that is widely observed
and shows the efficiency of the star formation given the gas content of a galaxy. As was
shown in section 2.3 the efficiency of the star formation or the timescale for the star
formation are critical parameters that affect the consistency with the Schmidt-Kennicutt
relation. Indication for change in this relation across redshift would imply the change in
the star formation efficiency. In that case we should not try to fit the Schmidt-Kennicutt
relation but rather reproduce its changes over time [Sharda et al., 2018] in the prescription
of the sub-grid model.



3.2 Simulations of isolated disk galaxies 55

(a) HMG-snB (b) HMG-B

(c) HMG-noB

Figure 3.13: High mass galaxy, with the new star formation model, at 1 Gyr with different magnetic field
models. The panel (a) shows the face on projection of the galaxy with supernova seeded magnetic field.
The panel (b) shows the face on projection of the galaxy with primordial magnetic field and the panel
(c) without magnetic field. The color bar shows the star formation rate integrated over the z (vertical)
direction.
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Figure 3.14: Surface density radial profiles of different components of the interstellar medium. The different
colors show different components of the ISM with green to be the total gas, blue the cold gas, and red the
molecular gas. The solid lines represent calculations from the HMG-B simulation while the dashed lines
for the HMG-snB.
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Figure 3.15: Star formation rate as a function of time for the set of simulations with the new star formation
model. The simulations are performed for the high mass galaxy without magnetic fields (HMG-noB, light
blue line), with primordial magnetic field (HMG-B, orange line), and with the supernova seeding model
(HMG-snB, light green).

Figure 3.16: Schmidt Kennicutt relation for galaxy simulations with different masses. In solid line the
observational Schmidt Kennicutt relation its shown and the grey lines are the errors (equation (2.22)). The
different galaxies have total mass : LMG - M = 1010 M�, MMG - M = 1011 M�, HMG - M = 1012 M�
and VHMG - M = 1013 M�.
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3.3 Simulations of an idealized disk galaxy with a gas

halo

In order to study a more realistic galaxy scenario we should include a realistic environment
around it. Apart from the dark matter halo that is already present in the previous set of
simulations, we add a hot gas halo as the circum-galactic medium of the galaxy. For these
systems we use the initial conditions as described in [Steinwandel et al. 2018 (in prep.)].

3.3.1 Numerical set up

For the set up of the galactic system we use the same disk galaxy as in the previous set of
the simulations, following [Hernquist, 1993]. The dark matter halo of the galaxy follows a
Hernquist density profile while the stellar and gaseous disk follow an exponential profile.
The gas halo is initiated with a spherical symmetric density distribution and is especially
chosen to be a β profile [Cavaliere and Fusco-Femiano, 1978], which is given by

ρgas = ρ0

(
1 +

r2

r2
c

)−3β/2

(3.7)

The parameter β is chosen to be β = 2/3, the central gas density ρ0 = 5 · 10−26 g · cm−3, a
value that is motivated from cosmological simulations [Dolag et al., 2015] but also from ob-
servations [Miller and Bregman, 2013]. Last, the core radius is set to rc = 0.22 kpc in accor-
dance with observations [Miller and Bregman, 2013] and simulations [Moster et al., 2010].
Assuming hydtrostatic equilibrium for the gas halo, the temperature profile, according to
[Steinwandel et al. 2018 (in prep.)] is given from

T (r) = G
µmp

k

(
1 +

r2

r2
c

)
[MDMF0(r) + 4πr3

cρ0F1(r)] (3.8)

with µ the mean molecular weight, mp the proton mass and k the Boltzmann constant.
The functions F0,1(r) are given from
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and

F1(r) =
π2

8rc
− arctan2(r/rc)

2rc
− arctan(r/rc)

r
(3.10)

In the table 3.5 parameters of the gas halo model are summarized, which remain constant
for all the simulations with the gas halo. Having the gas halo and the galactic disk, we
need to combine them in order to build the galactic system that we will simulate. To do
so, a part of the central region of the gas halo is removed and the galactic disk is placed in
the same position. This is done to prevent the overlap of the gas particles of the disk and
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Table 3.5: Parameters for the gas halo

Parameters
central density ρ0 5 · 10−26 g · cm−3

core radius rc 0.22 kpc
exponent β 2/3

Table 3.6: Parameters for the systems with disk galaxy and gas halo

Disk Parameters
LMG MMG HMG

Total mass [1010 M�] M200 1 10 100
Virial radius r200 31 67 145

Halo concentration c 8 10 12
Spin parameter λ 0.033 0.033 0.033

Disk spin fraction jd 0.041 0.041 0.041
Disk mass fraction md 0.041 0.041 0.041
Bulge mass fraction mb 0.013 0.013 0.013

Disk scale length [kpc] ld 2.1 1.5 0.8
Disk height [ld] z0 0.2 0.2 0.2
Bulge size [ld] lb 0.2 0.2 0.2

Gas halo mass [1010M�] Mgas halo 0.05 0.5 5.0
Temperature [K] Tvir 104 105 106

the halo since they have different properties. Therefore, a disk galaxy with circumgalactic
medium is created, which is a realistic environment in order to test the new star formation
model and the effect of the magnetic fields.
With this set up we run galactic systems with different masses and different magnetic field
models. Here we chose the mass of the galactic disk to vary from 1010 M� (low mass
galaxy, LMG), to 1011 M� (medium mass galaxy, MMG) and 1012 M� (high mass galaxy,
HMG). Again, we add an ending for each name according to the magnetic field model that
we used, i.e., B for primordial magnetic field, snB for supernova seeded magnetic field and
noB for no magnetic field. The parameters for these systems are shown in table 3.6. In
the following we will focus on the analysis of the Milky Way type galaxy (HMG), while
results from the different systems can be found in Appendix.

3.3.2 Results

Here we will present the results of the Milky way type galaxy with 2 magnetic field models,
i.e., with primordial magnetic field of strength B = 10−9 G in the x direction (halo-HMG-
B)2 and magnetic field seeded from supernova explosions (halo-HMG-snB). The advantage

2Here we add the prefix halo to remind the presence of the circum-galactic medium and to differentiate
from the previous set of simulations.
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of having a gas halo surrounding the galactic disk is the opportunity to study the properties
of the evolution of the and especially in our case the interplay of magnetic fields and star
formation in a realistic astrophysical environment without any perturbations.
Before looking the structure of the galaxy and its properties it is interesting to comment on
the temperature-density phase diagram for the new star formation model in two different
times. In figure 3.17 the effective temperature of the gas as a function of the gas density
is shown at t = 0.01 Gyr color coded by the star formation rate per particle, while in
figure 3.18 the same plot is shown at t = 1 Gyr. In figure 3.17 there are two different
component that correspond to the particles of the gas halo (upper group of particles) and
the galactic disk (lower group of particles). Since we are still using a density threshold
to distinguish star forming and non star forming particles the 2 branches of particles are
differentiated by color code, which shows the star formation rate per particle. Particles
plotted in purple have densities lower than the density threshold, while the rest of the
particles follow the new multiphase model. From figure 3.17 the interaction of the galactic
disk with the hot halo is also obvious. A part of the hot gas halo cools and falls towards the
galactic disk, an effect that is more obvious and strong after 1 Gyr of the evolution of the
system as shown in figure 3.18. In the last plot star forming particles are flowing towards
the hot halo, indicating the bubbling behavior of the gas of the galaxy while interacting
with the gas of the halo. There are some particles that have high temperatures but are
not star-forming. These are probably particles that were heated by following the evolution
of the multiphase model but gained low densities and therefore exited the multiphase
model. It is important to keep in mind that the temperature shown in these plots is the
effective temperature of the total gas (temperature that corresponds to equation (2.66))
which converges to the temperature of the hot phase in the star formation branch since
the cold clouds are kept to a constant temperature of Tc = 103 K which is usually much
lower than the temperature of the hot gas.
General properties of the galaxy
In order to study the structure of the galaxy and where the star formation is taking place
we present the galactic disk in face on projection for the two different magnetic field
models, i.e. halo-HMG-B and halo-HMG-snB in three different points in time, i.e. after
1 Gyr, 2 Gyr and 3 Gyr of evolution. The star formation follows the spiral structure of
the galactic disk with higher star formation rate in the center and in some parts of the
spiral arms. Comparing figure 3.19a and figure 3.19b, which show the galaxies halo-HMG-
snB and halo-HMG-B respectively, the morphological differences are negligible. These are
becoming more obvious in the later evolution as shown in figure 3.20b and figure 3.20a.
Comparing these figures with the same figures of the isolated galaxy (figure 3.13) it is
clear that the presence of the circum-galactic medium allows the edges of the galaxy to be
smoother and suppress numerical effects that can arise from the absence of SPH particles
around the galaxy. Moreover, following the evolution of the disk we notice instabilities
that arise on its edges. This happens because the galaxy rotates much faster comparing
wit the hot gas halo. After 3 Gyr of evolution the spiral structure is not so strong. At
this point the galaxy has lost a part of its gas mass in the form of an outflow that we will
further explain later.
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Figure 3.17: Temperature-density diagram for the halo-HMG-B system at t = 0.01 Gyr. The upper group
of particles corresponds to the particles of the gas halo while the down part corresponds to the gas particles
of the galaxy

In figure 3.22 the radial profiles of the galaxies halo-HMG-B and halo-HMG-snB are shown.
Here the slight different behavior of the star formation across the galaxy for the 2 different
magnetic field models is better visible, with the SN seeding model having more fluctuations.
In figure 3.23 the mean thermal and magnetic pressure, calculated in radial bins of the
galactic radii, are shown at ∼ 0.5, 1.5, 2.5 Gyr. The thermal gas pressure decreases with
the galactic radius since the gas density is decreasing as well. The magnetic pressure
in the case of primordial magnetic field (halo-HMB-B, solid magenta line) starts from a
relatively constant value with local amplifications probably due to the small scale turbulent
dynamo which is produced from supernova feedback and gas motions. At later times the
magnetic pressure increases since the magnetic field is amplified. In the simulation with the
supernova seeding (halo-HMG-snB) the magnetic pressure (dashed magenta line) is higher
in the center of the galaxy because of the higher star formation, which implies higher a
supernova rate and therefore more magnetic field seeding. After 1 Gyr that the magnetic
fields are further amplified, the magnetic pressure is higher through the whole galactic
disk. An interesting feature appears in the gas pressure, both thermal and magnetic, at
∼ 2.4 Gyr. This peak in approximately radii of 4 − 5 kpc is consistently reflected in the
star formation rate in figure 3.22 and the gas density in figure 3.24. It seems that this
peak is correlated with a magnetic driven outflow that we observe in the galaxy and we
will further discuss later.
The star formation rate as a function of time is shown in figure 3.26. As was already
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Figure 3.18: Temperature-density diagram for the halo-HMG-B system at t = 1 Gyr. The colorbar shows
the star formation rate per particle.

discussed in the section 3.2.3 in the case of an isolated galaxy, the onset of star formation
outputs a high star formation rate and the self-regulated model is set after the second,
lower, peak of the star formation rate. Here the effect of the hot gas halo on the support
for the star formation is obvious as it provides support for the star formation process. The
cooling inflowing gas from the halo to the galaxy provides more fuel for the star formation
and settles the star formation rate to be around ∼ 1 M�yr

−1 which is in accordance with
the observed values for the Milky Way [Robitaille and Whitney, 2010]. The break that we
notice for the halo-HMG-B simulation is due to the magnetic outflow that happens at this
point. This phenomenon drives out of the galaxy a small amount of gas which results in
the drop of the star formation rate.

To further continue the discussion of the simulations with the new star formation model
we will study how the magnetic fields are evolving in the system. In figure 3.28 the
galaxy in face on and edge on slices for the 2 simulations, namely halo-HMG-snB and
halo-HMG-B at 1 Gyr are presented. The same plots at 2 Gyr are shown in figure 3.29
and at 3Gyr at figure 3.30. A nice structure of the magnetic field strength is shown in
the galactic disk which is amplified in observable strengths. The observable mean values
for magnetic field strengths reach the order of ∼ µG (i.e., [Chyży et al., 2007]). This is
the case for these simulations as well, since the mean magnetic field reaches ∼ µG values,
as shown in the growth rate of the mean magnetic field in figure 3.25, which agrees with
the simulations using SH03 as presented by [Steinwandel et al. 2018 (in prep.)]. Our
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(a) halo-HMG-snB-sfr (b) halo-HMG-B-sfr

Figure 3.19: High mass galaxy with gas halo (halo-HMG) projection at t = 1 Gyr for the simulation with
the supernova seeded magnetic field. The color code in the plots is the star formation rate integrated along
the z direction.

(a) halo-HMG-snB, face on projection (b) halo-HMG-B, face on projection

Figure 3.20: High mass galaxy with gas halo (halo-HMG) projection at t = 2 Gyr. The left panel shows
a projection of the galactic disk for the simulation with the supernova seeded magnetic field. The right
panel show the projected disk of the simulation with the primordial magnetic field. The color code in all
plots is the star formation rate integrated along the z direction.
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(a) halo-HMG-snB, face on projection (b) halo-HMG-B, face on projection

Figure 3.21: High mass galaxy with gas halo (halo-HMG) projection at t = 3 Gyr. The left panel shows
a projection of the galactic disk for the simulation with the supernova seeded magnetic field. The right
panel show the projected disk of the simulation with the primordial magnetic field. The color code in all
plots is the star formation rate integrated along the z direction.

Figure 3.22: Star formation rate calculated in radial bins of the galactic radius. In orange is plotted the
result from the halo-HMG-B and with light green from the halo-HMG-snB.
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Figure 3.23: Mean pressure calculated in radial bins of the galactic radius in 3 different points in time.
The dark blue lines show the thermal gas pressure while the magenta lines show the magnetic pressure.
The solid lines are calculations from the halo-HMG-B simulation and the dashes lines are results from the
simulation halo-HMG-snB.

results for this set of simulations are very different from the results of the isolated disk as
shown in figure 3.11b. Here is once again obvious the importance of the circum-galactic
medium. In the case of the isolated galaxy, we have already discussed the non-physical high
magnetic field in the outer parts of the galaxy due to the boundary conditions. When we
add the gas halo, the galactic disk has realistic boundary conditions and the amplification
of the magnetic field occurs normally. For both models, with primordial magnetic field and
with the supernova seeded magnetic field (figure 3.28, figure 3.29) we notice an obvious
magnetic structure with higher magnetic field in the center of the galaxy and in the outer
parts of the disk. For the simulation halo-HMG-B the magnetic field is probably amplified
in the center due to the small scale turbulent dynamo. However, to test this claim about
the turbulent nature of the magnetic field amplification we produce the power spectra
for the simulation with the primordial magnetic and the supernova seeded magnetic field.
The power spectra were produced with the tool SPHmapper ([Röttgers and Arth, 2018])
which bins the SPH data on a grid using the desired kernel, which is the Wendland C4
in our simulations. In figure 3.27a the power spectrum for the halo-HMG-snB simulation
is shown in different points in time, while figure 3.27b shows the power spectrum for the
halo-HMG-B simulation. From theory we expect a power spectrum with slope of 3/2 in
early times [Kazantsev et al., 1985] and slope of -3/2 in the later evolution of the galaxy
[Iroshnikov, 1963]. We would not make a strong claim that the magnetic fields are amplified
efficiently through small scale turbulent dynamo for the case of primordial magnetic field
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Figure 3.24: Radial profiled of the surface density for different components of the ISM. The mean surface
density of the total gas (green), the cold gas(blue) and the molecular fraction (red) are shown as a function
of the galactic radius. The solid lines correspond to the halo-HMG-B simulation and the dashed lines to
the halo-HMB-snB simulation.
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Figure 3.25: Mean magnetic field evolution with time. In dark blue is the result from the halo-HMG-B
simulation while in light blue is the result from the halo-HMG-snB simulation.

Figure 3.26: Star formation rate as a function of time. The star formation rate from the simulation with
the primordial magnetic field is shown in light green, while the star formation rate of the simulation with
the supernova seeding is shown in light orange.
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since from figure 3.27b is not very clear. Furthermore, we have to keep in mind than in the
case of primordial magnetic fields, our simulations did not show significant amplification
of the magnetic field strength, especially before 2 Gyr (figure 3.25). In the case of the
supernova seeded magnetic field, there is an evidence of small scale turbulence as it seems
from the power spectrum of figure 3.27a. Overall the magnetic field shows better behavior
in the case of supernova seeded field. In the edge of the galactic disk, many instabilities
appear due to shear with the hot gas halo, which have different densities and velocities.
This enhances the turbulence in this region and therefore the amplification of the magnetic
field in the outer parts of the galaxy can be attributed to this feature in addition to the
large scale α − Ω dynamo due to the high rotational velocities in this part of the galaxy.
The same processes apply for the simulation of halo-HMG-snB. The difference in the latter
case is that we start with an un-magnetized disk and the first magnetic fields are connected
to the star formation activity. The high star formation rate in the center of the galaxy
results in a higher supernova rate which consequently seeds more magnetic dipoles in the
disk. In general the magnetic field strength is shown to be more structured comparing to
[Steinwandel et al. 2018 (in prep.)]. This is probably happening due to the different star
formation models that are used. Steinwandel et al. 2018 (in prep.) use SH03 in contrast
to the simulations presented here that are performed with the new pressure based star
formation model. Even from the surface density of the gas is shown (figure 3.24) that the
galactic disk does not have a smooth density distribution but rather a density distribution
with small fluctuations. As shown from figure 3.25 the magnetic field is always higher in the
case of the primordial magnetic field but the amplification mechanism seems more efficient
in the case of the supernova seeded field. After 3 Gyr the magnetic fields show an outflow
above and below the galaxy as is displayed in figure 3.30. The magnetic field structure is
still obvious at the halo-HMG-snB simulation which in contrast to the halo-HMG-B case.
The outflow that is observed starts earlier in the simulation with the primordial magnetic
field (halo-HMG-B) and has grown in larger distances around the galaxy.
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(a) halo-HMG-snB (b) halo-HMG-B

Figure 3.27: Magnetic power spectra for the simulations halo-HMG-snB (left) and halo-HMG-B (right)
for different points in time as it is indicated in the legends. For early times the turbulent dynamo theory
predicts P (k) ∝ k3/2 [Kazantsev et al., 1985] and at later times the small scale dynamo stops and the power
spectra follows P (k) ∝ k−3/2 [Iroshnikov, 1963]. For the case of halo-HMG-snB the power spectrum seems
to follow the expected slopes and and we could claim that there is an evidence for the operation of turbulent
dynamo in the disk. However this is not the case for the simulation. It is not clear if the power spectrum
follows the Kazantsev slope in early times. This is in accordance to the rest of our results since in the
case of halo-HMG-B we do not notice an efficient amplification of the magnetic field strength before 2 Gyr
(figure 3.25).
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(a) halo-HMG-snB, face on slice
(b) halo-HMG-snB, edge on slice

(c) halo-HMG-B, face on slice
(d) halo-HMG-B, edge on slice

Figure 3.28: High mass galaxy with gas halo (halo-HMG) at t = 1 Gyr. The upper 2 panels show a slice of
the simulation with the supernova seeded magnetic field. The lower 2 panels show a slice of the simulation
with the primordial magnetic field. The color code shows the magnetic field strength in G and is unique
for each of the subplots.
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(a) halo-HMG-snB, face on slice
(b) halo-HMG-snB, edge on slice

(c) halo-HMG-B, face on slice
(d) halo-HMG-B, edge on slice

Figure 3.29: High mass galaxy with gas halo (halo-HMG) at t = 2 Gyr. The upper 2 panels show a slice
of the simulation with the supernova magnetic seeded magnetic field. The lower 2 panels show a slice of
the simulation with the primordial magnetic field. The color code shows the magnetic field strength in G
and is unique for each of the subplots.
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(a) halo-HMG-snB, face on slice
(b) halo-HMG-snB, edge on slice

(c) halo-HMG-B, face on slice
(d) halo-HMG-B, edge on slice

Figure 3.30: High mass galaxy with gas halo (halo-HMG) at t = 3 Gyr. The upper 2 panels show a slice
of the simulation with the supernova magnetic seeded magnetic field. The lower 2 panels show a slice of
the simulation with the primordial magnetic field. The color code shows the magnetic field strength in G
and is unique for each of the subplots.
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Magnetic Driven Outflows
Having a careful look at the magnetic field strength over time we notice a sudden growth
of the mean magnetic field strength at around ∼ 2 Gyr. Moreover, a peak in the pressure,
surface density and star formation rate is observed at that time as it was mentioned in
the discussion so far. In figure 3.31 a sequence of edge on cross section slices of the galaxy
are displayed in order to show the generation of the outflow. In contrast to Steinwandel
et al. 2018 (in prep.), we find different geometry of the outflows. The high magnetic field
strength in the central region of the galaxy in conjunction with rotation is the underlying
reason of these outflows. The magnetic field lines that are dense and highly rotated in the
center of the galaxy, are creating a ring shaped configuration of the magnetic field strength
in the center of the galaxy and since this cannot infinitely continue, this energy is released
in the form of low density outflows above and below the galactic disk as shown in figure 3.31
and in figure 3.32. This outflow is driven by the high magnetic pressure in the center of
the galaxy as is also shown in the pressure profiles of the figure 3.34. The middle panel of
the last plot shows the magnetic pressure (purple line) and the thermal gas pressure (dark
blue) at the time that the outflow starts to rise. The reason that the dashed lines that
correspond to the halo-HMG-snB simulation do not show this trend is just because the
outflow happenes in later times. The high pressure results in high density regions ∼ 3 kpc
from the galactic center as shown in figure 3.36 which is probably an outcome of a shocked
region. Therefore the density also rises and due to high pressure we observe high molecular
surface density which is directly reflected to higher star formation rate in this region as
shown in figure 3.35. It is worth noticing that the very central region of the galaxy, i.e.,
< 1 kpc has much lower density at the time of the outflow. From figure 3.33 we can notice
that at the time that the magnetic outflow seems to rise (according to figure 3.31) the
gas is not yet ejected from the galactic disk. This happens just after 2.24 Gyr when the
magnetic bubble fully rises above and below the galactic disk together with low density
gas. In figure 3.37 the temperature-density phase diagram is presented for the system
halo-HMG-B at 2.34 Gyr, just after the wind up of the outflow. The outflow is seen as
a few particles are going out of the disk towards the gas halo, which contributes to the
magnetic and metal enrichment of the gas halo. These particles are acting as carriers for
the magnetic field and allow the outflow to evolve. This feature does not happen in the
case of the isolated galaxy since there is no medium around the disk. In that case just
a few particles could be ejected from the galaxy with high magnetic fields and be totally
disconnected from the galaxy.
The geometrical difference between our simulations and those of Steinwandel et al. 2018
(in prep.) is that the outflow in our case is not accelerated to high velocities and thus
remains closer to the galaxy (max vz ∼ 500 km/s). For the case of the simulation with the
supernova seeded magnetic fields (halo-HMG-snB) the results are similar and the maps
of the magnetic field are given in the Appendix. Our results are in accordance with
[Pakmor and Springel, 2013] who found low density but highly magnetized rising bubbles
around the galaxy at ∼ 2 Gyr with similar geometry. These outflows are observed in a lot
of simulations but in other cases they are claimed to have a different origin, as for instance
in [Marinacci et al., 2011], where the outflows are driven by supernova powered bubbles.
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(a) t = 2.14 Gyr (b) t = 2.16 Gyr (c) t = 2.18 Gyr

(d) t = 2.24 Gyr (e) t = 2.38 Gyr (f) t = 2.49 Gyr

Figure 3.31: Edge on cross section slices of the simulation halo-HMG-B that show the start and evolution
of the magnetic driven outflow. The color bar (same scale in every plot) show the magnetic field strength
in Gauss.

(a) t = 1.99 Gyr (b) t = 2.14 Gyr (c) t = 2.20 Gyr

Figure 3.32: Face on cross section slices of the simulation halo-HMG-B before and at the start of the
magnetic driven outflow. The color bar (same scale in every plot) shows the magnetic field strength in
Gauss.
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(a) t = 1.99 Gyr (b) t = 2.14 Gyr (c) t = 2.20 Gyr

Figure 3.33: Face on cross section slice of the simulation halo-HMG-B before and at the start of the
magnetic driven outflow. The color bar (same scale in every plot) shows the gas density.

Figure 3.34: Radial profile of the thermal (dark blue) and magnetic (magenta) pressure of the gas before
the outflow, at the start of the outflow and after a few years of evolution. With solid lines are shown
the results from the halo-HMG-B simulation while the dashed lines show the results from the simulation
halo-HMG-snB.
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Figure 3.35: Mean star formation rate calculated in radial bins of the galactic radius before, at the start
and a few years after the outflow. The simulation with the primordial magnetic field (halo-HMG-B) is
shown in light green and the simulation with the supernova seeded field (halo-HMG-snB) is shown in
orange.

Figure 3.36: Radial profile of the surface density of different components of the gas before the outflow,
at the start of the outflow and after a few years of evolution. In green is displayed the total gas of the
galaxy, with dark blue the cold fraction of the gas and with dark red the molecular fraction. With solid
lines are shown the results from the halo-HMG-B simulation while the dashed lines show the results from
the simulation halo-HMG-snB.
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Figure 3.37: Effective temperature as a function of the gas density from the halo-HMG-B simulation. The
color bar show the star formation rate per particle. The calculations are done at 2.34 Gyr, when the ouflow
has already grow above and bellow the galaxy.
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Chapter 4

Summary and Conclusions

The progress of the numerical simulations has grown rapidly over the last years which made
them an important tool for modern astrophysics. In many physical problems the correlated
equations cannot be solved analytically, or in other problems the interplay of a large amount
of physical processes make the analytic solution impossible or highly demanding. In the
case of galaxy formation the basic interaction that dominates is gravity but is not limited
to this. Star formation and feedback, cooling, turbulence, magnetic fields and cosmic rays
are a few of the different processes that are taking place in a galaxy. For simulations that
deal with the galaxy as a whole is usual not to have enough resolution in order to resolve all
the processes that are involved in the evolution of the galaxy. Therefore, a common way to
overcome this obstacle is to build realistic sub-grid recipes in order to model the unresolved
physics. Here we presented a sub-grid model for star formation and feedback based on ideas
of [Springel and Hernquist, 2003] and [Blitz and Rosolowsky, 2006]. The motivation of this
work is to couple the sub-grib model for star formation with further physical processes.
In our case we couple the star formation model with the magnetic fields and in particular
with the supernova seeding model of [Beck et al., 2013]. This allows the interplay of the
star formation and the magnetic fields in both directions. The supernova seeding model
seeds the magnetic field from the supernova explosions, a parameter which is calculated
from the star formation model and at the same time the magnetic pressure influences the
star formation rate in our prescription (equation (2.51), equation (2.53)). The latter comes
from the connection between the molecular fraction of the gas and the hydrostatic pres-
sure of the galaxy, as calculated from observations [Blitz and Rosolowsky, 2006]. This is
an important attribute of the model since it allows the star formation to occur from the
molecular part of the gas and additionally introduces the influence of the magnetic field.
This model is written in the SPH code gadget with which we have performed simula-
tions of an isolated galaxy and a galaxy surrounded by a hot gas halo (circum-galactic
medium) using the same initial conditions as in Steinwandel et al. 2018 (in prep.). We find
a well defined spiral structured galaxy and reproduce the basic properties of the ISM. In
the case of the isolated disk galaxies (without the circum-galactic medium) we find better
magnetic field configuration and amplification using the supernova seeding model instead
of the primordial magnetic field. However, the non physical boundary conditions result in
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a high magnetic field strength for some particles in the edge of the galactic disk. The star
formation rate stars with a very high value that is an outcome of the initial conditions and
then gradually decreases. The absence of inflowing gas and low magnetic fields settles the
star formation rate below 1 M�/yr. Testing the new star formation model in galaxies with
different total mass we find that all of them reproduce the slope of the Schmidt-Kennicutt
relation without any further tuning of parameters.
To further test the star formation model in an isolated galaxy but in more realistic envi-
ronment we added a circum-galactim medium of hot gas halo [Steinwandel et al. 2018 (in
prep.)]. This offers the opportunity to study the system in a well-controlled setting without
further perturbations. Similar results of the ISM, surface densities and star formation rate
are found in this set of simulations as well. The star formation is further supported by
the inflowing gas from the halo and the decrease over time is smoother. An interesting
feature appears at 2.1 Gyr, namely highly magnetized low density bubbles arise above and
below the galactic disk. This is accordance with other similar simulations, for example
[Pakmor and Springel, 2013] and Steinwandel et al. 2018 (in prep.). The difference in the
morphology of the outflow depends on the numerical set up and feedback mechanisms. We
suspect that the outflow is a result of high magnetic pressure in the central region of the
galaxy. In the case of the primordial magnetic field the outflow results in a steeper decrease
of the star formation rate and a dip at ∼ 2.6 Gyr. For the simulation with the supernova
seeding the decrease remains smoother and the outflow appears later in time. Although
the molecular fraction is proportional to the total pressure of the gas (as is the star forma-
tion rate) the high magnetic pressure will not increase the star formation since the high
magnetic field particles have low density and are located in the bubbles above and bellow
the galactic disk. These magnetic bubbles are rising a few kpc around the galaxy and they
they fall back in the outer edges of the disk. Furthermore it seems to perturb the disk
as is shown in the radial profiles of the star formation rate and surface density of the gas
(figure 3.22, figure 3.24). Consequently, because of the mass loss the star formation rate
and surface density of the gas drops but also the prominence of the spiral arms is weaker
after 3 Gyr of evolution (figure 3.21b, figure 3.21a). For both simulations we produce the
magnetic power spectra (figure 3.27a, figure 3.27b). This is an indicator of the presence of
small scale turbulence that amplifies the the magnetic field in small scales. For the halo-
HMG-B that we initiated the magnetic field with primordial field of B = (0, 0, 10−9 G)
the amplification happens after the magnetic outflow. Moreover, from the power spectrum
we would not claim that the turbulent dynamo is very efficient in this case. Contrary, the
behaviour of the power spectrum for the halo-HMG-snB simulation shows an indication of
small scale turbulence. Overall, from the maps of the galaxy (figure 3.28, figure 3.29 and
figure 3.30) and the power spectrum (figure 3.27a) we can argue that the magnetic field is
amplified from a small scale turbulent dynamo. The magnetic field for the halo-HMG-snB
simulation shows a nice structure in the galactic disk which is always improved comparing
to the results from the halo-HMG-B simulation.
In general, it seems that the new star formation model performs well but it always needs
further testing in different systems, for example in zoom cosmological simulations or merg-
ers. Since we have already introduced the opportunity of adding the effect of different
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components of pressure, it would be interesting to add the effect of the turbulence and the
cosmic rays in the star formation. As it was already mentioned in the introduction, the
thermal and non thermal components of the ISM are dynamically important (figure 1.1).
Therefore, to include them in a sub-grid model would potentially lead to a more precise
prescription for the star formation. An interesting extension would be to include the mag-
netic energy in the energy balance of the gas in the interstellar medium (equation (2.60)).
Therefore, the equilibrium solution should more accurately allow the influence of the en-
ergy of different components of the ISM. In that case, we should carefully think however
how the non thermal part of the ISM is distributed between the cold and the hot phase.
In the current version of the model we could also think to neglect the assumption of the
constant temperature of the cold clouds. In this way we could follow the evolution of both
hot and cold phase. This would require other assumptions since as we already fronted in
chapter 2.2, is not trivial to implement an equilibrium solution.
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Appendix

Here we present a couple of additional plots for completeness. First, we present 4 maps of
the ∇ ·B of the Milky Way type galaxy with the circum-galactic medium (halo-HMG) for
the 2 magnetic field models (primordial and supernova seeded field) at 2 points in time.
This is important since in numerical simulations the divergence of the magnetic field is not
always zero. Therefore, is important to keep the ∇ ·B as close to zero as possible so we
do not have artificial amplification of the magnetic field.
We also show a sequence for the generation of the outflow for the supernova seeded magnetic
field.
The rest of the plots are summarizing the results of the galaxies with different mass. The
properties of these simulations are given in table 3.6.
Last, we show the temperature-density phase diagrams for different simulations.
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(a) halo-HMG-snB, face on slice (b) halo-HMG-B, face on slice

Figure 1: In this figure a cross section slice view of the galaxy is shown for the medium mass galaxy
with the circum-galactic medium (halo-HMG-B and halo-HMG-snB) at t = 2 Gyr. left : simulation with
supernova seeded magnetic field, right : simulation with the primordial magnetic field. The colorbar shows
the divergence of the magnetic field. SPMHD simulations are not divergence free and therefore is important
to keep this error as small as possible. Here we show a slice of the galaxy just before the outburst of the
outflow, at 2 Gyr. In a few parts of the galaxy we achieve very good cleaning (dark blue regions) while
there are others that the divB cleaning is not as efficient (dark red regions). In all cases it seems that the
divergence error is small.

(a) halo-HMG-snB, face on slice (b) halo-HMG-B, face on slice

Figure 2: In this figure a cross section view of the galaxy is shown for the medium mass galaxy with the
circum-galactic medium (halo-HMG-snB and halo-HMG-B) at t = 2.7 Gyr and 2.4 Gyr respectively. left :
simulation with supernova seeded magnetic field, right : simulation with the primordial magnetic field.
The colorbar shows divergence of the magnetic field. Here we show a slice of the galaxy after the outburst
of the outflow, at ∼ 2.4 Gyr for the primordial magnetic field simulation (right) and at ∼ 2.7 Gyr for the
supernova seeded magnetic field simulation.
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(a) t = 2.42 Gyr (b) t = 2.44 Gyr

(c) t = 2.49 Gyr (d) t = 2.65 Gyr

Figure 3: Cross section slice of the simulation halo-HMG-snB at the time of the outflow generation. The
colorbar shows the magnetic field strength in Gauss.
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(a) halo-MMG-snB, face on projection (b) halo-MMG-B, face on projection

Figure 4: In this figure the projected view of the galaxy is shown for the medium mass galaxy with
the circum-galactic medium (halo-MMG-B and halo-MMG-snB) at t = 0.76 Gyr. left : simulation with
supernova seeded magnetic field, right : simulation with the primordial magnetic field. The colorbar shows
the star formation rate integrated along z axis. The MMG galaxy is obviously smaller than the HMG that
we presented in Chapter 3 and its morphological properties are not so prominent at this stage of evolution.

(a) halo-MMG-snB, face on slice (b) halo-MMG-snB, face on slice

Figure 5: In this figure the cross section view of the galaxy is shown for the medium mass galaxy with the
circum-galactic medium and supernova seeded magnetic field (halo-MMG-snB) at t = 0.76 Gyr. left : face
on slice, right : edge on slice. The magnetic field is higher in the center due to higher star formation rate
and is not enough amplified throughout the disk at this time.
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(a) halo-MMG-B, face on slice (b) halo-MMG-B, edge on slice

Figure 6: In this figure the cross section view of the galaxy is shown for the medium mass galaxy with the
circum-galactic medium and primordial magnetic field assumption (halo-MMG-B) at t = 0.76 Gyr. left :
face on slice, right : edge on slice. For this case the magnetic field is amplified due to rotation.

(a) halo-LMG-snB, face on projection (b) halo-LMG-B, face on projection

Figure 7: In this figure the projected view of the galaxy is shown for the low mass galaxy with the
circum-galactic medium (halo-LMG-snB and halo-LMG-B) at t = 1 Gyr. left : simulation with supernova
seeded magnetic field, right : simulation with the primordial magnetic field. The colorbar shows the star
formation rate integrated along z axis. Here we suspect that the distorted and not detailed projection is
due to over-softening (εgas = 0.1 kpc/h).



88 4. Summary and Conclusions

(a) halo-LMG-snB, face on slice (b) halo-LMG-snB, face on slice

Figure 8: In this figure the cross section view of the galaxy is shown for the low mass galaxy with the
circum-galactic medium and supernova seeded magnetic field (halo-LMG-snB) at t = 1 Gyr. The colorbar
shows the magnetic field in Gauss. left : face on slice, right : edge on slice. Here the results of over-softening
are also obvious. The magnetic field seeding is following the star formation.

(a) halo-LMG-B, face on slice (b) halo-LMG-B, face on slice

Figure 9: In this figure a cross section view of the galaxy is shown for the low mass galaxy with the
circum-galactic medium and primordial magnetic field (halo-LMG-B) at t = 1 Gyr. The colorbar shows
the magnetic field in Gauss. left : face on slice, right : edge on slice. In the case of primordial magnetic
field seeding we notice a non physical amplification in the surrounding of the galaxy. We suggest to re-run
this simulation with better settings.
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(a) halo-LMG-snB, face on projection (b) halo-LMG-B, face on projection

Figure 10: In this figure a projected view of the galaxy is shown for the low mass galaxy with the circum-
galactic medium (halo-LMG-B and halo-LMG-snB) at t = 1.4 Gyr. left : simulation with supernova seeded
magnetic field, right : simulation with the primordial magnetic field. The colorbar shows the star formation
rate integrated along z axis.

(a) halo-LMG-snB, face on slice (b) halo-LMG-snB, face on slice

Figure 11: In this figure a cross section view of the galaxy is shown for the low mass galaxy with the
circum-galactic medium and supernova seeded magnetic field (halo-LMG-snB) at t = 1 Gyr. The colorbar
shows the magnetic field in Gauss. left : face on slice, right : edge on slice. Here the results of over-softening
are also obvious. The magnetic field seeding is following the star formation.



90 4. Summary and Conclusions

(a) halo-LMG-B, face on slice (b) halo-LMG-B, face on slice

Figure 12: In this figure a cross section view of the galaxy is shown for the low mass galaxy with the
circum-galactic medium and primordial magnetic field (halo-LMG-B) at t = 1.4 Gyr. The colorbar shows
the magnetic field in Gauss. left : face on slice, right : edge on slice.

Figure 13: Effective temperature as a function of the gas density. The colorbar shows the star formation
rate for each particle. This is at t = 0.01 Gyr for the simulation with SH03 and supernova seeded magnetic
field.
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Figure 14: Effective temperature as a function of the gas density. The colorbar shows the star formation
rate for each particle. This is at t = 0.01 Gyr for the simulation with SH03 and primordial magnetic field.
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[Röttgers and Arth, 2018] Röttgers, B. and Arth, A. (2018). Sph to grid: a new integral
conserving method. arXiv preprint arXiv:1803.03652.

[Ryu et al., 1995] Ryu, D., Jones, T., and Frank, A. (1995). Numerical magnetohydrody-
namics in astrophysics: Algorithm and tests for multi-dimensional flow. arXiv preprint
astro-ph/9505073.

[Salpeter, 1955] Salpeter, E. E. (1955). The luminosity function and stellar evolution. The
Astrophysical Journal, 121:161.

[Schleicher and Beck, 2013] Schleicher, D. R. and Beck, R. (2013). A new interpretation
of the far-infrared–radio correlation and the expected breakdown at high redshift. As-
tronomy & Astrophysics, 556:A142.

[Schlickeiser, 2012] Schlickeiser, R. (2012). Cosmic magnetization: from spontaneously
emitted aperiodic turbulent to ordered equipartition fields. Physical Review Letters,
109(26):261101.

[Schmidt, 1959] Schmidt, M. (1959). The rate of star formation. The Astrophysical Jour-
nal, 129:243.

[Sharda et al., 2018] Sharda, P., Federrath, C., da Cunha, E., Swinbank, A., and Dye, S.
(2018). Testing star formation laws in a starburst galaxy at redshift 3 resolved with
alma. Monthly Notices of the Royal Astronomical Society, 477(4):4380–4390.



108 BIBLIOGRAPHY

[Springel, 2005] Springel, V. (2005). The cosmological simulation code gadget-2. Monthly
notices of the royal astronomical society, 364(4):1105–1134.

[Springel and Hernquist, 2003] Springel, V. and Hernquist, L. (2003). Cosmological
smoothed particle hydrodynamics simulations: a hybrid multiphase model for star for-
mation. Monthly Notices of the Royal Astronomical Society, 339(2):289–311.

[Springel and White, 1999] Springel, V. and White, S. D. (1999). Tidal tails in cold dark
matter cosmologies. Monthly Notices of the Royal Astronomical Society, 307(1):162–178.

[Springel et al., 2005] Springel, V., White, S. D., Jenkins, A., Frenk, C. S., Yoshida, N.,
Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., et al. (2005). Simulations of the
formation, evolution and clustering of galaxies and quasars. nature, 435(7042):629.

[Springel et al., 2001] Springel, V., Yoshida, N., and White, S. D. (2001). Gadget: a code
for collisionless and gasdynamical cosmological simulations. New Astronomy, 6(2):79–
117.

[Stone et al., 2008] Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., and Simon,
J. B. (2008). Athena: a new code for astrophysical mhd. The Astrophysical Journal
Supplement Series, 178(1):137.

[Tabatabaei et al., 2013] Tabatabaei, F., Schinnerer, E., Murphy, E., Beck, R., Groves, B.,
Meidt, S., Krause, M., Rix, H.-W., Sandstrom, K., Crocker, A., et al. (2013). A detailed
study of the radio-fir correlation in ngc 6946 with herschel-pacs/spire from kingfish.
Astronomy & Astrophysics, 552:A19.

[Toomre and Toomre, 1972] Toomre, A. and Toomre, J. (1972). Galactic bridges and tails.
The Astrophysical Journal, 178:623–666.

[White et al., 1996] White, S., Schaeffer, R., Silk, J., Spiro, M., and Zinn-Justin, J. (1996).
Cosmology and large-scale structure. Proceedings of Les Houches Summer School, R.
Schaeffer et al., editors,(Elsevier, Amsterdam).

[Xu et al., 2008] Xu, H., OShea, B. W., Collins, D. C., Norman, M. L., Li, H., and Li,
S. (2008). The biermann battery in cosmological mhd simulations of population iii star
formation. The Astrophysical Journal Letters, 688(2):L57.

[Yepes et al., 1997] Yepes, G., Kates, R., Khokhlov, A., and Klypin, A. (1997). Hydrody-
namical simulations of galaxy formation: effects of supernova feedback. Monthly Notices
of the Royal Astronomical Society, 284(1):235–256.

[Zeeman, 1897] Zeeman, P. (1897). Vii. doublets and triplets in the spectrum produced by
external magnetic forces. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 44(266):55–60.



Aknowledgments

First of all, I would like to sincerely thank my supervisor, PD Dr. Klaus Dolag for giving
me the opportunity to work with him on this interesting project, for being available to
answer all my questions, his generous patience, guidance, discussions and for providing me
all the tools that I need to further continue my academic studies.
I would also like to genuinely thank Ulrich Steinwandel for always being willing to help
me, guide me and encourage me even when he was a 9h flight away.
Many thanks to the whole CAST group, and its leader Prof. Andreas Burkert, for this
delightful year, for all the interesting discussions either at a seminar room or around many
liters of bier (and wine). Special thanks to Antonio for all the help with python, Alex for
the power spectra and Tadziu for all the computing issues. Many thanks to Alkistis, Lisa
and Ulli for further inputs and corrections of this manuscript.
Furthermore, I would like to thank my best friend Alkistis, Mario and my family for always
being by my side and for the sincere encouragement and support.
Last but not least, I want to thank Magnetic Fields for existing and making Astrophysics
more interesting.



110



111

Declaration:

I hereby declare that this thesis is my own work and that I have not used any sources and
aids other than those stated in the thesis.

München, 20.08.2018

Eirini Batziou


	Abstract
	Introduction
	Magnetic Fields in Galaxies
	Detection Methods
	Origin of magnetic fields in galaxies and amplification
	Magnetic fields and Star Formation

	Numerical Simulations
	Gravitational Dynamics
	Hydrodynamics
	Additional Physics


	Star Formation models
	Star Formation model in gadget 
	The sub-grid model
	Selection of parameters
	Code implementation

	An alternative formulation of the model
	Model equations

	Pressure based star formation model
	Equations of the multiphase model

	Magnetic seeding model
	Supernova seeding model equations


	Simulations
	MHD shock tube tests
	Simulations of isolated disk galaxies
	Numerical set up
	Results: Galaxy with SH03 star formation model

	Simulations of an idealized disk galaxy with a gas halo
	Numerical set up
	Results


	Summary and Conclusions
	Aknowledgements

