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1. High Energy Processes in Galaxy
Clusters

Galaxy clusters are the largest gravitationally bound structures in the observable uni-
verse. As they form via hierarchical structure formation (e.g. White et al. (1993)) the
gravitational energy from infalling structure needs to be converted into other forms of
energy. This dissipated energy can be divided into two groups: thermal and non-thermal
energy. The first can be observed via X-ray emission from shock-heated gas. The second
can be observed as radiation from relativistic, charged particles, so called Cosmic Rays
(CRs). These charged particles consist of electrons, protons and light ions, moving at
relativistic velocities.
The purpose of this work is to include the treatment of these non-thermal components
into the massively-parallel, cosmological SP-MHD code OpenGadget3 to study the spec-
tral evolution of particle populations and their impact on the simulations. We largely
follow the implementation by Miniati (2001) by treating protons and electrons as CR
populations and evolving their distribution in momentum space. There have been few at-
tempts (see e.g. Girichidis et al. (2019) for recent work) to implement such a model into
cosmological simulations, as it is challenging, computationally expense and requires a lot
of additional models in the code for accurate treatment of magnetic fields and the detec-
tion of shocks, among others. Even fewer attempts have been made to model the spectra
of both electrons and protons. Here we present the extension of work started by Paster-
nak (prep) on an on-the-fly Fokker-Planck solver to model the distribution functions of
electrons and protons and study their impact on cosmological simulations in future work.

1.1. Shocks
Shocks in general are caused by a relative flow of gas that exceeds the local sound speed.
Assuming an ideal equation of state (EOS) this is

cs =
√
γP

ρ
(1.1)

where γ is the adiabatic index, for atomic, nonrelativistic gas γ = 5/3. Assuming that
the gas far from the incoming bulk flow can’t know of the incoming flow there has to
be a discontinuity at which the gas first feels the incoming flow. This discontinuity is
generally named the shock front. In dense plasmas where two-body collisions dominate
this leads to a pile-up of particles and therefore an increase in density. With the particles
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CHAPTER 1. HIGH E. PROCESSES IN GC 1.1. SHOCKS

Figure 1.1.: Illustration of Weibel instability caused by a shock moving in x-direction.
Taken from Startsev et al. (2007).

scattering they exchange energy and the region after the shock front, often referred to as
downstream of the shock, is heated and becomes more turbulent compared to the region
before the shock front, often referred to as upstream. Since the typical length scale for
particle collisions is

Λ = 1
nσT

(1.2)

where n is the particle density and σT is the scattering cross section, and due to the low
density in most astrophysical plasmas, two-body collisions are very rare. That means
that this picture cannot hold. Instead, shocks in astrophysical plasmas are often referred
to as collisionless shocks. There are two main mechanisms for the formation of these
shocks, depending on whether there is a pre-existing magnetic field or not. In the case
without a pre-existing magnetic field the driving mechanism was suggested by Weibel
(1959) and is therefore usually referred to as ’Weibel instability’. If the plasma is fully
ionized we can consider two groups of electrons and protons/ions moving into each other
due to the relative flow caused by the shock. Even though the individual groups may
fulfill the essential plasma property of quasi-neutrality, once they pass through each other
this neutrality is broken, as on microscopic scales there is no configuration in which the
particle placement in passing can be in net neutral. This induces an electric field parallel
to the shock normal, which in turn results in a magnetic field perpendicular to the shock
normal. This magnetic field exerts Lorentz force on the charged particles which bends their
trajectories in the direction parallel to the shock and causes random motion and thereby
turbulence in the downstream region. That mechanism also causes a momentum/energy
transfer between the particle groups and leads to a density increase in the downstream
region, since the velocity component in the direction of the shock normal is decreased and
therefore particles pile up in the downstream region. An illustration of this effect can be
seen in Fig. 1.1. In the case with a pre-existing magnetic field the particles are simply
deflected by the compressing fields which again leads to an energy increase and random
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CHAPTER 1. HIGH E. PROCESSES IN GC 1.2. PART. TRANSPORT

motion in the downstream region. Both these cases lead to a typical interaction length
scale of (e.g. Maoz (2016))

Λ = vs
ωp

(1.3)

where ωp =
√

4πe2ne
me

is the plasma frequency and vs is the velocity of the shock front. This
is typically 9 orders of magnitude than the length scale for direct particle collisions. Inde-
pendent of the shock mechanism we expect mass, momentum and energy to be conserved
over the shock front. This leads to the Rankine-Hugoniot jump conditions

ρuvu = ρdvd (1.4)
Pu + ρuv

2
u = Pd + ρdv

2
d (1.5)

vu

(
ρuv

2
u

2 + ρuUu + Pu

)
= vd

(
ρdv

2
d

2 + ρdUd + Pd

)
(1.6)

where the subscripts u and d refer to upstream and downstream properties of the shock
front, respectively. For simplicity we only take hydrodynamic properties into account in
this case. By assuming the EOS of an ideal gas to relate internal energy U of the gas to
its pressure P

U = P

(γ − 1)ρ (1.7)

we can solve the above equations and find the relation of up- to downstream quantity

ρd
ρu

= vu
vd

= (γ + 1)M2

2 + (γ − 1)M2 (1.8)

Pd
Pu

= 2γM2 − γ + 1
γ + 1 (1.9)

Td
Tu

= Pd
Pu

vd
vu

(1.10)

where we used the Mach number M = vs
cu

with vs = vd
1−ρu/ρd

and the sound speed in the
upstream region cu =

√
γPu
ρu

.

1.2. Transport of Charged Particles
The trajectory of charged particles in a plasma is dominated by their own peculiar velocity
and external forces acting on them. For particles with charge q the dominating force in a
homogeneous magnetic field is the Lorentz force

~FL = q
~v

c
× ~B . (1.11)

Since this is strictly perpendicular to the velocity vector this forces the particles on circular
tracks, in the rest-frame of the particle. In the observer frame they perform helical motions

3



CHAPTER 1. HIGH E. PROCESSES IN GC 1.2. PART. TRANSPORT

α

Figure 1.2.: CR propagation along a regular and irregular magnetic field line.
Adopted from Pasternak (prep).

rg << � rg ~ � rg >> �

Figure 1.3.: Gyration of charged particles in irregular magnetic fields. rg describes
the gyro radius of the particle, while λ is the typical scale of the irregu-
larities. Adopted from Pasternak (prep).

around the field lines with a pitch angle α between momentum vector ~p and magnetic
field vector ~B

cos(α) = µ = ~p · ~B
|~p|| ~B|

. (1.12)

This is shown in projection in the left panel of Fig. 1.2. The helical movement indicates
that the Lorentz force is compensated by the centrifugal force, which allows us to define
a frequency of gyration ωc and from that a radius of gyration rg as

ωc = qB

γmc
; rg = p⊥c

qB
(1.13)

where γ is the Lorentz factor γ =
(

1−
(
v
c

)2
)−1/2

. We can assume that the magnetic field
follows the plasma on large scales from Ohm’s law

~E + ~v × ~B = 0 (1.14)

which is often referred to as the magnetic field lines being frozen into the plasma. This
means that the magnetic field lines follow irregularities in the plasma and in turn charged
particles follow those irregularities. See the right panel of Fig. 1.2 for an illustration. The
scale of these irregularities λ together with the gyro radius rg of a particle can impact
its trajectory in different ways. This is shown in Fig. 1.3. In a simple, idealized image,
if the gyro radius is much smaller than λ the particle will follow a single field line and
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CHAPTER 1. HIGH E. PROCESSES IN GC 1.3. (RE-)ACCELERATION

its irregularities. In the case of rg � λ the particle will gyrate around a bundle of
field lines and won’t feel small-scale irregularities. The special case of comparable scales
rg ∼ λ allows particles to leave the influence of one field line and be caught by different
field lines and thereby be scattered off different irregularities. Assuming a ’sufficiently
stochastic’ (Drury (1983)) scattering process leads to an isotropic particle distribution,
since particles should ’forget’ about their initial momentum vector after a number of
scattering processes. That allows us to simplify the distribution function of a particle
population F (~p, ~x, t), which explicitly depends on the momentum vector, to an isotropic
form f(p, ~x, t). This process is often referred to as pitch-angle scattering. This gives the
basis to derive the Diffusion-Convection equation, which is the governing equation of our
CR model, see Sec. 3.1. We will omit a derivation at this point, as it has been done
by many different authors and instead refer the interested reader to Drury (1983) for a
simple derivation, or Skilling (1975) for a cleaner derivation including radiative losses and
Schlickeiser (2002) for a derivation including all terms discussed in Sec. 3.1.

1.3. Particle (Re-)Acceleration
Through the combination of the two previous sections we can infer some interaction
between thermal gas, magnetic fields and Cosmic Rays. Depending in the structure of
these velocities they fall in different categories (see e.g. Pohl et al. (2019)). If they are of
stochastic origin they are considered turbulence, if they are systematic the are considered
shocks, or shear flows.

1.3.1. Diffuse Shock Acceleration
The most common mechanism to explain particle acceleration by shocks is known as
"Diffuse shock acceleration" (DSA), or Fermi-I acceleration after Fermi (1949). We will
summarize the key concepts here, for more details please see Drury (1983) for a review. In
this process charged particles with already high energies are able to escape the downstream
region of a shock via the process described in Sec. 1.2. As we expect the downstream
region to be turbulent and the magnetic field frozen into the gas this environment provides
enough irregularities for the particle to be scattered. As the shock front itself should be
small compared to the gyro radius of sufficiently relativistic particles they can enter the
upstream region unperturbed by the shock. There they are reflected by the magnetic field
frozen into the upstream plasma and scatter back into the downstream region. Since,
from the rest frame of the shock front, the upstream velocity is much larger than the
downstream velocity this causes the particle to gain energy. In the downstream region
the particle is again scattered off Alfvén waves induced by the turbulent downstream
medium. The scattering here causes the particle to loose some energy, but since the
velocity is smaller, there is still a net energy gain of (e.g. Pohl et al. (2019))

δ ≡ ∆E
E
' 4

3
∆v
c

= 4
3
xs − 1
xs

M (1.15)

5



CHAPTER 1. HIGH E. PROCESSES IN GC 1.3. (RE-)ACCELERATION

where we used Eq. 1.8 to express the velocity difference between upstream and down-
stream region via the shock compression xs ≡ ρ2

ρ1
and the Mach number M . This effect

is most efficient if the magnetic field is close to parallel to the shock normal, since the
particles will still gyrate around the magnetic field lines. Shocks with magnetic field lines
parallel to the shock normal are often referred to as ’quasi-parallel shocks’. Additionally,
as e.g. Guo et al. (2014) point out, this acceleration method is more efficient for protons
and ions, than for electrons. As the gyro radius of protons is larger, due to their larger mo-
mentum, they have a higher chance of scattering into the upstream region than electrons.
In contrast to that the electron gyro radius is smaller and electrons are therefore more
tightly bound to the magnetic field lines and can be more easily convected downstream
of the shock. Once they are convected downstream they aren’t accelerated any further
and can’t reach the energies we observe. This leads to the ’electron injection problem’.
Another benefit of this theory is that it naturally leads to a powerlaw distribution in
energy/momentum (see e.g. Fermi (1949); Maoz (2016) for the complete derivation). By
assuming that the energy gain δ is happening at every crossing, a particle’s energy after
N crossings is defined as

EN = Ei(1 + δ)N ≈ Eie
Nδ . (1.16)

Considering that with energy gain the gyro radius of the particle increases as well, we
can assume that at some point rg will be large enough for the particle to leave the shock
region by random scattering and thereby leaving the acceleration mechanism. If we assign
this escaping some probability Pesc we can derive the probability for a particle to make
N passes and with that be accelerated to energy E as

P (E) ∝ E−Pesc/δ (1.17)

and from there are probability distribution of
dP
dE ∝ E−Pesc/δ−1 . (1.18)

To quantify Pesc we impose that the accelerated particles are highly relativistic so we can
assume their flux over the shock front from the upstream side to be

fcr,u = nc

4 (1.19)

where the factor 1/4 comes from only half the particles moving into the direction of the
shock and an integration over the cosine of the isotropic pitch angle θi from a step we
omitted here. For the relativistic particles in the downstream region we can assume that
they scatter along the irregularities with velocity c. Since the irregularities themselves
move with the bulk velocity of the downstream region vd, CRs are confined to a net bulk
velocity vd, so long as they are far away from the shock front. This leads to a flux

fcr,d = nvd (1.20)

and with that to an escape probability of

Pesc = fcr,d
fcr,u

= nvd
nc/4 = 4vd

c
(1.21)
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CHAPTER 1. HIGH E. PROCESSES IN GC 1.3. (RE-)ACCELERATION

Inserting this into Eq. 1.18 as a substitute for the exponent, we arrive at a functional
form for the slope of the probability distribution function of

q = 3xs
xs − 1 . (1.22)

For a strong gas shock the maximum value of xs = 4 can’t be exceeded and we therefore
arrive at a maximum slope from DSA of qmax = 4, which is very close to the observed
qobs = 4.3 for galactic CRs (e.g. Drury (1983)).
In the presence of a considerable CR component the maximum value for the compression
ratio becomes larger, as we will see in Sec. 1.4 and Sec. 4.1.5. This would lead to a smaller
slope, which is not matched by observations. Therefore there have been corrections for
Eq. 1.22 proposed by multiple authors (e.g. Drury (1983), Berezhko and Ellison (1999),
Caprioli and Haggerty (2019), Hanusch et al. (2019), Keshet et al. (2019)), which will be
briefly addressed in Sec. 4.1.5.

1.3.2. Shock Drift Acceleration
In the case of a magnetic field vector which is perpendicular to the shock normal there is
a second method of shock acceleration, so-called ’shock-drift acceleration’. For this effect
a particle is trapped by the magnetic field compressed and amplified by the shock and
moves along the shock surface and is thereby accelerated by the motional electric field
(Pohl et al. (2019)). This leads to an energy gain of

∆E
E
∝ m

2 ~v
2
HT (1.23)

where ~vHT is the velocity of the ’Hofmann-Teller’ frame, a frame of reference in which
the flow of the upstream plasma is parallel to the magnetic field. If the upstream flow is
along the shock normal this is

~vHT = ~n× (~vu × ~Bu)
~n · ~Bu

= −vu tan θB êz . (1.24)

Here ~n is the shock normal, ~vu is the upstream velocity, ~Bu is the vector of the upstream
magnetic field, θB is the angle between shock normal and magnetic field vector and êz is
the perpendicular component of the magnetic field. Even though this effect is believed to
only be relevant for particle trajectories very close to perpendicular to the shock normal
and therefore a small set of parameters (Pohl et al. (2019)) it is found to be a relevant
contribution in accelerating CR electrons in low Mach number shocks (e.g. Guo et al.
(2014)). This has the potential of solving the electron injection problem, which would be
important in explaining observations from galaxy clusters.

1.3.3. Turbulent Re-Acceleration
Similar to Sec. 1.3.1 turbulent re-acceleration is caused by the scattering off MHD irregu-
larities (see e.g. Petrosian (2001)). In the absence of a shock these irregularities can form
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CHAPTER 1. HIGH E. PROCESSES IN GC 1.4. CR MOD. SHOCKS

turbulent structures in the plasma. These structures move with a speed V in any random
direction and a charged particles moving with velocity v can bounce off these structures
and gain energy per scattering (see e.g. Pohl et al. (2019))

∆E
E
' 2V

2

c2 + 2vV cosθ
c2 . (1.25)

Since there is a weak preference for head-on collisions compared to tail-on collisions of
particles, because the relative velocities are larger in the head-on case (Fermi (1949)),
when averaged over all angles θ the second term gives a small number also scaling with
v2

c2 . This makes the entire process of second order in V , which is why it is also often
referred to as ’second order Fermi acceleration’, again after Fermi (1949). The fact that
it is second order also means that it is not very efficient, since V << c, but it is expected
to be relevant for re-acceleration of particles. As e.g. Brunetti et al. (2001) point out,
this effect is particularly relevant for radio emission on large scales. Since high energy
losses are very efficient for electrons, as we will see in Sec. 1.5.2, electrons should cool off
too fast to be able to disperse over the whole cluster, after the initial shock acceleration.
With a consistent re-acceleration process the electrons could balance the loss mechanisms
and therefore still be visible in radio over the diffusion timescales.

1.4. Shock Modification due to CR Particles
Now that we have a CR component injected due to the previously described processes, we
can look at how this component modifies the region immediately downstream of the shock
front, the post-shock region. For this we need to relate CR energy Ucr to the pressure Pcr
via an equation of state. Since we assumed that the particle movement is random due
to the pitch-angle scattering off magnetic irregularities, as discussed in Sec. 1.2, we can
infer the EOS of an ideal gas

Pcr = (γcr − 1) ρ Ucr (1.26)

where γcr = 4/3 for a gas of relativistic particles. Since the total pressure and total energy
must be the same in the post-shock region with, or without CRs we can define a set of
equations

Ptot = (γth − 1) ρ1 Uth + (γcr − 1) ρ1 Ucr = (γth − 1) ρ0 Uth (1.27)

Etot = ρ1 Uth + ρ1 Ucr + 1
2ρ1v

2 = ρ0 Uth + 1
2ρ0v

2 (1.28)

where the LHS describes the case with and the RHS without CRs. It follows trivially
from Eq. 1.27 that ρ with and without CRs can’t be the same:

(γth − 1) ρ1 Uth + (γcr − 1) ρ1 Ucr = (γth − 1) ρ0 Uth
ρ1

!=ρ0−−−→ Ucr = 0 (1.29)

By explicitly distinguishing the densities of each case we can construct a set of equations
and solve those for the new post-shock density with CR component ρ1.

8
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(γth − 1) ρ1 Uth + (γcr − 1) ρ1 Ucr = (γth − 1) ρ0 Uth (1.30)

ρ1 Uth + ρ1 Ucr + 1
2ρ1v

2 = ρ0 Uth + 1
2ρ0v

2 (1.31)

Multiplying Eq. 1.31 with (γth − 1) gives

(γth−1)ρ!Uth+(γth−1)ρ1Ucr +(γth−1) 1
2ρ1v

2 = (γth−1)ρ0Uth+(γth−1) 1
2ρ0v

2 (1.32)

where we can readily identify the first term on the right-hand side with the right-hand
side of Eq. 1.30 and substitute it

(γth−1)ρ1Uth+(γth−1)ρ1Ucr+(γth−1)1
2ρ1v

2 = (γth−1)ρ1Uth+(γcr−1)ρ1Ucr+(γth−1)1
2ρ0v

2

(1.33)
Solving this for ρ1 gives

ρ0 − ρ1

ρ1
= 2(γth − γcr)Ucr

(γth − 1)v2 (1.34)

ρ1 = ρ0

1− 2(γth−γcr)Ucr
(γth−1)v2

(1.35)

and we can therefore see that in the case with CR energy in the post-shock region the
density is higher. This of course has implications for the compression ratio and therefore
the powelaw slope of the distribution function as we derived it in Sec. 1.3.1, as already
mentioned.
Other effects like the amplification of magnetic fields, or more complex feedback mech-
anisms within shock fronts (see e.g. the chapter on non-linear effects in Drury (1983))
are beyond the scope of this work, but should be considered in the future. Especially
for implementing Riemann solvers for MFM (see Hinz, in prep.) these effects need to be
reconsidered. For completion and as a mental note we refer to the work of Kudoh and
Hanawa (2016) on this matter.

1.5. Energy losses of Charged Particles
Charged particles will loose energy due to their movement through surrounding material
and magnetic fields. We will briefly discuss the most relevant loss processes in this section.
Considering Fig. 1.4 we can see the different contributions to energy losses of protons
and electrons. Shown here are the cooling times of individual processes at given particle
energies. Cooling times are generally defined as the time it takes a particle of momentum
p to loose all its momentum

τ = p

b(p) (1.36)

9
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Figure 1.4.: Cooling times of different loss mechanisms for protons and electrons.
Dotted lines indicate the typical energy range used for the simulations
in this work.

where
b(p) = dp

dt
(1.37)

can be a number of loss processes. In order to stay consistent and for easy comparison we
use the formulation by Miniati (2001) and references therein for the individual processes.
For simplification most of these loss functions use the dimensionless velocity of a particle

β = p (1 + p2)−1/2 (1.38)

and the Lorentz factor
γ = (1 + p2)1/2 . (1.39)

1.5.1. Protons
For protons the dominant loss process are Coulomb losses. Coulomb losses are caused by
charged particles moving through a medium of other charged particles. In a dense gas, the
particle interaction is more frequent and the protons have a high probability to collide
with other protons and scatter, which leads to coulomb collisions. Most astrophysical
plasmas typically have a low density and therefore collisions are rare. In this case the
protons move through the plasma at high velocities and are only slightly deflected by the
surrounding protons. This still leads to a momentum loss, due to momentum exchange
via the repelling forces of the similarly charged particles. Nonetheless it is easy to see
that this effect will get smaller with larger velocities of the observed particle, since the
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interaction timescale with the other particles decreases. Following Strong and Moskalenko
(1998) we can formulate the loss process as a function of particle momentum as

(
dp

dt

)
Coulomb

= 2πZ2e4

mec2 ln
(
γ2m3

ec
4

πe2~2ρ

mpβ
4

mp + 2γme

)
β3

x3
m + β3 (1.40)

= 3.01 · 10−29
(

1 +
[
ln
(

p4/(1 + p2)
1 + 2(me/mp)(1 + p2)1/2

)
− lnρ

]
1

75.7

)
(1.41)

β3

x3
m + β3 ρ . (1.42)

As we can see from Fig. 1.4 the cooling times in the energy range we used for simulations
in this work are longer than the Hubble time. Nonetheless they are important to mediate
the kinetic impact of the CR proton component, as for steep powerlaw slopes of the
distribution function the majority of the energy is contained in the low energy end of the
distribution function (e.g. Enßlin et al. (2007)). Even though the protons may not cool
completely over the time of the simulation they can still loose a significant fraction of
their energy and from that, according to Eq. 1.26, their pressure component.
Additionally we expect protons to interact hadronically with background gas. This should
lead to a production of Kaons and Pions, which again decay into leptons, or gamma
photons, depending on their charge (see e.g. Dolag and Ensslin (2000); Miniati (2001))

K± → π0 + π± (1.43)
π± → µ± + νµ/ν̄ν → e± + νe/ν̄e + νµ + ν̄ν (1.44)
π0 → 2γ (1.45)

The latter provides the basis for observational constaints in galaxy clusters, as we should
be able to observe the γ emission (see e.g. Griffin et al. (2014); van Weeren et al. (2019),
first observational constraints were found by Brunetti et al. (2017)). The decay channel
into electrons and positrons may provide a seed population for re-acceleration processes
and could therefore provide the basis required for the diffuse radio halo observed in galaxy
clusters, see Sec. 1.6. The loss rate due to inelastic scattering off background gas is given
by Mannheim and Schlickeiser (1994) as

(
dp

dt

)
p-p

=
{

2.91 · 10−29 (p− β) ρ Ep ≥ 1.22 GeV
0 Ep < 1.22 GeV

(1.46)

Since this process is stochastic we don’t expect a strong energy dependence, which is con-
firmed by the constant cooling time shown in Fig. 1.4. This effect should be most relevant
for feeding an additional source of electrons into our model to reproduce observations.

1.5.2. Electrons
As was the case for protons, the low momentum losses of electrons are dominated by
Coulomb interactions. As electrons typically have lower momenta than protons, since

11
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their high-momentum losses are so efficient, as we will see later, their collision rates are
higher. The energy losses due to Coulomb interaction of electrons can be formulated as
(Strong and Moskalenko (1998))(

dp

dt

)
Coulomb

= 2πZ2e4

mec2 ρ

(
ln
(

m3
ec

4

4πe2~2Z

)
+ ln

(
(1 + p2)1/2

ρ

)
− 3

4

)
(1.47)

= 3.01 · 10−29
(

1 +
[
ln(1 + p2)1/2 − ln ρ

] 1
73.56

)
ρ . (1.48)

Like was the case for protons this loss mechanism dominates the low energy range with
cooling times at the low end of our simulated energy regime comparable to the cooling
times at high energy.
As discussed in Sec. 1.2 charged particles move in helical trajectories around magnetic
field lines. This leads to a deflection of the particle trajectory from a straight line and
with that to photon emission and thereby energy loss. Additionally, as the electrons under
consideration are relativistic the dipole emission in their rest-frame has to be Lorentz-
transformed when changing to the observer frame. This changes the symmetric dipole
emission to a beam in the direction of propagation and with that to ’relativistic beaming’.
The photon emitted in this way are polarized and are easy to detect with modern radio
telescopes (see e.g. Schlickeiser (2002) for more details on polarization and the emitted
spectrum and van Weeren et al. (2019) for a recent review on observations). As the
deflection depends on the gyro radius of the particle and therefore on the magnetic field
we expect this loss mechanism to depend on the energy density of the magnetic field UB.
After averaging over the pitch angles of the electrons we arrive at a loss function due to
Synchrotron radiation of (Miniati (2001))(

dp

dt

)
Synch

= 4
3
σT p

2

m2
ec

2 UB (1.49)

= 4
3
σT p

2

m2
ec

2
B2

8π . (1.50)

Another loss mechanism for high energy electrons is inverse Compton scattering off a
background photon field. Here electrons scatter off photons and transfer a fraction of
their energy to those photons, who are then up-scattered to higher frequencies. For the
purpose of this work we take the cosmic microwave background (CMB) for our background
photon field as energy density UIC . This energy density of course depends on the redshift
z with a decrease with redshift of (1 + z)3 coming from the 3 dimensional expansion of
the universe and an additional (1 + z) from the cosmological redshift of the photons and
therefore an energy loss. Again following Miniati (2001) we can express the energy loss
due to inverse Compton scattering off CMB photons as(

dp

dt

)
IC

= 4
3
σT p

2

m2
ec

2 UIC (1.51)

= 4
3
σT p

2

m2
ec

2 4.2 · 10−13 (1 + z)4 . (1.52)
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As both these loss processes have the same dependence constants and momentum p,
we can combine them to a single loss mechanism dependent on the ratio of the energy
densities. Fig. 1.4 shows that these loss processes dominate the high energy range with
cooling times of τ ∼ Myrs and with that much smaller than simulation time-scales.
A final loss mechanism of electrons is Bremsstrahlung emission. Here electrons are bent
out of their trajectories by positively charged particles and thereby emit radiation in a
similar fashion to the synchrotron process. Unlike in the case with synchrotron emission
this is not an ordered process and the radiation is therefore not polarized. Due to the
quasi-neutrality of plasma we expect this effect to be very small, as there should be no
charge-displacement large enough to matter to relativistic electrons. Following Strong
and Moskalenko (1998) we can express the loss term due to Bremsstrahlung as(

dp

dt

)
brem

= 4αr2
eγmec

2Z(Z + 1) ρ
[
ln(2γ)− 1

3

]
(1.53)

= 3.8 · 10−33
(
ln
[
2(1 + p2)1/2

]
− 1

3

)
p ρ (1.54)

Looking at Fig. 1.4 again we can see that the cooling times associated with this loss
process are far to long to be relevant. Petrosian (2001) argues that the effect in general
is about 3 orders of magnitude less efficient than the other loss processes. We therefore
don’t treat this effect in our model.

1.6. Observational Evidence
As mentioned in the introduction, we expect the gravitational energy released in hierar-
chical structure formation to lead to shocks and particle acceleration in galaxy clusters.
Here we will briefly discuss the observational counterparts to the effects discussed in Sec.
1.1 through 1.5. This chapter will be largely based on the recent review by van Weeren
et al. (2019) and references therein and we refer to this work for more detailed informa-
tion.
Following their classification we can distinguish between 3 different classes of observable
structures associated with cluster dynamics and CR acceleration:

• Revived AGN fossil plasma sources, phoenices, and GReET

• Radio halos

• Cluster radio shocks (radio relics)

The first class originates from active galactic nuclei (AGN), most likely supermassive
black holes that accrete material. They eject ultra-relativistic particles along jets that
show steep spectra due to strong energetic losses of electrons. If the jets are still active
they can be observed as part of radio galaxies, if they are revived and the particles are
reaccelerated due to one of the beforementioned mechanisms, they fall in the first of our
categories. We will not treat these sources in our model, as there are still many unknown
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Figure 1.5.: From van Weeren et al. (2019):
Left panel: Spectral index map for the double radio shock in
PSZ1G108.18–11.53 between 323 and 1380 MHz from de Gasperin et al.
(2014). For both radio shocks, the spectral index steepens in the direc-
tion towards the cluster center. The 323 MHz radio contours are overlaid
in black at levels of [1, 4, 16, ...]×4σrms, where σrms is the map noise.
Right panel: Combined radio (red, GMRT 323 MHz) and X-ray (blue,
Chandra 0.5–2.0 keV) image of PSZ1G108.18–11.53

factors concerning acceleration efficiency, slope of the injected particle distribution and
the ratio between hadronic and leptonic component, see e.g. Romero et al. (2017). It
would be worth to include a simple model for CR injection in the future, as they provide
valuable seed populations for re-acceleration processes.
Radio halos are radio emissions on the scale of the entire cluster (∼ 1-2 Mpc) with a
smooth and regular morphology. This halo is believed to originate from CR electrons being
accelerated by shocks and diffuse over the entire cluster. This diffusion timescale should
be a lot larger than the cooling timescale of the electrons, so they should not be observable.
This indicates that the electrons are re-accelerated in some way, which counteracts the
cooling. Radio halos are strongly correlated to the X-ray surface brightness and mostly
show little substructure. They show a smooth powerlaw spectrum with a tendency for
spectral steepening towards the outskirts of the halo. As van Weeren et al. (2019) point
out this is poorly constraint, as there are not many observations of clusters that fix the
spectrum by more than two observations at different frequencies and therefore deviations
from a single slope powerlaw may be missed. Radio halos generally show no polarization,
but as synchrotron emission should always be polarized this hints towards a turbulent
substructure with polarization, which can’t be observed with current radio telescopes.
If the substructure is below the resolution limit this results in ’beam depolarization’, so
different polarizations within one resolution element of the observation cancel each other
out.
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Figure 1.6.: From van Weeren et al. (2019):
Top panel: Spectral index distribution across the northern cluster radio
shock in CIZA J2242.8+5301 between 0.15 and 3.0 GHz at 5" resolution
(Gennaro et al. (2018)). Black contours are from a 1–4 GHz continuum
image. Contours are drawn at levels of [1, 4, 16, ...]×5σrms, where σrms
is the map noise.
Bottom panel: Polarized intensity image at 3 GHz (Di Gennaro et al. in
prep). Overlaid are the polarization electric field vectors corrected for
Faraday Rotation. Black contours are the same as for the top panel

On large cluster scales we can distinguish two kind of shocks due to structure formation:
Accretion shocks and merger shocks. Accretions shocks originate from the infall and
accretion of gas onto the clusters at R ∼ 2− 3Rvir, where Rvir is the virial radius. Since
the sound speed outside of the cluster is small compared to the infall velocity, this leads
to very high Mach number shocks, typically expected to be M ∼ 100. These cannot
be directly observed, but are believed to impact other observables such as the Sunyaev-
Zel’dovich effect, see e.g. Molnar et al. (2009).
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Within galaxy clusters we expect shocks from infalling sub-structure. The Mach numbers
of these shocks can be reconstructed due to the X-ray emission of the heated gas in the
post-shock region as well as the spectral index of the synchrotron emission by accelerated
electrons and are found to be typically M ∼ 1.2− 4 (e.g. Brüggen and Vazza (2020)). It
has been well established that these shocks are able to accelerate particles on Mpc scales
(e.g. van Weeren et al. (2010)) and that we observe the radiative losses of relativistic
electrons as radio relics. These relics are elongated structures at the outskirts of the
clusters which are believed to trace the shock waves of a recent merger event. In rare cases
two large scale radio relics are observed, see Fig. 1.5, which can indicate the orientation
of the underlying merger. The strong polarization (see bottom panel of Fig. 1.6) of the
detected photons indicates ordered magnetic fields. Using measurements of the IC X-ray
emission, or Faraday rotation measurements, these magnetic fields are found to be of the
order B ∼ 0.1 − 5 µG. Magnetic fields of this magnitude have been well reproduced in
numerical simulations for some time now (see e.g. Dolag et al. (2002)). Magnetic fields
are also strongly indicated by another observational feature, the spectral steepening away
from the shock front, as can be seen in the top panel of Fig. 1.6. This steepening is
believed to originate from energy losses of highly relativistic electrons, due to synchrotron
and inverse Compton losses. As these effects are more efficient at high energies, the high
energy electrons cool off faster, which leads to less emission in the high energy band and
therefore a steeper spectrum.
In order to reproduce this effect in simulations, we need to model the spectrum of the
CR electrons and the impact of these loss mechanisms. The spectral modeling is the
purpose of this work and will give us the tools to reconstruct this observation in future
cosmological simulations.
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2. Basis Provided by OpenGadget3
Before we can come to the new model for CR treatment we need to take a brief look at some
of the fundamental functionality of the underlying code. For this purpose we will look
at the way hydrodynamics are treated with Smooth Particle Hydrodynamics (SPH), how
magnetic fields are coupled to hydrodynamics and combined to Magneto-Hydrodynamics
(MHD) and how we detect shocks in our simulations. Treatment of gravity, domain
decomposition, multiprocessing (Springel (2005)), star formation (Springel and Hernquist
(2003)), conduction (Arth et al. (2014)) and other physical processes are omitted, even
though we rely on them as well, because it would exceed the scope of this work. Please
see the referenced papers for more details.

2.1. Hydrodynamics
To solve hydrodynamic problems we first need to decide on how to discretize the quantities
we want to observe. From the Euler equations that describe mass, momentum and energy
conservation respectively (e.g. Clarke and Carswell (2014))

∂tρ+∇ · (ρ~v) = 0 (2.1)
∂t(ρ~v) + ρ~v · ∇~v +∇P = 0 (2.2)

∂t(ρU) +∇ · [(ρetot + P )~v] = 0 (2.3)

we can see that those quantities are denisty ρ, velocity ~v, pressure P and internal energy
U . This discretization comes in two main flavors: Eulerian and Lagrangian. In the Eule-
rian view we discretize the space in e.g. a grid and compute the quantities within a grid
cell at a fixed position in space. Changes in quantity are then computed by solving the
fluxes between cells. This has advantages for the hydrodynamics, such as a more accurate
treatment of shocks, but is more difficult to couple to other physics, like gravity.
The second approach, Lagrangian, discretizes mass and computes the density by summing
up the masses of particles within a discrete volume surrounding a moving tracer particle.
All other quantities can then be computed from the continuum Lagrangian of hydro-
dynamics (Eq. 2.4) and how one particle’s properties are affected by the surrounding
particles.

L =
∫
dV

[
ρv2 − ρU(ρ, s)

]
(2.4)

The particle image can be easily coupled to gravity and other processes, while also being
less prone to geometric artefacts from imposed grids. One of these Lagrangian methods
is ’Smoothed Particle Hydrodynamics’ (SPH), originally by Lucy (1977) and Gingold and
Monaghan (1977), which is used in OpenGadget3.
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2.1.1. SPH
We will briefly discuss some of the basic principles of SPH here, based on the review paper
by Price (2012) and refer to this work and references therein for more details.
The basis of SPH is that we estimate the density via a sum of a number of neighboring
particles. This number of particles Nngb is fixed and the volume that contains this number
of particles is updated as a function of hi so that

Nngb = 4
3πh

3
i

ρi
mi

(2.5)

where hi gives the size of radius of the sphere in which the density is evaluated, mi is the
particle mass, ρi is the density and d is the mean particle separation. The radius of the
sphere hi is often referred to as the ’compact kernel support’. The kernel is a distribution
function with a discrete cutoff at r = hi. For the purpose of this work we use a higher
order kernel suggested by Dehnen and Aly (2012), a Wendland C6 kernel, which follows

W (r, hi) = 1365
64π h3

i


(

1− r

hi

)8
·
(

1 + 8 r

hi
+ 25

(
r

hi

)2
+ 32

(
r

hi

)3
)

0 ≤ r

hi
< 1

0 r

hi
≥ 1

(2.6)

Using Eq. 2.6 we can calculate the density within our sphere of interest as

ρ(~ri) =
Nngb∑
j

mj W (~ri − ~rj, hi) . (2.7)

As can be seen Eq. 2.5 and 2.7 are degenerate in ρ and therefore need to be solved with
a root-finding algorithm until the solutions converge.
All other quantities Xi are computed simply by summing up the quantities of all neigh-
boring particles, weighted with the kernel evaluated at their distance from particle i

Xi = X(~ri) =
∑
j

mj

ρj
XjW (~ri − ~rj, hi) . (2.8)

In a similar fashion we can calculate the gradient of the quantity Xi by acknowledging
that only the kernel depends on the particle i, which simplifies the gradient ∇Xi to the
gradient of the kernel

∇Xi = ∇X(~ri) =
∑
j

mj

ρj
Xj ∇W (~ri − ~rj, hi) . (2.9)

To obtain equations for the time evolution of the particles we derive the equations of
motion from Eq. 2.4 via the least action principle to get

∂L

∂~vi
= mivi ; ∂L

∂~ri
= −

∑
j

mj
∂Uj
∂ρi
|s
∂ρj
∂~ri

. (2.10)
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Using the first law of thermodynamics we can find an expression for the change in thermal
energy, in modern SPH (as in OpenGadget3) it makes more sense to follow the change of
entropy, instead of internal energy, as in the absence of dissipation it is always conserved,
independent of time-integration scheme (see Sec. 3.4.3 in Price (2012) for more details).
Together with an expression of the density gradient (Eqs. 26 - 28 in Price (2012)) this
gives a function for the acceleration a particle experiences due to the hydrodynamic forces
exerted on it by its neighboring particles

~ahydro = D~vi
Dt

= −
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

+ Πij

)
∇iW (~ri − ~rj, hi) (2.11)

where Πij is a term for artificial viscosity, introduced to be able to deal with shocks in SPH
(see e.g. Dolag et al. (2005b)). We treat this term as dynamic in time to avoid suppression
of turbulence and complex flows, see Beck et al. (2015b) for more information, along with
more improvements to our implementation of SPH in OpenGadget3. This acceleration
term can be used to evolve the particles in time by any suitable time integration method
and provides the basis of our hydrodynamic description.

2.1.2. Two-Component Fluid
In order to couple the additional fluid component of the cosmic rays to the hydro solver
we need to make some minor adjustments to the hydro solver. For one the pressure needs
to be extended from pure thermal pressure to total pressure

Ptot = Pth + Pcr . (2.12)

Additionally we need to make sure that the total energy, or rather entropy in our case, is
traced correctly. For simplicity we will look at this in the energy formulation. Since the
energy is related to the pressure via an EOS for an ideal gas

P = (γ − 1) ρ U (2.13)

and SPH conserves energy explicitly (see Eq. 38 in Price (2012)) an error in the energy
evolution leads to an error in pressure, or density. To avoid this we explicitly subtract
the energy converted to CRs in the acceleration process from the internal energy of the
gas particles.

2.2. Magneto-Hydrodynamics
The treatment of magnetic fields and coupling to hydrodynamics as MHD was imple-
mented by Dolag and Stasyszyn (2009). We will outline some of the key concepts here
and refer to their work and references therein for more details.
To trace the time-evolution of the magnetic field one needs to solve the induction equation

∂ ~B

∂t
= ∇× (~v × ~B) + η∆ ~B (2.14)
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where the magnetic diffusivity η = 0 for ideal MHD with infinite conductivity. With the
additional constraints that

∇ · ~B = 0 (2.15)

from Maxwell’s equations, we can rewrite this in the Lagrangian formalism as

D~B

Dt
= ( ~B · ∇)~u− ~B(∇ · ~u) . (2.16)

As discussed in Sec. 1.2 the dominant force on a particle in a magnetic field is the Lorentz
force, which can be expressed in a symmetric, conservative form via the magnetic stress
tensor as

Mkl
i =

(
~Bk
i
~Bl
i −

1
2 |
~Bi|2δkl

)
(2.17)

where the subscripts describe the corresponding particles, the superscripts the tensor/vector
elements with i, j ∈ {1, 2, 3} and δkl being the Kronecker delta. This gives a term for the
acceleration of a particle due to the Lorentz force of

~amag = D~vi
Dt

= 1
µ0

∑
j

mj

[
f co
i

Mi

ρ2
i

∇iWi + f co
j

Mj

ρ2
j

∇jWj

]
(2.18)

where µ0 is the vacuum permeability and f co
i,j are correction terms due to the variablity

of hi,j that we omitted in the case of SPH for simplicity. Eq. 2.11 and 2.18 can be easily
combined to a total acceleration working on the particle and then integrated in time.
A common problem in MHD is that due to a finite numerical accuracy Eq. 2.15 is not
strictly zero. This can be counteracted by introducing divergence cleaning schemes, or
formulating Eq. 2.16 in such a way that Eq. 2.15 is always zero by design. Please see
Dolag and Stasyszyn (2009), or Price (2012) for more information.

2.3. Shockfinder

As discussed in Sec. 1.3 the main source for relativistic particles in galaxy clusters are
shocks. Identifying shocks in the simulation is therefore of fundamental importance for
our model to work. There have been numerous attempts at on-the-fly shockfinding in sim-
ulations, e.g. Pfrommer et al. (2006) via entropy jumps in Gadget2, Schaal and Springel
(2014) using the temperature gradient in Arepo, or Vazza et al. (2012) using temperature
jumps in Enzo. For this work we use the shockfinder implemented in P-Gadget3 by Beck
et al. (2015a). The schematics of the shockfinder can be seen in Fig. 2.1 and we will
briefly outline the implementation in the following.
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2.3.1. Implementation
This implementation is based on pressure gradients, so in a first step we calculate the
shock normal ~ni by finding the pressure gradient within the kernel

~ni = − ∇Pi
|∇Pi|

. (2.19)

This is very cheap in SPH as the gradient of a quantity can simply be calculated by the
gradient of the kernel, as discussed in Sec. 2.1.1.

∇Pi = 1
ρi

∑
j

mj (Pj − Pi)∇iW (rij) (2.20)

where rij is the absolute distance between particle i and j, divided by the kernel support
hi

rij = |~xi − ~xj|
hi

(2.21)

We then calculate a first weighting of the contribution of particle j to the up, or down-
stream properties of the shock by projecting the position of particle j within the kernel
onto ~ni. The criteria for being upstream or downstream are defined as

~ni · (~xi − ~xj) < 0 → upstream (2.22)
~ni · (~xi − ~xj) > 0 → downstream . (2.23)

As we expect the shock to be broadened by the kernel we want to get as close to the
actual upstream and downstream quantities as possible by weighting the contribution of
particle j higher, the further away it lies from particle i. We can easily get this by using
the inverted kernel value at the position of particle j. This concept is illustrated in Fig.
2.1 (c). At the exact midpoint of the broadened shock this should reconstruct the exact
upstream and downstream properties. We can obtain the inverted kernel value in the
cheapest way by inverting the distance

rFij =
∣∣∣∣∣1− ~ni · (~xi − ~xj)

hi

∣∣∣∣∣ (2.24)

where F denotes that this distance is used as a first weighting step. As a second, optional,
weighting step we use the distance perpendicular to the shock normal ~ni by constructing
two perpendicular normal vectors ~ni,2 and ~ni,3 along the remaining two spacial dimensions.
~ni,2 can be obtained by constructing a perpendicular vector ~w2

~w2 =

 0
−nxi
nyi

 (2.25)

where the superscripts x and y denote the respective spacial components of the shock
normal, and projecting the shock normal onto that vector

~ni,2 = ~w2 − (~ni · ~w2)~ni . (2.26)
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Figure 2.1.: Schematics of the shockfinder. Taken from Beck et al. (2015a).

The second perpendicular vector can then be simply be obtained from the cross-product
of the two others

~ni,3 = ~ni × ~ni,2 . (2.27)

Projecting the particle distances on these vectors gives the distances to evaluate the second
and third weighting

rSij =
∣∣∣∣∣~ni,2 · (~xi − ~xj)hi

∣∣∣∣∣ (2.28)

rTij =
∣∣∣∣∣~ni,3 · (~xi − ~xj)hi

∣∣∣∣∣ . (2.29)

That way we can emphasize the contribution of particles close to the shock normal. This
is useful in the case of round shock structures, as we avoid geometric projection effects.
With the distances at which the kernel will be evaluated defined, we can calculate the
total weight for the shock finder evaluation as

wij = m3
j W (rFij)W (rSij)W (rTij) . (2.30)
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From this we can calculate the contribution of fluid quantity X to the upstream, or
downstream value as

Xup/down,i =
∑
jd,u

wijXj/
∑
jd,u

wij . (2.31)

While the second and third weighting are only used to assure that the difference in up-
stream and downstream velocity is larger than along the shock surface, the first weighting
is used to calculate the shock quantities. Before calculating the shock properties we
employ a number of filters to avoid false detections. These filters make sure that the
pressure and density jump are larger than 5% and that the velocity divergence is larger
than the turbulent velocity. See Beck et al. (2015a) for more details. If the upstream
and downstream properties quantify the system as a shock we can first obtain the shock
compression trivially from

xs = ρd
ρu

(2.32)

and from that the shock speed
vs = |vd − vu|1− 1/xs

. (2.33)

The Mach number is simply defined as

M = vs
cs,u

(2.34)

where the upstream sound speed cs,u is defined as

cs,u =
√
γP

ρ
. (2.35)

To account for the CR fluid component we follow Hopkins et al. (2020a) and modify the
sound speed to

cs =
√
γgPg + γcrPcr

ρ
(2.36)

It has to be noted that this is actually not as straight-forward as it seems and has to be
handled with caution (see e.g. the section on non-linear effects in Drury (1983)). For the
purpose of this work and the idealized simulations we find the simplification to work well,
but it should be reconsidered for later, more complex systems.

2.3.2. Tests
To test the accuracy of the shock finder we set up a series of shocktubes. For a detailed
description of initial condition construction please see Sec. IV.1, we will only briefly
outline the setup here. First we set up a density gradient via different stacking of glass
files1, this is usually ρL = 1 and ρR = 1/8. Next we set up a pressure gradient. We chose

1Glass files are cubes with particles positioned in such a way that the distribution is relaxed and force-
free.
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to keep the left, high pressure, side of the tube fixed and varied the pressure on the right,
low pressure, side. These kind of shocktubes, so-called Sod-shocks (after Sod (1978)) are
a standard Riemann problem and can be solved analytically. We followed the description
of Pfrommer et al. (2006) for implementing an exact Riemann solver, see Sec. IV.2 for
a description of the individual steps of the solution. We added an additional layer of
root-finding to be able to set up a shock with a given density gradient and pressure on
the left side and solve it for a target Mach number. This way we can make sure that the
initial pressure gradient leads to a shock with a given Mach number and compare that to
the result of our shock finder.
The results of these tests are shown in Fig. 2.2. From left to right we show density,
velocity in x-direction, internal energy and the result of the shock finder. The different
tests have a target Mach number of 1.5, 3, 6, 10, 30 and 60, from top to bottom. Solid
lines show the result of the simulation, with every SPH particle plotted, to show eventual
numerical noise. At the right column we give target Mach number, maximum detected
Mach number, the width of the shock in units of the mean kernel support hsml and the
number of shocked particles. Additionally we show the size of the kernel of the particle
with the maximum Mach number with the red error bars.
Overall the results show very good agreement with the exact solution. The density profile
shows the typical SPH artifacts, like the density ’blip’ at the contact discontinuity, or the
broadening of the shock by smoothing out the shock transition, but the relevant states
of the different shock zones are fit very well. We also note that the solution stays very
stable, even for shocks with very high Mach numbers. We performed these tests with
the public version of Arepo as well to compare our SPH solutions to a grid(-like) code.
These results can be seen in Fig. IV.2 for a Mach 3 shock and Fig. IV.3 for a Mach 30
shock. We found that our solution fits the analytic solution very nicely, even compared
to Arepo using a static mesh and an exact Riemann solver. This gives us confidence that
our treatment of shocks is sufficiently accurate to be used in the CR model.
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Figure 2.2.: Results of the shockfinder performance tests. Left to right panels display
density, velocity component in x direction, internal energy of the gas and
machnumber of the resulting shock. The red errorbars in the machnum-
ber panels indicate the mean size of the kernel support. Included in
these panels is information in the target machnumber, the width of the
shock in units of the mean kernel support, as well as the number of SPH
particles within the shock.
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3. Fokker-Planck Solver
As the mass resolution of cosmological simulations is typically 60 orders of magnitude
above a proton mass, we of course cannot trace individual Cosmic Ray particles. We
therefore treat the CR component in our simulation as a population of CRs and trace
the evolution of this population. For this we need to follow the time evolution of the
distribution function of the CRs. Equations that describe the change of a distribution
function are generally called Fokker-Planck equations, after Fokker (1914) and Planck
(1917).
In this chapter we show the basic assumptions and principles used for the time evolution
of the distribution function. The exact implementation and detailed description of the
individual processes can be found in the following chapters.

3.1. Diffusion-Convection Equation
For CR evolution the Fokker-Planck equation we need to solve is known as the Diffusion-
Convection equation (see Skilling (1975) for a complete, or Drury (1983) for a more
compact derivation) and takes the form

∂f

∂t
+ ~u · ∇f = Df

Dt
= ∇ (κ(p)∇f) (3.1)

+ 1
3(∇ · ~u)p∂f

∂p
(3.2)

+ 1
p2

∂

∂p

(
p2
[∑

l

blf +Dpp
∂f

∂p

])
(3.3)

− f(p, ~x, t)
tc(p, ~x) (3.4)

+ j(~x, p) (3.5)

The different processes that play into the time evolution are as follows.
The LHS of Eq. 3.1 describes the time- and space dependent evolution of the distribution
function. In the Eulerian formulation of hydrodynamics these parts must be traced indi-
vidually, but since this work uses the Lagrangian formulation in SPH it can be combined
to the convective derivative Df

Dt
, mid section of Eq. 3.1. The RHS of Eq. 3.1 describes

the spacial diffusion of the distribution, which for the scope of this work is omitted. We
will discuss future steps to address this term in the conclusion.
Eq. 3.2 traces the adiabatic changes, so the impact of the thermal gas component of the
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distribution, and will be described in Sec. 5.
The first part of Eq. 3.3 describes the radiative losses, with bl being the individual loss
mechanisms for electrons and protons. The second part models the diffusion in momen-
tum space due to turbulent reacceleration, where the re-acceleration coefficient Dpp can
be chosen to either be constant, or calculated for every timestep following Cassano and
Brunetti (2005). See Sec. 7 for details.
Eq. 3.4 gives an additional term for catastrophic losses, where particle numbers are not
conserved (see e.g. Schlickeiser (2002)). This term will be adressed in future work.
Lastly Eq. 3.5 contains the source-term for CRs. In this work we focus on only two
source mechanisms: Acceleration by shocks (Sec. 4.1) and a subgrid model of Type II
supernovae (Sec. 4.2).

3.2. Distribution Function
In principle particles are distributed in phase-space according to their momentum vector
~p and their position vector ~x at time t in the distribution function F (~p, ~x, t). Assuming a
’suffiently stochastic’ (Drury (1983)) scattering process, as described in Sec. 1.2, we can
infer that the particle movement is random on small scales and treat the distribution of
the CRs as isotropic. This simplifies the integral over all momentum vectors that would
be required to obtain the number- and energy density from F (~p, ~x, t), to a simple integral
in momentum-space over all required absolute momenta.

F (~p, ~x, t)→ 4πp2f(p, ~x, t) (3.6)

With this simplification the Diffusion-Convection Equation can be used to trace the CR
properties number- and energy density. This can be done either as a whole population
as done e.g. by Hanasz and Lesch (2003); Enßlin et al. (2007); Pfrommer et al. (2016);
Hopkins et al. (2020a), or by dividing the population into bins in momentum space as
first proposed by Miniati (2001) and reproduced in recent work e.g. by Winner et al.
(2019) or Girichidis et al. (2019). In this work we also try to explicitly model the CR
distribution function. In order to do this we first need to discretize the distribution. Since
observations of the CR spectrum (see e.g. Hillas (2006)) show that they follow in first
order a powerlaw in energy it makes sense to discretize the distribution by piece-wise
powerlaw functions and evolve the resulting bins in time. That way, as the number of
powerlaw bins increases, the modeled spectrum approximates any desired distribution.
Our model for the distribution function follows the functional form

f(p) = fi

(
p

pi

)−qi
(3.7)

and is therefore defined by the norm of the i-th momentum bin fi, its momentum pi and
the slope of the bin qi.
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3.3. Number- and Energy Density
From the distribution function f(p) we can obtain the number density as a simple integral
in momentum space

Ni = 1
ρ

∫ pi+1

pi
dp 4πp2f(p) (3.8)

where the volume integral in momentum space over the distribution function gives us
the number of particles contained in that momentum volume. The energy density can
be calculated by assuming that every particle carries an energy T (p). As we deal with
strictly relativistic particles we can use the relativistic energy-momentum relation

T (p) = pc (3.9)

which greatly simplifies our integrals.

Ei = 1
ρ

∫ pi+1

pi
dp 4πp2T (p)f(p) (3.10)

= 1
ρ

∫ pi+1

pi
dp 4πcp3f(p) (3.11)

Since we discretized our distribution function f(p) in Eq. 3.7 these equations can be
solved analytically by inserting the discretisation.

Ni = 4πfi
ρ p−qii

∫ pi+1

pi
dp p2−qi (3.12)

= 4πfip3
i

ρ

((
pi+1
p1

)3−qi − 1
)

3− qi
(3.13)

Ei = 4πcfi
ρ p−qii

∫ pi+1

pi
dp p3−qi (3.14)

= 4πfip4
i

ρ

((
pi+1
p1

)4−qi − 1
)

4− qi
(3.15)

3.4. Boundary Conditions
To properly decouple the CR fluid component from the non-relativistic gas we need to
set the boundary conditions of our distribution function accordingly. For the presented
work we chose open boundaries at the lower end of the distribution function and closed
boundaries at the upper end. The physical motivation of this it that, as CRs cool and
loose energy/momentum they smoothly transition to the non-relativistic thermal pool of
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particles. This will be discussed in more detail in Sec. 5. For this assumption to hold,
the lower end of the distribution function should be well in the relativistic regime.
It is worthy to note that this shifts the problem of accurately handling semi-relativistic
particles to the hydro solver. For our purposes we assume a gap in the transition between
the Maxwell-Boltzmann distribution of particles and the powerlaw high-energy tail. That
way we can treat our implementation as a two component fluid with distinct equations of
state with a sharp jump between the two and postpone the problem of an intermediate
state.
The upper end of the distribution function is chosen to have a closed boundary. In order
to achieve this we employ a movable upper boundary that also works as a cutoff of the
distribution. This parameter needs to be updated at every timestep, the implementation
of this will be discussed in Sec. 3.7. Here the physical motivation is that particles can
be further accelerated beyond the arbitrarily chosen initial upper limit of the distribution
function. Numerically we avoid an artificial pile-up of energy and particles in the last
momentum bin.

3.5. Number- and Energy Density Changes
The key point of evolving the distribution function is to trace the changes in number-
and energy density in time. For simplicity we can follow the approach by Miniati (2001)
and Pasternak (prep) and derive this as an example for adiabatic changes and radiative
losses. The part of the diffusion-convection equation governing those effects is

Df

Dt
= 1

3
∂u

∂x
p
∂f

∂p
+ 1
p2

∂

∂p
(p2blf) . (3.16)

By multiplying both sides of Eq. 3.16 with 4πp2/ρ to be able to associate the LHS with
Eq. 3.8 and integrating both sides over the i-th momentum bin we arrive at

DNi

Dt
= 1
ρ

{(
1
3
∂u

∂x
p+ bl(p)

)
4πp2f(p)

}pi+1

pi

. (3.17)

Here we used integration by parts, since both terms in Eq. 3.16 are of shape f(p)g′(p).
As proposed by Miniati (2001) we can integrate this in time and can identify the RHS as
the time averaged fluxes over the momentum boundaries. We will discuss the solution for
the fluxes in Sec. 3.6. This gives us a number density of the i-th bin after a timestep ∆t

N t+∆t
i = N t

i + 1
ρ̄

(
Fm
ni+1
− Fm

ni

)
(3.18)

where Fm
ei+1

and Fm
ei

are the number density fluxes into and out of the bin respectively. ρ̄
denotes the mean density over the timestep.
Similarly, to obtain the energy after a timestep we multiply Eq. 3.16 with 4πcp3/ρ to be
able to associate the LHS with Eq. 3.11 and perform the same integral as before. Unlike
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in the previous integral the second term of the partial integration does not cancel out and
we are left with a somewhat more complex function

DEi
Dt

= 1
ρ

{(
1
3
∂u

∂x
p+ bl(p)

)
4πcp3f(p)

}pi+1

pi

−
(

4
3
∂u

∂x
Ei + 1

ρ

∫ pi+1

pi
dp bl(p)4πcp2f(p)

)
.

(3.19)
To simplify this equation we can introduce the quantity Ri(qi, pi) as a shorthand for the
energy loss integral per bin

Ri(qi, pi) = 4− qi
p4−qi
i+1 − p

4−qi
i

∫ pi+1

pi
dp p2−qi

1
3
∂u

∂x
+

Nlosses∑
l

bl(p)
 . (3.20)

Here again 1
3
∂u
∂x

denotes the adiabatic changes and ∑Nlosses
l bl(p) the individual radiative

loss processes. In most cases these factors can’t be solved in one step, but need to be
split up in individual processes. As in Miniati (2001) we can now express the energy of a
particle after the timestep ∆t as

Et+∆t
i

(
1 + ∆t

2 Ri(qi, pi)
)

= Et
i

(
1− ∆t

2 Ri(qi, pi)
)

+ 1
ρ̄

(
Fm
ei+1
− Fm

ei

)
(3.21)

with ρ̄ being the mean density over the timestep, Fm
ei+1

the energy flux into the bin and
Fm
ei

the energy flux out of the bin.

3.6. Fluxes Between Momentum Bins
Following Miniati (2001) we can identify the first term of the integral by parts as the time
averaged fluxes over one bin boundary as

Fm
ni

=
∫ t+∆t

t
dt′
[

1
3
∂u

∂x
p+ bl(p)

]
4πp2f(t′, p)|pi (3.22)

Fm
ei

=
∫ t+∆t

t
dt′
[

1
3
∂u

∂x
p+ bl(p)

]
4πcp3f(t′, p)|pi (3.23)

This is a consequence of our fixed momentum boundaries. A particle of momentum pu
gains, or looses some momentum over a timestep ∆t and arrives at momentum pi. Since
we use fixed momentum boundaries we cannot move those boundaries to account for this
change and instead need to calculate a flux over the momentum boundary into a higher,
or lower bin. This becomes more intuitive if we consider the definition of our momentum
changes

dp

dt
= −1

3
∂u

∂x
p− bl(p) . (3.24)

Substituting dt′ in Eq. 3.23 with

dt = dp

−1
3
∂u
∂x
p− bl(p)

(3.25)
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obtained from Eq. 3.24 gives an equation for the fluxes only dependent on p

Fm
mi

= −
∫ pi

pu
dp 4πp2fm(p) (3.26)

Fm
ei

= −
∫ pi

pu
dp 4πcp3fm(p) (3.27)

with

fm(p) =
fi

(
p
pi

)−qi if pu > pi

fi−1
(

p
pi−1

)−qi−1 if pu ≤ pi
(3.28)

and pu being the momentum a particle needs to have to arrive at momentum pi after a
timestep ∆t. To solve this integral we use seperation of variables in Eq. 3.24

∫ t+∆t

t
dt =

∫ pi

pu

dp

−1
3
∂u
∂x
p− bl(p)

(3.29)

∆t =
∫ pi

pu

dp

−1
3
∂u
∂x
p− bl(p)

. (3.30)

Knowing ∆t as the timestep of our simulation and pi as the i-th momentum bin we only
need to calculate adiabatic changes and radiative losses as described in Sec. 5 and Sec.
6 respectively to find pu and with that the lower boundary of the flux integral. If the
integrals have an analytic solution pu can be found exactly, if they don’t, we need to use
approximations for the integrands and solve the integral to some order.

3.7. Spectral Cut
Updating the spectral cut of the distribution function works in a very similar fashion to
calculating the values for pu. We need to find analytic or approximate solutions for the
integral in Eq. 3.30. For the cut, instead of pu we need to solve the resulting equation
for pi, since we are interested in calculating the momentum the particle arrives at after a
timestep ∆t, if it started out with momentum pu.

3.8. Slope Update
The distribution function is fully defined by four variables: fi, qi, Ei and Ni. If we solve
Eqs. 3.13 and 3.15 for fi we are left with a set of two equations only dependent on three
of those variables. As we already discussed how to update Ei and Ni we can equate these
two equations and are left with

Ei
Nipi−1c

= 3− qi
4− qi

(
pi
pi−1

)4−qi − 1(
pi
pi−1

)3−qi − 1
(3.31)
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Figure 3.1.: Example parameterspace of the slope.

where fi canceled out. This equation can be solved numerically for qi with any suitable
root-finding algorithm. Most implementations like Miniati (2001), Winner et al. (2019)
and Girichidis et al. (2019) use the Newton-Rhapson method to find the slope qi. We also
tested this method, but decided to use Brent’s method (Brent (2013)) for root finding
instead. Unlike the Newton-Rhapson method, Brent’s method does not require solving the
derivative of the function as well. In our tests this lead to a convergence about one order
of magnitude faster, while also being on average six orders of magnitude more accurate.
Since solving the slope is the single most computationally expensive task of our model,
this greatly increases the overall performance and especially scaling with the number of
momentum bins.
As the parameterspace of the Eq. 3.31 shows (Fig. 3.1), given the right combination
of energy- and number density we can find positive and negative slopes, even though
the parameterspace for the negative slopes is slightly smaller. This means that we can
model any shape of the distribution function as long as our functional form of energy-
and number density losses, gains and fluxes are correct. Especially for loss effects that
cool the lower part of the spectrum this is of grave importance.

3.9. Distribution Function Update

With all other variables updated we can finally update the normalization of distribution
function. This can in principle be done by solving eiter of Eq. 3.13 or 3.15 for fi. In
practice it is slightly cheaper to solve Eq. 3.13 so that the new normalisation of bin i can
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be computed from

fi = ρ Ni

4πp3
i

3− qi(
pi+1
pi

)3−qi − 1
(3.32)

Ideally one could also solve both Eqs. and construct an interpolation scheme between the
two to reduce errors. This could be tested for potential benefits in future work.
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4. Sources
Before we can treat the effects that change the distribution function, we of course first
need to get our initial distribution function in the first place. For the purpose of this work
we only handle injection at shock. Sec. 4.1 will introduce an injection model at resolved
shocks, while Sec. 4.2 will introduce a simple sub-grid model that models CR injection
at supernova shocks, which can’t be resolved in cosmological simulations.

4.1. Shock Injection
As discussed in Sec. 1.3 a main source of CRs in galaxy clusters is particle acceleration
at shocks. For that we need to assume that shock energy is transferred into CR energy
with some efficiency η. In our model we use an efficiency following Ryu et al. (2003)

η = ECR,2u2

0.5ρ1u3
sh

(4.1)

which leads to a CR energy density in the postshock region defined as

eCR,2 = η
1
2u

3
sh . (4.2)

Additionally, as the shocks in our simulation are broadened by the kernel we need to make
sure that the energy is distributed over the total size of the shock and the integral of the
shock energy is conserved. To do this we divide Eq. 4.2 by the fraction of the kernel
width a particle sees per timestep

eCR,2 = η
1
2u

3
sh

(
2hhsml

∆t

)−1

. (4.3)

This energy will then be injected into the CR model and subtracted from the internal
energy/entropy of the gas particles.

4.1.1. Efficiency Models
Finding a functional form for η proves difficult and has been attempted by numerous
authors. In this work we consider four different models. The first model was proposed by
Kang et al. (2007). They find that their previous results from Kang and Jones (2007),
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where they used the CRASH code to solve the diffusion-convection equation at shocks and
study the impact of the CR component, are best fit by Eq. 4.4 and Eq. 4.5.

η(M) =


1.96 · 10−3(M2 − 1) for M ≤ 2.0

4∑
n=0

bn
(M − 1)n

M4 for M > 2.0
(4.4)

η(M) =
4∑

n=0
bn

(M − 1)n
M4 (4.5)

Eq. 4.4 describes the efficiency of Cosmic Ray acceleration at pure gas shocks, while Eq.
4.5 describes the efficiency at shocks with a pre-existing (fossil) CR component in the
downstream region. This is usually referred to as re-acceleration.
The parameters bi are given as

b0 = 5.46, b1 = −9.78, b2 = 4.17, b3 = −0.334, b4 = 0.57 (4.6)

for inital acceleration and

b0 = 0.24, b1 = −1.56, b2 = 2.8, b3 = 0.512, b4 = 0.557 (4.7)

for re-acceleration. This model assumes that any supersonic shock is able to accelerate
particles and has a very high saturation value of about 57% of the shock energy transferred
into CRs. Eq. 4.5 proves to be a useful fitting formula for most of the models under
consideration here and is therefore used wherever applicable.
The second model was proposed by Kang and Ryu (2013) and corrects the previous
maximum efficiency down to around 21%, while also assuming that every supersonic
shock can accelerate particles. While the authors don’t provide the values for their fitting
functions like in the previous work, we find that their values for initial acceleration are
well approximated by

η(M) =



1.8803 · 10−5 ·M5.3341 − 0.0006 for M ≤ 5.0
4∑

n=0
bn

(M − 1)n
M4 for 5 < M ≤ 15

0.21152 for M > 15

(4.8)

with

b0 = −2.87, b1 = 9.6676, b2 = −8.8771, b3 = 1.9384, b4 = 0.1806 . (4.9)

The efficiency of reacceleration is well described by fitting with Eq. 4.5 using

b0 = −0.722, b1 = 2.7307, b2 = −3.2854, b3 = 1.3428, b4 = 0.1901 . (4.10)
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Figure 4.1.: Example for the modelling of the efficiency functions. Points correspond
to the datapoints provided by the respective authors and lines show the
fit.

To avoid a decrease in efficiency at high Mach numbers that would follow from the pure
fitting formula we set the reacceleration efficiency to be constant if M > 17.8 at η(M) =
0.2055. A plot of the discussed fit can be seen in Fig. 4.1 (a). The points represent the
data from the publication while lines show the fit.
A third model was proposed by Caprioli and Spitkovsky (2014). They use particle in cell
(PIC) simulations where electrons are modelled as a fluid and the equations of motion are
solved from the full Maxwell equations for test particles. In the case of their work these
test particles are protons and light ions. They perform a series of simulations where they
shoot the electron fluid/ion mix at a reflective wall with varying inflow velocities. As the
fluid and particles hit the wall and reflect they develop a shock front that slowly moves
against the inflow. With that they can model shock properties from first principles and
make assumptions about injection efficiency and slope of the resulting power spectrum.
Due to the expensive simulations and their focus more on shock geometry, which will be
discussed in Sec. 4.1.3, they don’t provide enough datapoints to fit a functional form of
η to their data. For the purpose of this work we take the same approach as Vazza et al.
(2016) and simply consider the Caprioli and Spitkovsky (2014) efficiency to be half the
one from Kang and Ryu (2013)

η(M)CS14 = 0.5 · η(M)KR13 . (4.11)

Note that we only use the 0.5 factor from Vazza et al. (2016), not the 0.15 they propose
in total. This is due to their statistical treatment of shock obliquity. They make an
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additional assumption that only 0.3 of shocks have a shock obliquity with less than 45◦
and only those shocks are able to accelerate CRs. Since we can trace the angle between
shock normal and B-field self-consistently (see 4.1.3 for more details) we are not limited
to these assumptions.
The last model we consider is the most recent one at the time of this work, by Ryu et al.
(2019), who also model acceleration of individual particles with PIC simulations. They
also don’t provide a fitting formula and only focus on the range 2.25 ≤M < 5.0. For the
minimum Mach number of 2.25 they emphasise the argument by Ha et al. (2018) that
only shocks with a Mach number above 2.25 are able to sufficiently accelerate particles.
To get a functional form for the larger Mach numbers as well we extrapolated their values
to match the overall shape of the functional form. The datapoints and fits can be seen
in Fig. 4.1 (b), where points correspond to datapoints from the publication, crosses to
extrapolated values and lines to the fits. While we aknowledge that these extrapolations
are fairly arbitrary we argue that they are motivated by mimicking the shape of the Kang
and Ryu (2013) results, albeit being shifted down one order of magnitude. Both curves for
initial acceleration and reacceleration are well approximated by Eq. 4.5 with parameters

b0 = −1.5255, b1 = 2.4026, b2 = −1.2534, b3 = 0.2215, b4 = 0.0336 (4.12)
for initial acceleration and

b0 = 0.3965, b1 = −0.21898, b2 = −0.2074, b3 = 0.1319, b4 = 0.0351 (4.13)

for reacceleration. Fig. 4.2 shows a comparison of all the DSA models introduced in this
chapter. We can see a clear trend of correcting the models to lower and lower efficiency
over time.
For this work we will use the model by Ryu et al. (2019), as it is the most recent and
shows in comparison more efficient acceleration at low Mach number shocks, which are
found in galaxy clusters (see van Weeren et al. (2019) and references therein). It also
matches observational constraints indicating that the ratio of CR to thermal energy is
≤ 10% (see Brunetti et al. (2017); van Weeren et al. (2019)).

4.1.2. Shocktube Tests for η(M)
We tested the accuracy of our injection mechanism by performing a series of shocktube
tests with target Mach numbers ranging from 3 to 100. To be able to compare to an ana-
lytic solution we modified the suggested exact Riemann solver by Pfrommer et al. (2016)
to be able to use Mach number dependent acceleration efficiencies. In order to ensure nu-
merical convergence we needed to add an additional layer to the Riemann solver, as the
Pfrommer et al. (2016) solution is not numerically stable. Because of how their solution
is formulated with the incomplete β-function one can’t simply use any root finding algo-
rithm to find the post-shock density, as the incomplete β-function is not defined for two
negative arguments. To find the post-shock density and with that the compression ratio
at the shock which is needed for the rest of the post-shock properties a good first guess
for the compression ratio needs to be supplied in order to lie within the narrow range of
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Figure 4.2.: Comparison of all implemented DSA models.

50 60 70 80 90 100
x

0.0

0.2

0.4

0.6

0.8

1.0 Simulation
Analytic

50 60 70 80 90 100
x

0

10

20

30

40

50

60

70

P

PCR, p

Pth

Ptot

80 82 84 86 88 90
10 2

10 1

100

101

50 60 70 80 90 100
x

0

1

2

3

4

5

6

M
ac

h

Mideal = 5.989

Mmax = 6.016

Kernel Size

Figure 4.3.: Result of a Mach 6 shocktube test with the Ryu et al. (2019) efficiency
model. Dashed lines show the analytic solution, solid lines the result of
the simulation. Every particle is plotted.

values that can converge to the actual solution. We solved this with a brute-force attempt
by iterating over a set of first guess options and checking which iteration did not result in
an error from the incomplete β-function. Furthermore we extended their analytic solution
to also account for shock obliquity which will be discussed in Sec. 4.1.3.
Fig. 4.3 shows the result of a shocktube that would result in a Mach 6 shock in the case
without CR acceleration. Dashed lines indicate the analytic solution for the Ryu et al.
(2019) efficiency model and solid lines are the result of the simulation. We plot every par-
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Figure 4.4.: Result of all shocktubes with Ryu et al. (2019) efficiency. Shown are the
ratios of the resulting CR energy in the post shock region divided by the
ideal energy obtained via our modification of the Riemann solver for CR
acceleration proposed by Pfrommer et al. (2016).

ticle to include numerical noise. The simulation was run without allowing for adiabatic
changes in the CRs to only focus on the accuracy of our shock injection efficiency.
From left to right we show density, pressure, with an additional inset plot to show the
logarithm of the pressure, and Mach number. Overall all plots show very good agree-
ment with the analytic solution. The density shows excellent agreement with the analytic
solution, except for the typical artifacts of SPH, like the density blip at the contact dis-
continuity and a smoothing out of the shock. The pressure also shows excellent agreement
with the predicted solution. This is especially evident when looking at the logarithm of
the pressure in the inset plot. Here the most important part of the result is the blue line
which indicates the CR pressure component and therefore the injected CRs. As can be
seen the result is in nearly perfect agreement and in large parts of the post shock region
the error is below the level of numerical noise. Contrary to Pfrommer et al. (2016) we
find that the initial blip in CR pressure (at x ≈ 84) originates from the first few timesteps
of the simulation and does not vanish over the rest of the simulation. This is due to
inaccuracies in the shock finding algorithm. As the shock develops from the contact dis-
continuity, the post-shock region is initially smaller than the kernel size. This leads to an
error in Mach number estimation as the density jump within the kernel is not the actual
jump from pre- to post-shock region, but from pre-shock region to the high density region
at the left state. This in turn leads to a miscalculation of the shock speed and with that
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too much shock energy being transferred to CR energy.
Finally in the right plot of Fig. 4.3 we show the result of the shock finder. We capture
the analytic shock Mach number with an error below one per cent, as in the pure hydro-
dynamical test cases. We show the mean kernel size of all shocked particles in the red
error bars and conclude, together with the nice agreement of the CR pressure component,
that our correction from Eq. 4.3 gives a satisfying result.
Taking into account adiabatic compression over the shock leads to an additional problem.
If CRs are injected at the accurate rate without adiabatic changes, additional adiabatic
compression will lead to an overshooting in post-shock CR energy. Dubois et al. (2019)
solve this issue by flagging a cell for CR injection and store the injected energy. They then
inject the CR energy into the cell after a number of timesteps to assure that it was fully
passed by the shock. As we were not confident in the stability of this concept, especially
in more turbulent production runs, we took a different approach. We reran the set of
tests with enabled adiabatic changes and checked for the error in the post-shock region.
This can be seen in Fig. 4.4. While the runs without adiabatic changes, indicated by
the red x, show overall excellent agreement with the analytic solution, except for a slight
discrepancy at high and low Mach numbers, we can see a clear offset in the runs with
adiabatic changes, indicated by the green +. Conveniently this offset is systematic at
roughly a factor of three. We therefore introduced an additional tuning factor to down-
tune our shock efficiency by a factor of 0.33. The results of these runs are marked with
blue points. While the tuning is again not perfect at very high and low mach numbers
it is computationally very cheap and we accept the results as sufficient for the current
work. Future work should nonetheless investigate more accurate and physically motivated
solutions. We expect this behavior to also depend e.g. on the used kernel and number of
neighbors, but a proper parameter study of this would exceed the scope of this work.
To test the stability of our coupling to the hydro solver, as well as the efficiency, we
performed the same set of shocktube tests with the efficiency model by Kang and Ryu
(2013). Fig. IV.4 shows the results for a sample of shocktubes. As was the case with
Fig. 4.3 dashed lines indicate the analytic solution, while solid lines are the results of
the simulation with every particle plotted. We find overall excellent agreement with the
analytic results, except for the shock finder in the high Mach number shocks. This can
be explained by the CR injection at the front of the kernel, so slightly ahead of the actual
shock. The effect can be seen in the inset plot in Fig. 4.3. We find the CR component
slightly ahead of the actual shock front, due to the broadening of the shock and injection
at every timestep. This in turn gives a larger sound speed in the pre-shock region due
to Eq. 2.36. Even though we capture the shock speed correctly, which is evident due
to the agreement of the CR component with the analytic solution, we underestimate the
Mach number. Other than that we can see that the total pressure is conserved and the
subtraction of entropy from the gas particles works well. The nice agreement at very high
Mach numbers of 60, or 100 is especially encouraging. This indicates that even with a
significant CR component our coupling to the hydro solver stays stable and gives accurate
results.
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4.1.3. Shock Obliquity
The work by e.g. Caprioli and Spitkovsky (2014) shows that CR acceleration efficiency
not only depends on the Mach number of the shock, but also on the shock geometry. They
perform a (small) parameter study to determine the impact of the angle between shock
normal and B-field and find a relatively stable efficiency until ∼ 45◦ and a steep drop in
efficiency between ∼ 45◦ and ∼ 60◦. Most recent work (e.g. Vazza et al. (2016)) treats
this crude picture as it is and uses a statistical approach to give an additional efficiency
parameter, as discussed briefly in 4.1.1. Another frequently used option is to just allow
CR injection in a specific angle range, so to switch acceleration on and off.
In this work we take the same approach as Pais et al. (2018) or Dubois et al. (2019) and
introduce an additional factor η(θB) in our total acceleration efficiency. Pais et al. (2018)
use the values by Caprioli and Spitkovsky (2014) to fit a functional form to their data

η(θB) ' 1
2

[
tanh

(
θcrit − θB

δ

)
+ 1

]
(4.14)

with δ = π/18 and θcrit = (π/4; π/3). Here θcrit = π/4 corresponds to a shock without
and θcrit = π/3 to a shock with pre-existing CR component, from Caprioli and Spitkovsky
(2014) and Caprioli et al. (2018) respectively. These efficiencies were modeled for ions,
for which DSA should be most effective at quasi-parallel shock, as discussed in Sec. 1.3.1.
For electrons quasi-perpendicular shocks should be the main driver of acceleration, as
pointed out by e.g. Guo et al. (2014). We therefore take the simple approach of shifting
the efficiency model by 90deg for electrons for the purpose of this work.
To check the applicability of this additional efficiency parameter in our model we per-
formed a set of shocktube tests. For this we set up a pressure gradient as in Pfrommer
et al. (2016) with PL = 63.499 and PR = 0.1 and a constant injection efficiency of η = 0.5.
This ensures low numerical noise due to independence from the shock finder and high CR
fraction in the post-shock region. Also it makes for an easy comparison to the work by
Dubois et al. (2019), as they use the same setup. For the initial set of tests we con-
structed initial conditions as described above and introduced a negligible magnetic field
with a magnetic pressure component 10 orders of magnitude below the thermal one. That
way we can assure that the shock is not modified by the magnetic field, while still being
able to obtain a B-field vector. To avoid an impact of the shock on the magnetic field we
switched the magnetic field evolution off by hand. While this is very unphysical, for these
tests we are only interested in the performance of our θB finding algorithm. To find the
angle between shock-normal (n̂sh) and B-field ( ~B) we use the cosine similarity. Since we
are only interested in the range 0◦ − 90◦ and know that there is a symmetry at 90◦ we
can obtain the cos(θB) as

cos(θB) =
∣∣∣∣∣∣ n̂sh ·

~B

|n̂sh| | ~B|

∣∣∣∣∣∣ . (4.15)

The results for the accuracy of our θB finding algorithm can be seen in Fig. 4.5. We
obtain the target value for θB within an error of only a few per cent, with the exception
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Figure 4.5.: Shown here is the accuracy with which we can capture the angle between
the shock-normal and the B-field. The bars correspond to a histogram
normalized to the total number of shocked particles. They are binned in
1◦ bins ±5◦ around the target value for θB. The lines show a gaussian
fit to the data with the values for mean (µ) and standard deviation (σ)
next to the fit.

of θB = 45◦ where our error is slightly larger. For the 0◦ case it has to be noted that
since we use the absolute value for the cosine, the error to the left of the target angle
is artificially folded on top of the error on the right, which increases our total error in
mean and standard deviation. Regardless of errors on these cases we can see that in any
simulation more than 65% of the shocked particles lie within a one degree interval of our
target angle and we therefore conclude that our method is sufficiently accurate.
To further analyze the error in the 45◦ case we also looked at an individual particle and
tracked its values for θB and ηB over every timestep of the shock. This is also relevant as
our shock is broadened by the kernel and our particles are accelerated over the entirety
of the broadened shock and not just at one single timestep. Fig. 4.6 shows the results of
these tests. From these results we see that, after an initial swing-in process, we arrive at
a very well agreement with the target values. As there seems to be a tendency for our
method to overestimate the angle in this swing-in period we loose some energy that should
be injected into CRs. Since this swing-in is limited to the first 5% - 10% of the shock we
accept this error as it is, without artificial tuning. Finally the left plot of Fig. 4.7 shows
our agreement with the ideal values for η(θB) and the corresponding L1-Error. Values
are normalized to the value at θB = 0 to compensate for a systematic offset introduced
by not perfectly agreeing with the acceleration efficiency without an additional θB. The
right plot shows the resulting CR pressure in the post-shock region. This shows the offset
already at θB = 0 and how it repeats systematically for the different angles. We note that
that systematic error is on the level of the numerical noise introduced by the shockfinder
and find in general very good agreement with the analytic solution. As in all previous
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Figure 4.6.: Shock angle and θB efficiency a particle experiences over the shock du-
ration with fixed B.
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Right: CR pressure component in the postshock region. Dashed lines
indicate the ideal solution, solid lines the result from the simulations.
Colors correspond to the input value of θB as in the previous plots.

plots of shocktubes all particles are plotted. In a physical simulation the magnetic field is
adiabatically compressed by the shock front. This leads to an alignment of the magnetic
field with the shock front and thereby a non-constant ηB over the shock. This result can
be seen in Fig. 4.8.
A sufficient analysis of the impact of this effect on CR acceleration is beyond the scope
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Figure 4.8.: Shock angle and θB efficiency a particle experiences over the shock du-
ration with B-field evolution.

of this work. We started first attempts to compare our results to the work by Pais et al.
(2018) who examine the impact of CR acceleration on SN blastwaves, but have to revisit
this in future work. Ideally we would like to extend on their idealized work by using a
realistic ISM from Steinwandel et al. (2019b). This would allow us to to study SN bubble
expansion into a turbulent ISM while also resolving the magnetic field structure. That
way we could model the expected synchrotron emission and compare to observations.

4.1.4. Pre-Existing CR Component
Another efficiency component pointed out by many authors (eg. Kang et al. (2007, 2014);
Caprioli et al. (2018); Dubois et al. (2019)) is a preexisting component of CRs. They find
that re-acceleration of fossil particles is more efficient than initial acceleration and provide
re-acceleration efficiencies obtained with some pre-existing CR to thermal pressure ratio
XCR ≡ Pcr/Pth. Dubois et al. (2019) handle this component by combining it with the
Mach number dependent acceleration to a factor ξ(M,XCR) and even extrapolate the
behavior for very large values of Xcr.
We take a simpler approach, like Vazza et al. (2012), by using the values for XCR given
for the re-acceleration efficiencies by the previously discussed authors. We then linearly
interpolate the efficiency between the one with and without preexisting CRs. The inter-
polation is weighted with the ratio of the value for XCR from the simulation and the value
the efficiency models were using. This is for Kang et al. (2007) XCR = 0.3 and the others
XCR = 0.05. Of course this does not account for changed efficiencies at larger values of
XCR, so it can be improved in future work.
To test the re-acceleration we performed the same set of shocktube tests as discussed in
Sec. 4.1.2 with the efficiency model by Kang and Ryu (2013) and a pre-existing CR com-
ponent of XCR = 0.05. While Pfrommer et al. (2016) also provide an analytic solution
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Figure 4.9.: Left: Measured and ideal slopes of the resulting power spectrum. Right:
relative error of the compression ratio in the simulation and the ideal
solution.

for shocks with a pre-existing CR component and re-acceleration, we found the proposed
solution too unstable. We therefore are not able to compare our results to an analytic
solution, but will nonetheless analyze the general behavior. Fig. IV.5 shows the results of
our shocktube tests. We can see that the total pressure stays stable even for very strong
shocks. For the shocks with a Mach number smaller than 30 we find excellent agreement
between the measured and theoretical Mach number, which shows that our modification
for Eq. 2.36 works. For larger Mach numbers this starts to deviate, but we attribute that
to the same effect of premature acceleration as discussed before.

4.1.5. Slope of the Injected Spectrum
Like in Miniati (2001) we use the derivation from Drury (1983) presented in Sec. 1.3.1
to obtain the slope of the resulting powerlaw in the post-shock region from the shock
compression xs

q = 3xs
xs − 1 . (4.16)

Since our shock is broadened by the kernel it is not necessarily given that we reconstruct
the correct compression ratio. In fact the data from shocktubes (RHS of Fig. 4.9) shows
that we systematically underestimate the correct compression ratio by a factor qcorr. ≈ 1.3.
This leads to bad agreement with the ideal slopes (LHS of Fig. 4.9). Once we employ the
correction factor we can see that the agreement improves and the ideal values lie within
the errorbars of the simulated ones.
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Right: Analytic solution to the resulting powerlaw slope from standard
DSA.

It has to be noted that there is also a non-linear component to the injection slope of
particles accelerated by shocks. The linear model of DSA arrives at a maximum slope
of q = 4, as it assumes a standard hydrodynamic shock, where the compression ratio of
the gas converges to xs ≈ 4. Since a polytropic fluid of gas and CRs can be more easily
compressed due to the softer EOS of the CR component (see Sec. 1.4) this crude assump-
tion may not be valid any more in regions with significant CR pressure component. Fig.
4.10 shows the effect of CR acceleration with the previously discussed efficiency models
on the shock compression ratio and consequently on the injected slope. Multiple authors
suggested modifications to the linear treatment of DSA (e.g. Drury (1983), Berezhko and
Ellison (1999), Caprioli and Haggerty (2019), Hanusch et al. (2019), Keshet et al. (2019)).
As an example we implemented the correction suggested by Caprioli and Haggerty (2019).
They argue that the compression ratio in SNR may be as high as 10, which would lead to
a spectral slope q < 4. Since this contradicts observations, they performed an initial series
of PIC simulations to test their hypothesis. They model the slope from first principles
and together with the resulting compression ratio arrive at an additional term for the
injected slope. This leads to an expression for the non-linear DSA (NLDSA) slope of

qNLDSA = qDSA + 3
xs + 1 . (4.17)

This term is implemented in our model, but it has to be specifically compiled in. Since
the goal of this work is to apply the model to galaxy cluster simulations, where the CR
component is expected to be on the scale of a few per cent, as mentioned before, we
neglect this term at the moment, but keep it as an option for future work.

47



CHAPTER 4. SOURCES 4.2. SUPERNOVAE

4.1.6. Cosmic Ray Injection into the Model
Combining the results from the previous sections we can now inject CRs into our model.
The total energy to inject can be calculated by inserting the different components for η
from Sec. 4.1.1-4.1.4 into Eq. 4.3

eCR,2 = η(M,Xcr) η(θB) 1
2u

3
sh

∆t
2hhsml

. (4.18)

This total energy budget needs to be distributed over electrons and protons, following
some energy ratio. Unfortunately this ratio is poorly constraint with

Ee
Ep
≡ Ke,p ∼ 0.01− 0.025 (4.19)

following Beck and Krause (2005), or even lower with Ke,p ∼ 0.005 (Spitkovsky, private
communication).
With the energy budget calculated and distributed we need to find the distribution func-
tion of the newly injected CRs. For this work we assume that the distribution function
follows a single powerlaw in momentum space, where the slope qinj of the powerlaw is
calculated as described in Sec. 4.1.5. From this assumption we can calculate the value of
the distribution function at the lowest bin boundary by inverting Eq. 3.15

f0,inj = ∆Einj(4− qinj)
4πcp4

min

ρ

((
pmax
pmin

)4−qinj − 1
) (4.20)

where pmin and pmax are the lower and upper boundary of the distribution function as
defined in the parameter file. The other normalizations can then be interpolated from the
powerlaw shape as

fi+1 = fi

(
pi+1

pi

)−qinj
. (4.21)

With the normalisation fi and slope qinj of every bin calculated we can inject CR number
and energy density per bin by solving Eqs. 3.13 and 3.15 respectively. The spectral cutoff
of the distribution is either reset to pmax if it was below that before the injection or kept
as is, if it was above pmax. Once the energy and number density of every bin is updated
we can update the total distribution function by first solving the slope of the individual
bins with Eq. 3.31 and then recalculating the normalisation fi using Eq. 3.32.

4.2. Supernovae
As a second source mechanism we explored a subgrid model for type II supernovae (SNII),
as used in Pfrommer et al. (2016). They model the injection of CR energy per timestep
as

∆ECR = η · SFR · ξ ·∆t (4.22)
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where η is the efficiency, or how much energy of the SNII is transferred into CRs, SFR
is the star-formation rate, ξ is the canonical SN energy per formed solar mass and ∆t
is the timestep of the simulation. η has a canonical value of η ≈ 0.1 (Ackermann et al.
(2013); Helder et al. (2012); Morlino and Caprioli (2012)) and both SFR and timestep
are given by the main code. We used the star formation model proposed by Springel and
Hernquist (2003) which uses a density threshold for star formation triggering and a EOS
for an ideal gas. ξ is given by the canonical SN energy of ESNII ≈ 1051 erg and by the
fraction of formed stars that are above M∗ > 8M� and are therefore able to explode as
core-collapse SNe. Since we don’t form individual stars, due to resolution limitations, but
rather deal with stellar populations, this fraction depends on how the stellar populations
are sampled. The sampling of stellar populations in OpenGadget3 is done via the initial
mass function (IMF) by Chabrier (2003). This leads to a specific SN energy per solar
mass of ξ = 4 · 1048 erg

M�
.

4.2.1. Injection into the Model
Injection is in principle very similar to shock injection. We obtain the total energy to be
injected via Eq. 4.22 and distribute it between electrons and protons according to some
predefined energy ratio Re,p, typically Re,p = 0.005. We use a constant injection slope

qinj = 4.3 (4.23)

as this is the approximate powerlaw slope observed from galactic CRs (e.g. Drury (1983)).
Like was the case with shock injection this constrains all required free parameters. This
allows us to compute the norm of the lowest momentum bin via inverting Eq. 3.15 and
interpolate the other normalisations via Eq. 4.21. Next steps are again to solve Eqs.
3.13 and 3.15 to obtain the number and energy density to be injected into each bin. The
spectral cutoff is reset, if it was below pmax and left as it is otherwise. Last we update
the slope according to Eq. 3.31 and recalculate the normalisation fi using Eq. 3.32.

4.2.2. Tests
We tested the implementation by running an isolated galaxy with a realistic hot halo,
as described in Steinwandel et al. (2019a). The simulation was run with improved SPH
and full MHD with a constant seed-field in x-direction of Bx = 1nG. Star formation was
simulated using the model by Springel and Hernquist (2003). The CR module used SFR
injection, adiabatic changes (see Sec. 5) and radiative losses (Sec. 6). We show an early
snapshot of the simulation in Fig. 4.11. The left panel shows density and the right panel
magnetic field strength. The contour lines trace synchrotron emission contours calculated
from the electron spectra, normalized to the maximum value and spaced out by an order
of magnitude in intensity. As we can see, the synchrotron emission, and with that the
injected CR electron populations, trace the high density regions. This is of course what
we expect, as the high density regions are prone to star formation and the gas particles
that contain CRs indeed show high values of star formation. Beyond the first snapshots
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Figure 4.11.: Early snapshot of an isolated galaxy simulation. Left shows gas den-
sity, while right shows the magnetic field. Contour lines indicate the
modelled synchrotron emission by CR electrons. They are normalized
to the maximum emission and spaced out by an order of magnitude in
intensity.

we encountered issues as the SFR becomes too large with CR injection, which leads to a
feedback loop and eventually a crash of the code. This can be explained via the EOS of
the CRs. As they have a more compressible EOS, the pressure support by CRs is weaker.
This leads to a further collapse of the gas and higher density. Since the model by Springel
and Hernquist (2003) is defined via critical density this leads to more SF and therefore
more CR injection.
We postpone this model to later work, where we would like to couple it to the underlying
SF model, rather than the resulting SFR, in the same way as the magnetic SN seed-
ing implemented by Beck et al. (2013). Additionally we will need to implement inverse
Compton losses for protons and electrons to mediate the kinematic impact of CRs and
help avoid the catastrophic feedback loop. On top of that we need to implement a spacial
diffusion model to transport the CRs away from the SF regions, which will further reduce
the feedback.
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5. Adiabatic Changes
As charged particles move through a plasma at relativistic velocities they excite Alfvén
waves via the CR streaming instability (e.g. Lerche (1967), Kulsrud and Pearce (1969)).
These waves in turn scatter the CRs, which leads to the pitch-angle isotropy discussed
in Sec. 3.2 and confines them in the rest-frame of the Alfvén waves (e.g. Skilling (1975)
and references therein). If this Alfvén rest-frame (Pfrommer et al. (2016)) is adiabatically
compressed a part of the compressive energy is transferred to CRs. On the other hand,
if the Alfvén rest-frame expands the CRs will loose energy. Since these processes are
self-similar we expect the powerlaw distribution to stay in shape and only shift to higher
momenta for compression, or lower momenta for expansion.
For this behavior to be reflected in our model, we need to emphasize the boundary con-
ditions. Naively we can solve the flux integrals and energy change integrals from Sec. 3.6
and Sec. 3.5 respectively. For an adiabatic collapse with a closed lower boundary condition
this will preserve the total energy of the CR distribution, as the existing energy is shifted
to higher momenta. This leads to a horizontal shift of the distribution function with the
lower momentum bins decreasing in energy, since their content is subsequently shifted to
the higher momentum bins. The top of Fig. 5.1 illustrates this behavior.As discussed
above this would be unphysical. If the Alfvén rest-frame is adiabatically compressed,
since no energy exchange with the environment can happen in adiabatic compression,
the energy increase is transferred into CRs by accelerating particles at the tail of the
Maxwell-Boltzmann distribution to relativistic velocities. This makes them part of our
CR population and fills the lower momentum bins, preserving the powerlaw slope in the
process. As briefly discussed in Sec. 3.4 and shown in Fig. 5.2 this requires an open
lower boundary of our distribution function, which allows for inflow of formerly thermal
particles.
This inflow can be achieved by interpolating the lowest momentum boundary to a "ghost
bin" and solving the flux over the lowest boundary

pg = p0 · 10−∆p (5.1)

where pg is the boundary of the ghost bin, p0 is the boundary lowest bin and ∆p is the
bin-width of the spectrum. The normalization of the ghost bin can then be interpolates
as

fg = f0

(
p0

pg

)q0

(5.2)

where again f0 is the norm and q0 is the slope of the lowest bin.
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Figure 5.1.: Collapse and expansion test without bin interpolation.
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p0 pmax

Figure 5.2.: Schematics of fluxes at the boundary conditions. Adopted from Paster-
nak (prep).
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5.1. Fluxes
To compute the fluxes between momentum bins we first need to find the upper boundary
of Eq. 3.30. In a SPH formalism it is easier to deal with actual density changes than
velocity divergence, as is the case in Miniati (2001). We can relate the velocity divergence
∂u
∂x

to density changes in SPH as

ρ

ρ0
= e−

∂u
∂x

∆t (5.3)

−∂u
∂x

∆t = ln
(
ρ

ρ0

)
(5.4)

−∂u
∂x

=
ln
(
ρ
ρ0

)
∆t (5.5)

−1
3
∂u

∂x
p = 1

3
ln
(
ρ
ρ0

)
∆t p . (5.6)

This leads to an expression for the momentum change due to adiabatic expansion/compression
of (

∂p

∂t

)
adiab.

= −1
3
∂u

∂x
p = −1

3 ln
(
ρ

ρ0

)
p

∆t . (5.7)

Integrating this by parts, as described in Sec. 3.6, gives

∆t = ∆t ln
(
ρ

ρ0

) 1
3 ∫ pi

pu

dp

p
(5.8)

which can be solved for the upper momentum boundary pu as

pu = pi

(
ρt

ρt+∆t

)1/3

. (5.9)

This boundary can then be inserted into the flux integrals in Eqs. 3.26 and 3.26 to
compute the number- and energy density fluxes between momentum bins.
This of course requires us to store the density of the previous timestep in an additional
field of the SPH particle struct, as normally the density changes overwrites the original
density.

5.2. Spectral Cut Update
Since we also need to trace the spectral cut of the distribution we need to solve Eq. 5.8
for pi and identify this as the new spectral cutoff, as discussed in Sec. 3.7

pcut,t+∆t = pcut,t

(
ρt+∆t

ρt

)1/3

(5.10)
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5.3. Energy Changes
As shown in Sec. 3.5 the changes in number density due to adiabatic changes only depend
on the fluxes between momentum bins

N t+∆t
i = N t

i + 1
ρ̄

(
Fm
ni+1
− Fm

ni

)
. (5.11)

where ρ̄ is the mean density over the timestep. For the energy density changes we need
to solve

Et+∆t
i = Et

i

(
4
3 −

1
3

ρt
ρt+∆t

)
+ 1
ρ̄

(
Fm
ei+1
− Fm

ei

)
(5.12)

which is a modification of 3.21 due to transformation from Eulerian into Lagrangian
formalism.

5.4. Standalone Tests
To test the stability of the implementation of adiabatic changes in our model we set up a
stand-alone scheme. That way we can avoid the introduction of numerical noise from the
hydro-solver and also reduce the computational cost of the tests. The standalone scheme
simply calculates a fixed density change and calls the adiabatic changes function with the
updated parameters.
For the first set of tests we set up a collapse/expansion model with a fixed velocity
divergence

∇ · ~v = ±2.3 · 10−13 cm
s . (5.13)

We deliberately chose a low momentum space resolution of only 12 bins to make kinks and
errors in the distribution function easily visible. The results of this standalone test can be
seen in Fig. 5.3. Here we used the bin interpolation method as previously discussed, as it
gives a more physical result. The top plot in Fig. 5.3 shows an adiabatic collapse, while
the bottom one shows an adiabatic expansion. As we expect in the case of the collapse
the total energy rises and with that the distribution function is shifted to the right. The
distribution function itself remains in an excellent powerlaw shape and shows no jumps
between bins. Similarly the expansion leads to a left-shift of the distribution function in
the bottom plot.
For further detail on the conservation of properties defined by the distribution function,
we performed a set of adiabatic "bounce" tests. In these tests we used the same velocity
divergence as in the previous tests, but ran a simulation with collapse - expansion -
expansion - collapse pattern. That way we can compare the values of CR energy, number
density and distribution function slope each time the simulation returns to the initial
state. The result of this test is shown in Fig. 5.4 for 12 momentum bins on the left and
48 momentum bins on the right. The x-axis gives the momentum bin for which the value
is obtained, while the y-axis gives the relative error to the initial value. Colors indicate
the errors for distribution function slope, CR energy and CR number density. Solid lines
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Figure 5.3.: Collapse and expansion test with bin interpolation.
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Figure 5.4.: Relative error of the adiabatic bounce test after the collapse phase (solid
lines) and after the expansion phase (dashed lines).

refer to the state after collapse - expansion and dashed lines to the state after expansion
- collapse.
For the first half of the simulation these results look very promising in both levels of
resolution. Both energy and number density error are only of the order of 10−4 and the
error for the slope is even smaller by an order of magnitude. It can also be noted that
the error is very consistent over all momentum bins and therefore hints towards a slight
offset in the distribution function. This is acceptable after almost 1.7 million computation
steps.
The second half of the simulation reveals a larger discrepancy from the ideal solution.
While the higher momentum bins still agree fairly well with the ideal solution and show
errors slightly below 10−3, the lower momentum bins show errors one, to two orders of
magnitude larger. This is problematic as especially for distributions with larger slopes
the lower bins dominate the contribution to energy and number density of the CRs.
A possible explanation for this behavior is the bin interpolation scheme. The error most
likely originates from the second collapse phase. In the second expansion phase the
distribution function is shifted to the left of the initial distribution. Physically this means
that particles are purged from being in the CR pool and return to the thermal pool. As
the second collapse starts the distribution function shifts to the right and high energy
thermal particles are accelerated further by scattering off compressing Alfvén waves and
become part of the CR pool again. Numerically we need to interpolate the lowest bin to
solve the integral for the flux of thermal particles into the lowest bin. A small error in
the slope of the lowest bin will then lead to an error in the flux integrals and with that an
error in the energy and number density. This will in turn introduce an error in the next
slope update and then the error will propagate further.

57



CHAPTER 5. ADIABATIC CHANGES 5.5. SHOCKTUBE TESTS

Even after further investigation we did not find a satisfying solution to this problem yet.
We found that the error can be decreased by using a smaller timestep, but the general
shape of the introduced error stays the same. We will keep investigating this problem in
future work.

5.5. Shocktube Tests

From the first law of thermodynamics we can derive that the pressure change of an ideal
gas under adiabatic expansion, or collapse follows

Pcr,d = Pcr,u

(
ρd
ρu

)γcr
(5.14)

where the subscripts u and d refer to the state up- or downstream of the shock.
To test how well this prediction holds we set up a series of shocktube tests with a seed
population and no additional CR injection (see Sec. 4.1). The seed population was set
up to fulfill Pcr,0 = 0.3Pth,0 on both sides of the initial contact discontinuity. This way we
can study the accuracy of our adiabatic changes by comparing the states upstream and
downstream of the shock. The results of a shock with Mach 3 and Mach 10 can be seen
in Fig. 5.5 and Fig. IV.6, respectively.
For the Mach 3 shock we find that ρu

ρd
= 3.064 and Pcr,u = 0.392. Inserting this in Eq.

5.14 would give the ideal valuePcr,d/ideal = 1.746. We find Pcr,d = 2.0 in the postshock
region, which means that we overestimate the adiabatic pressure increase roughly by a
factor of 15%. In the case of the Mach 10 shock the compression factor is ρu

ρd
= 3.895

and the upstream CR pressure is Pcr,u = 0.0315. This gives the ideal upstream CR
pressure Pcr,d = 0.193. The simulation shows a downstream CR pressure of Pcr,d = 0.225
and therefore overestimates the post shock pressure again by roughly 15%. To check for
consistency of this offset we performed this test for the same set of target Mach numbers
as in in Sec. 4.1.2. The results for the numerical values in up- and downstream regime are
shown in Tab. 5.1 and a visualisation is given in Fig. IV.7. The plot in Fig. IV.7 shows us
that our coupling to the hydro-solver stays stable, even with a significant CR fraction and
at very high Mach numbers. The errors, last row in Tab. 5.1, show a consistent offset of
roughly 15%. This overestimation can be explained by our choice of boundary conditions
for the low momentum boundary. To reiterate, under adiabatic compression we choose to
have inflow from the high-energy thermal pool of particles into our CR population. This
conserves the powerlaw shape of our function, but of course explicitly does not conserve
energy. Instead we have a constant inflow of energy and therefore too much CR pressure
in the post-shock region. Seeing as our total pressure is conserved in Fig. IV.7 we can
assume that our model works and we in fact take energy from the high energy thermal
component.
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Mach 3.0 4.0 5.0 6.0 10.0 20.0 30.0 60.0 100.0
ρu
ρd

3.064 3.42 3.61 3.72 3.895 3.973 3.986 3.996 3.996
Pcr,u 0.3923 0.2087 0.1302 0.08923 0.0315 0.00781 0.003466 0.000866 0.0003116

Pcr,d/ideal 1.746 1.075 0.721 0.5146 0.193 0.04913 0.02191 0.00549 0.001976
Pcr,d/sim 2.0 1.248 0.841 0.6 0.2246 0.0569 0.02531 0.006325 0.002275

∆Pcr,d
Pcr,d/ideal

0.1455 0.1608 0.1655 0.1665 0.1637 0.1578 0.1554 0.1527 0.1516

Table 5.1.: Values for compression factor, upstream CR pressure, ideal solution and
simulation data of the downstream CR pressure and the corresponding
error for a set of shocktube tests with Mach numbers ranging from Mach
3 to Mach 100.
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Figure 5.5.: Result of a shocktube test with a seed CR population and Pcr = 0.3Pth.
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Figure 5.6.: Evolution of the densities as a function of cosmological scale factor.
While the comoving density increases (right y-axis) the physical den-
sity decreases because of the cosmic expansion.

5.6. Cosmological Tests
As a second physical test we ran a cosmological test suggested by Bertschinger (1985).
In this test we set up a large glass file and construct a density inhomogenity by adding 8
additional particles in a grid in the box center. The box is then evolved with comoving
integration and the inhomogenity will collapse in the comoving frame. The increasing
comoving density is shown as the red line with the right y-axis in Fig. 5.6. We plot the
density evolution of a single of the perturber particles for every timestep. If we convert
the simulation into the physical frame and evaluate the densities via

ρphy(t) = ρcomov(t) · a(t)−3 (5.15)

where a(t) is the cosmological scale factor, we can see, that in the physical frame the
collapse is not fast enough to counter the cosmological expansion and the physical density
actually decreases. This is shown as the blue line and the left y-axis in Fig. 5.6. To
illustrate the effect on the CR population we show the spectrum of the same perturber
particle in the top plot of Fig. 5.8. The test was run with 48 momentum bins, a seed
CR population with Pcr,0 = 0.05 Pth,0 and only adiabatic changes enabled. We started
the simulation at z = 4096 and ran it until z = −0.7. The spectral evolution shows the
expected self-similar shift to lower momenta as the density decreases. The spectral cut
update seems to work well, as we don’t see any unexpected up-turn of the distribution
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Figure 5.7.: Relative change of pressure under adiabatic expansion.

function in the last populated bin, which would indicate a too low spectral cutoff. The
rest of the distribution function also looks promising, as the overall powerlaw shape is
conserved over the entire simulation. This becomes even more clear when we look at the
distribution function in a different way. In Fig. IV.8 we multiply the spectral norm f(p)
by pq0 , where q0 is the initial powerlaw slope. In this view we expect the distribution
function to be a horizontal line with a sharp drop-off at the spectral cut. Indeed we can
see that the distribution function follows the expected shape with only some wrinkles
where the slope of the bin shows a small error. To further quantify this we analyzed
the slope of the individual momentum bins for five perturber particles. We show the
time evolution of the median slope of the distribution in the bottom plot of Fig. 5.8.
For visualisation reasons we spaced out the particles along the x-axis, they are actually
evaluated at the same redshifts. The errorbars indicate the standard deviation of the
slopes in each distribution. To avoid artificial contamination of our sample we select only
those bins that are at least 5 bins below the spectral cutoff. With a momentum resolution
of 48 bins this still gives us a sample of 33 bins for our analysis. As can be seen the
slope stays very consistent at q = 4.3. The error increases slightly over the course of the
simulation, but even in the worst case stays below a 5% scatter. Over the simulation
time of 33.07 Gyrs, assuming a flat cosmology with H0 = 69 km

s Mpc and Ω = 0.29, we find
this error acceptable. Finally, as in the previous section, we use Eq. 5.14 to compare
the intrinsically calculated pressure change with the analytic one. The results of this are
shown in Fig. 5.7. We normalized the pressure to the one at redshift z = 511 and show
the time evolution of the simulation output (blue line) and analytic calculation (red line).
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Contrary to the case of the shocktube tests in Sec. 5.5 we find that the pressure is slightly
below the analytic solution. This indicates an actual error, instead of only an artifact of
our boundary conditions. It would be worth to check if this error gets smaller at higher
spectral resolution, or if it is an actual error in the implementation. As the Bertschinger
test is quite computationally expensive this resolution study is beyond the scope of this
work, but should be revisited at a later time. For the purpose of this work we accept the
error as it is, since, like was the case with the slope error, it is quite small considering the
total simulation time.
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6. Radiative Changes
As discussed in Sec. 1.5 Cosmic Rays can loose their energy via a multitude of radiative
processes. For protons these are dominated by Coulomb losses (Eq. 1.42) and inelastic
scattering off background gas (Eq. 1.46). Both these loss functions can only be solved ap-
proximately for the upper integration boundary of Eq. 3.30. The solution for this problem
needs to be postponed to future work. This is especially important for the Coulomb losses,
as the low momentum part of the distribution function dominates the kinetic contribution
of the CRs (e.g. Enßlin et al. (2007)). Girichidis et al. (2019) solve the Coulomb losses
for their model approximately, but don’t provide much insight on how they approximate
the function.
For electrons the dominating loss process at the low momentum end is also Coulomb in-
teraction, while the high momentum end is dominated by synchrotron and inverse Comp-
ton losses. Similar to the protons, albeit less complex, there is no analytic solution for
Coulomb losses of electrons which we can solve for an upper momentum boundary pu.
We tested the implementation for Coulomb losses by Winner et al. (2019) who follow
formulation of Gould (1972) and solve the function approximately, but unfortunately this
did not work by the time this work was finalized and will therefore be postponed.
For this work we focus on the two loss mechanisms relevant for high energy/momentum
electrons, namely synchrotron and inverse Compton losses. Our implementation follows
Eq. 1.50 and 1.52 respectively. As was the case with adiabatic changes we will first derive
the analytic form for pu to solve the flux integrals, then the spectral cutoff and finally the
analytic form for Ri(qi, pi) to solve the energy losses. At the end of the chapter we will
show the test results of our model.

6.1. Fluxes
Since both synchrotron and inverse Compton losses have the same dependence on p they
can be treated as one loss mechanism(

dp

dt

)
Synch+IC

= 4
3
σT
m2
ec

2 (UIC + UB) p2 = C p2 (6.1)

where C will be used as a shorthand for the constants and energy densities in the following
equations. Inserting Eq. 6.1 into Eq. 3.30 gives

∆t = 1
C

∫ pu

pi
dp p−2 = − 1

C

(
1
pu
− 1
pi

)
(6.2)
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As was the case for adiabatic changes this equation can be solved analytically for pu

pu = pi
1− Cpi∆t

. (6.3)

Inserting this upper boundary into Eq. 3.26 and Eq. 3.27 gives the fluxes of number- and
energy density between the bins.

6.2. Spectral Cut Update
Similarly the cut of the momentum distribution can be obtained by solving Eq. 6.2 for
pi, which is equivalent to the spectral cut after a timestep ∆t

pCut,t+∆t = pu
1 + CpCut,t∆t

. (6.4)

As C is strictly positive this leads to a consistent shift of the cutoff to lower momenta.

6.3. Number- and Energy Density Changes
As was the case with adiabatic changes, the number density update is defined by the
fluxes between momentum bins

N t+∆t
i = N t

i + 1
ρ̄

(
Fm
ni+1
− Fm

ni

)
(6.5)

which can be solved via the analytic solution for the upper momentum boundary pu in
Eq. 6.3. For energy density updates we first need to solve Eq. 3.20 by inserting Eq. 6.1

Ri(qi, pi) = 4
3
σT
m2
ec

2 (UIC + UB) 4− qi
p4−qi
i+1 − p

4−qi
i

∫ pi+1

pi
dp p4−qi (6.6)

= 4
3
σT
m2
ec

2 (UIC + UB) 4− qi
5− qi

p5−qi
i+1 − p

5−qi
i

p4−qi
i+1 − p

4−qi
i

(6.7)

which allows us to solve Eq. 3.21.
As Ri(qi, pi) is generally defined as the integral over the sum of all loss processes the
integrals can be split up into individual Ri(qi, pi)|bl . This makes extension of the model to
further loss processes easy, as soon as analytic, or approximate functions of pu are found.

6.4. Standalone Tests
To check the accuracy of our cooling implementation we used the analytic solution for
synchrotron and inverse Compton cooling derived by Kardashev (1962). His Eq. 5 can
be reformulated to give the slope q of a distribution at time t

q(p, t) = −∂lnf
∂lnp = q0 + (q0 − 4) tp/(τpnpn)

1− tp/(τpnpn) (6.8)
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Figure 6.1.: Synchrotron cooling with Bx = 5µG and inverse Compton scattering at
z = 0 with 192 momentum bins.

where τpn is the cooling time of some arbitrary momentum pn. Using the cooling time
from Miniati (2001) Eq. 65 and defining for convenience pn = 104, t = τpn we arrive at a
simple relation for the slope of every bin at the cooling time of pn

q(p) = q0 + (q0 − 4) p/pn
1− p/pn

. (6.9)

From this formulation we can predict different behaviors for q0 < 4 and q0 > 4. For
q0 < 4 we expect a decrease in spectral slope, so an upwards bending of the initial
spectrum followed by a sharp cutoff at pn. The physical interpretations of this is that for
smaller slopes there are more electrons at the high momentum end of the spectrum than
at larger slopes. The Cooling process at high momentum is so rapid that electrons are
shifted to lower momenta considerably faster than the electrons at those momenta can
cool. This leads to a pileup of electrons in the highest momentum bins below the cutoff.
At slopes q0 > 4 there are fewer electrons in the high momentum end and therefore the
pileup is avoided. At these initial slopes we expect a spectral steepening and a smooth
cooling of the electrons.
To analyze if we reproduce this general behavior we set up a standalone test with with a
constant magnetic field of B = 5µG and inverse Compton scattering off CMB photons at
z = 0. Only radiative losses were switched on, all other contributions were switched off.
The test was run for different slopes q0 at a very high momentum resolution of 192 bins.
We show two of these tests, namely with q0 = 3.5 and q = 6.0 in Fig. 6.1. As expected
we observe an upturn of the distribution function followed by a sharp cutoff for q0 < 4
and a gradual steepening for q0 > 4 as the simulation time approaches the cooling time.
Furthermore we can see that the spectral cutoff agrees well with the analytic solution,
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Figure 6.2.: Convergence to the analytic solution for synchrotron and inverse Comp-
ton cooling for different numbers of momentum bins.

as in both cases the highest momentum of the spectrum is at p = 104, which it has to
be by test design. To further quantify our agreement with the analytic solution and to
test our convergence with momentum bins we analyzed the individual slopes of the bins
according to Eq. 6.8. The results of these tests can be seen in Fig. 6.2. Please note that
we flipped the sign of Eq. 6.8 here as well as in the titles of Fig. 6.1 to avoid confusion.
For both values of q0 we can observe a nice converging behavior with increasing spectral
bin count. While 12 momentum bins are clearly very crude, 24 and 48 bins already start
to converge to the expected round shape. With 96 bins the slopes, especially for q0 = 6,
are in very good agreement, while the solution with 192 bin can be considered almost
perfectly converged. The discrepancy in the last bin observed in all cases is an artifact
of how we chose to display the results. As we use lines instead of markers for a cleaner
look, we draw a line between the last calculated slope and the maximum value a slope can
have. By design all bins above the spectral cutoff are set to a maximum slope, qmax = 20
in this case, to save computation time. If we did not set that maximum slope we would
waste computing time in the root-finding process to update the slope. As bins with a
slope higher than 20 contain hardly any energy anyway they are not relevant for the total
energy budget and can therefore be ignored. This in turn shows that our calculation of
the spectral cutoff works nicely, as all lines end at p = 104, the maximum momentum
possible at the end of the simulation, as defined by the cooling time.
In addition to these accuracy tests we also ran a set of tests to see the impact of the number
of momentum bins on computational cost. For these tests we reran the standalone test
with a box of 73 particles at varying spectral resolutions. We show the results of these
tests in Fig. IV.9, transparent lines indicate every timestep, while bright lines are a fit to
the mean of ca. 20 timesteps. We normalize the timesteps to the total time, to simplify
direct comparison between the runs. As the plot shows the implementation scales very

68



CHAPTER 6. RADIATIVE CHANGES 6.4. STANDALONE TESTS

well with increased bin count. Even at 96 bins, which already showed excellent agreement
to the analytic solution in Fig. 6.2, the performance impact is still less than a factor of
2. This is mainly due to our improved root finding in the slope update. Nevertheless
the impact on memory consumption is considerable with increased bin count. The run
with 384 bins required more than 3 GB of memory for 343 SPH particles. Improvement
on memory management, especially concerning which properties have to be stored in the
SPH particle struct, should be a high priority in the future.
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7. Turbulent Re-Acceleration of
Particles

According to Sec. 1.3.3 the reacceleration of particles, or their diffusion in momentum
space, is caused by scattering off Alfvén waves, driven by turbulence. Following Cassano
and Brunetti (2005) the change in momentum due to turbulent reacceleration per timestep
can be expressed as (

dp
dt

)sys

acc
= −χp ' −2Dpp

p
(7.1)

with the additional minus sign to match our formalism. For an isotropic distribution of
wave and particle momenta and vA < vM , with vA being the Alfvén velocity and

v2
M '

4
3v

2
ion + v2

A (7.2)

the diffusion coefficient Dpp is given by Eilek (1979) as

Dpp(p, t) ' 4.45π2v
2
M

c

p2

B2

∫ kmax

kmin
dk kWB

k (t) (7.3)

= D0(t) p2 . (7.4)

This assumes that the infall of substructure causes plasma instabilities and turbulence
which in turn drives magneto-sonic (MS) waves. These instabilities lead to an stochastic
second order Fermi acceleration process, as described in Sec. 1.3.3. The integral on the
RHS of Eq. 7.3 is therefore the integral over the spectrum of the MS waves and the
boundaries of this integral are defined by the minimum and maximum wave numbers of
the underlying turbulence spectrum. Combining Eq. 7.1 and Eq. 7.4 gives the short form
of (

dp
dt

)sys

acc
= −2D0(t) p (7.5)

This can be solved either by explicitly solving Eq. 7.3 over the relevant turbulance scales,
or by giving a constant factor for diffusion in momentum space.

7.1. Explicit Solution for D0(t)
Explicitly solving D0(t) proves difficult due to the integral on the RHS of Eq. 7.3. Since
the time evolution of Wk(t), the modified spectrum of the MS waves, depends on wave-
wave interaction and wave-particle interaction and is therefore very expensive to solve.
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Cassano and Brunetti (2005) use an approximation that simplifies the form of Wk to only
depend on the injection spectrum of the waves I(k), which for this purposes is assumed
to be a simple powerlaw I(k) = I0k

−a, and the most prominent dampening mechanism,
the dampening by thermal electrons Γth,e(k)

Wk '
I(k)

Γth,e(k) (7.6)

with

Γth,e(k) =
√

32π3ρ
√
mekBT

(
vM
B

)2 WB
k

Wk

I(x)k (7.7)

and
I(x) = 2

∫ ∞
1

dx
(1
x
− 1
x3

)
exp

[
−x2

(
vM
vth

)2
]

. (7.8)

Here vM is given by Eq. 7.2 and v2
th = 2kBT

me
is the thermal velocity of the electrons. Please

see Sec. 4.2 in Cassano and Brunetti (2005) for more details. To explicitly solve D0 at
every timestep we follow the implementation by Donnert and Brunetti (2014) who take
this approximation and find that

D0(t) = 4.45π2

c
√

32π3mekB

ηtakEturb

neVp
√
T ∆t I(x)

(7.9)

where ηt is the free parameter introduced by Cassano and Brunetti (2005) with ηt = 0.2
in this model, Eturb is the turbulent energy, Vp is the kernel volume of a particle and ak
is the turbulent scale factor

ak = k−2/3
max − k

−2/3
min

k
−2/3
mps − k−2/3

h

. (7.10)

The different components of this are kmin and kmax for Eq. 7.3, the wavelength of the
mean particle separation

kmps =
N

1/3
ngb,i

2hi
(7.11)

and the maximum wavelength within a kernel of compact kernel support hi

kh = 1
2hi

. (7.12)

kmin and kmax are free parameters in this model and can be expressed as the inverse of
the injection and dampening scale of the MS waves and for the purpose of this work take
the form

kmin = (Λinj)−1 = (200 kpc)−1 (7.13)
kmax = (Λdamp)−1 = (0.1 kpc)−1 . (7.14)
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7.2. Fluxes
As for the previous effects we first need to calculate the upper boundaries of our flux inte-
grals. To obtain an analytic solution we assume that D0(t) is constant over a simulation
timestep.

dp
dt = −2D0(t) p = −2D0 p (7.15)

Seperation of variable and integrating both sides gives

∆t = 1
2D0

∫ p
′
u

p
′
i

dp′ p−1 (7.16)

= 1
2D0

[ln(pu)− ln(pi)] (7.17)

and with that the upper integration boundary

pu = exp(ln(pi)− 2D0 ∆t) (7.18)
= pi e

−2D0∆t (7.19)

As before, the cut is then updated by solving Eq. 7.19 for pi and associating this with
the new spectral cut after a timestep ∆t

pcut(t+ ∆t) = pcut(t) e2D0 ∆t (7.20)

7.3. Number- and Energy Density Gains
The number density after a timestep ∆t is again given by the fluxes between momentum
bins, which can be solved from inserting pu from Eq. 7.19 into Eq. 3.26 and 3.27 respec-
tively. By treating the turbulent re-acceleration as an additional loss term1 for simplicity
we can reuse Eq. 3.21 by solving Ri as

Ri(qi, pi) = 4− qi
p4−qi
i+1 − p

4−qi
i

∫ p
′
i+1

p
′
i

dp p2−qi

(
dp
dt

)sys

acc
(7.21)

= −2D0(t) 4− qi
p4−qi
i+1 − p

4−qi
i

∫ p
′
i+1

p
′
i

dp p3−qi (7.22)

= −2D0(t) 4− qi
p4−qi
i+1 − p

4−qi
i

p4−qi
i+1 − p

4−qi
i

4− qi
(7.23)

= −2D0(t) (7.24)
1In a last-minute revision we noticed that this may not be valid due to the dependence on ∂2f

∂p2 and
therefore has to be revisited in future work.
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and then evaluating the time integration.

7.4. Standalone Test
To test the functionality of the turbulent reacceleration model we set up another stan-
dalone test. Here we set up an initial distribution as in the adiabatic and radiative tests
and evolved the distribution with a constant factor of Dpp = 10−18 1

s
. This value is roughly

the mean of what Donnert and Brunetti (2014) used from the simulation of Cassano and
Brunetti (2005) to test the convergence of their model.
As a first test we only looked at the reacceleration term and how it modifies the spectrum.
From an initial powerlaw spectrum we expect the distribution to contain its shape and
only be shifted to the right, as re-acceleration should be a self-similar process (e.g. Fermi
(1949)). The result of this test can be seen in Fig. 7.1. We can observe a slight right-shift
of the distribution function, while the overall shape stays intact.
Next we reran the test, but also allowed for synchrotron losses with a constant magnetic
field of B = 5µG, as in Sec. 6.4. For this test we expect the synchrotron losses to
dominate over the re-acceleration, until the high energy electrons are cooled off. Once
the cooling time of the remaining electrons is equal to the re-acceleration timescale the
two effects should balance the spectral cutoff at some value. We tried to illustrate this
behavior in the left of Fig. 7.2. As can be seen in the case without re-acceleration the
spectral cut decreases constantly, while in the case with re-acceleration the cut starts to
be balanced and heads towards a stable value. Unfortunately there was still a slight error
in the model by the time of this writing and the re-acceleration caused the model to break
if too much energy is cooled off by synchrotron or inverse Compton losses. Besides our
best efforts we were not able to find this bug in time and refer this problem to future
work.

7.5. D0(t) from Cluster Merger
To test the time-dependent implementation of Dpp, calculated on every timestep via Eq.
7.3, we set up a test simulation of a cluster merger similar to the one discussed in Sec.
8, but with additional substructure. The initial condition can be seen in Fig. IV.10. For
details on the initial condition setup and SPH mapping details, please see Sec. 8. The
left part of Fig. IV.10 shows the surface density of the system, while the right part shows
the magnetic field strength. As this model contains infalling substructure, the approach
by Cassano and Brunetti (2005) that turbulence is triggered by ram-pressure stripping is
physically motivated. Unfortunately as was the case in the standalone model the same
bug caused the simulation to crash at t ∼ 500Myrs. Nonetheless, in the right plot of Fig.
7.2 we show the obtained values for D0(t). We note that these lie slightly above the values
from Cassano and Brunetti (2005), but attribute this to the very different nature of the
simulated systems. Nonetheless this needs to be further investigated in future work, once
the problems with the implementation have been fixed.
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8. Idealized Galaxy Cluster Merger
To test our model in a more physical test case than shocktubes we ran a set of ideal-
ized galaxy cluster merger simulations. All simulations were run with the single weighted
shock finder, advanced SPH and full MHD. For the CR model we used 48 bins, adiabatic
changes updated before every pressure calculation of the main code, radiative losses and
shock injection. CRs are injected following the efficiency model of Ryu et al. (2019) with
an electron to proton ratio of Re/p = 0.005.
We did not employ turbulent re-acceleration of particles due to the idealized nature of
the simulation. Since we only sample two smooth halos without substructure (see 8.1)
the fundamental concept of turbulence injected by the ram-pressure stripping of infalling
substructure cannot hold. Furthermore we did not use the B-field angle dependent effi-
ciency term ηB (see 4.1.3) because of the simplified nature of our initial magnetic field
structure.
The construction of images by means of SPH mapping was performed with the Smac
code, see Dolag et al. (2005a) for details about the mapping process and conservation of
quantities. Mapping of gas surface density and magnetic field was performed over a thick
slice containing 5 Mpc of the box. Mach number and CR pressure to thermal pressure
ratio (Xcr) mapping is confined to a thin slice of 200 kpc, which corresponds to roughly
the kernel size of particles at the outskirt of the clusters. This leads to slightly more
numerical noise, as the particle count used for mapping is smaller, but avoids geometric
projection effects.

8.1. Initial Conditions
The setup of the initial conditions (ICs) was performed with the ToyCluster code in
the same way as described in Donnert (2014), albeit at much lower resolution. Donnert
(2014) uses the analytic solution of the Hernquist profile (Hernquist (1990)) to sample a
dark matter halo with a pre-defined mass. For the gas component a β-profile (Cavaliere
and Fusco-Femiano (1978)) whose gas density follows

ρgas(r) = ρ0

(
1 + r2

r2
c

)− 3
2β

(8.1)

is set up in such a way that it is in hydrostatic equilibrium. See Donnert (2014) Eq. 6-13
for details.
The magnetic field is modeled as proposed by Bonafede et al. (2010) and follows a radial
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Figure 8.1.: Initial conditions of the cluster merger. Left shows the gas surface den-
sity, right shows the magnetic field. Both images are mapped to a grid
using a 5 Mpc slice of the box.

distribution of
〈 ~B〉(r) = 〈 ~B0〉

(
ne(r)
n0

)η
(8.2)

where ~B0 and η are free parameters.
The initial conditions of the merger can be seen in Fig. 8.1. Our ICs contain 2 million
particles, half gas and half dark matter. The mass ratio of the clusters is roughly 2:1 with
the left cluster being the more massive one. All relevant properties of the merger setup
can be found in Table 8.1. Halo 0 (left) will also be referred to as the target, Halo 1 (right)
as bullet. Please note that the magnetic field on the right hand side of Fig. 8.1 looks
more disturbed than the density on the left hand side since the figure shows snapshot 0.
As OpenGadget3 performs an initial halfstep kick on startup, before writing the zeroth
snapshot, the magnetic field has already been evolved for half a timestep and is therefore
distorted.

8.2. Results
We will analyze the results of the idealized cluster merger in three steps. First in Sec.
8.2.1 we will look at the whole system and where CRs are injected by the resulting shocks,
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Halo 0 Halo 1
NTotal 1493726 506274
NGas 738257 261743
NDM 755469 244531

MTotal [M�] 1.00789e+15 4.99924e+14
MGas [M�] 1.4604e+14 7.25556e+13
MDM [M�] 8.61853e+14 4.27368e+14
ρ0 [g/cm3] 6.56805e-27 1.20976e-26
rc [kpc] 215.588 159.986
|B| [µG] 5.0 5.0

η 0.5 0.5
∆xCOM [kpc] -1233.38 2466.77
vx [km/s] 497.992 -1493.97

Table 8.1.: Properties of the merging halos.

next in Sec. 8.2.2 we will look at the strong shock after the first passage of the cluster
cores and last we will analyze the properties of a single SPH particle as it runs through
that shock and how its spectrum evolves over the simulation in Sec. 8.2.3.

8.2.1. Time Evolution of the Merger
To illustrate the time evolution of the merger we show 4 different times of the merger
process in Fig. 8.2 and 8.3. We plot the logarithm of the density integrated over a 5 Mpc
slice in black and white. The limits are the same as in the left hand side of Fig. 8.1,
we therefore don’t use an additional colorbar to avoid confusion. The colorbar indicates
Mach number and the ratio between CR proton pressure component and thermal pressure
component (Xcr), respectively. As previously described we only take a 200 kpc slice of
these quantities to avoid projection effects.
The top of Fig. 8.2 shows a very early stage of the merger, shortly after the impact of
the outer parts of the bullet halo into the target halo. While we can observe density
waves indicating a shock moving through the cluster, the slice we used for Mach number
measurements does not contain any supersonic shocks in that area. Looking at the right
side of the plot we can see that there must have been a supersonic shock moving through
the medium, as there has been shock acceleration of particles, still visible in the wake of
the shockwave. In the bottom plot of Fig. 8.2 the system is in the state shortly after
the first passage of the bullet through the target cluster. A symmetric bow shock can be
observed to the left of the cluster center, with a radius of ∼ 500 kpc. Furthermore there
is a weak shock following the v-shaped density structure of the in-falling halo. In the
wake of the cluster there is an additional shock structure which resembles the complex
c-shaped shock structure observed in Beck et al. (2015a). The pressure ratio on the right
again shows a region of CRs accelerated by the shocks near the cluster center and in the
wake of the cluster. Additionally we can observe remnants of the initial shock still present
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Figure 8.2.: Left panels: Surface density overplotted by Mach number. Right panels:
Surface density overplotted by CR to thermal pressure ratio Xcr.
Top: State of the merger shortly after initial contact of the halos.
Bottom: State of the merger shortly after first passage of the cluster
cores.

80



CHAPTER 8. CLUSTER MERGER 8.2. RESULTS

-6 -4 -2 0 2 4
x [Mpc/h]

-6

-4

-2

0

2

4

6

y 
[M

pc
/h

]

t = 2.153 Gyrs

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mach

-6 -4 -2 0 2 4 6
x [Mpc/h]

10 5 10 4 10 3 10 2
Xcr

-6 -4 -2 0 2 4
x [Mpc/h]

-6

-4

-2

0

2

4

6

y 
[M

pc
/h

]

t = 3.914 Gyrs

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mach

-6 -4 -2 0 2 4 6
x [Mpc/h]

10 5 10 4 10 3 10 2
Xcr

Figure 8.3.: As in Fig. 8.2. Top: State of the merger after the second core passage
with outwards moving shock front.
Bottom: End of the simulation with merged clusters, still undergoing
relaxation.
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off-axis of the merger. These are located at around ±2 Mpc/h in y-direction and show
high values for Xcr. Further analysis shows that this is the case because these CRs were
initially accelerated by the first shock front moving ahead of the bullet cluster and now
splash back due to the shock front caused by the target cluster. Since the target cluster
also travels at a high velocity and is not stationary it causes a shock moving into to right
side of the simulation domain. This weaker shock seems to be enough to re-accelerate
particles, cause the high value for Xcr and move the CR component further to the right
in later snapshots.
The top part of Fig. 8.3 shows the outward traveling merger shock as it reaches the
outskirts of the cluster. We can see a very symmetric shockfront with a radius of about 4
Mpc traveling away from the clusters at more then Mach 4. The corresponding Xcr signal
shows that there is consistent CR acceleration happening all along the shock front. In
addition to the new acceleration we can see a significant CR component at the border of
the newly formed cluster core. This is due to previously accelerated CRs in that region
being folded around the core by infalling gas. On the right side of the cluster we can still
observe the remnants from the CR acceleration at the wake and the initial shock wave
entering the cluster.
In the bottom part of Fig. 8.3 the merger itself is complete, even though the resulting
cluster has not relaxed yet. As can be seen in the left plot there are no more shocks
running through the cluster and the two cluster cores have settled into one. In the right
plot we can still observe multiple relics of the acceleration at the right side of the cluster.
The outskirts of the cluster left of the initial center of mass shows a large fraction of CR
pressure component. This can be attributed to the cold gas outside of the cluster and
our lack of diffusion in the model. As the shock travels outwards from the cluster, to
the background gas, there is still a significant rate of acceleration. The Mach number
will increase, as the sound speed in the surrounding medium drops while the shock speed
stays constant. This increases the acceleration efficiency and leads to a fairly homogeneous
value of Xcr ∼ 1− 3 10−3. Since we did not implement spacial diffusion in this model and
there are no more adiabatic changes happening in the outskirts of the cluster at this stage
of the merger we expect this steady state behavior. In the case with spacial diffusion we
would expect the CR component to also be present around the cluster on the right side
of the center, as it should have diffused over the simulation volume by the end of the
simulation.

8.2.2. Analysis of the Initial Shock Front

To get a more detailed picture of the properties of the initial shock front at 1.5 Gyrs we
extracted a thin slice of the merging system. The location and size of the slice we base
the following analysis on is marked with white lines in Fig. 8.4. It extends 1.3 Mpc in
x direction, from shortly before the shock to ca. the center of mass of the system. In y
and z direction we take only a very thin slice of 20 kpc to minimize geometric effects. As
in the left sides of Fig. 8.3 + 8.3 the black and white refers to the surface density, while
color refers to the Mach number detected by the shock finder.
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Figure 8.4.: Zoom on the first developing shockfront. The background indicates sur-
face density, colors show the Mach number and the white lines represent
size and location of the slice for Fig. 8.5

.

To get a comparison for the shock properties we reproduced a slightly modified version
of Fig. 9 in Beck et al. (2015a). Fig. 8.5 shows some of the key properties of the initial
shock front. Solid lines represent the result of the simulation with all particles plotted.
Dotted lines indicate the size of the kernel of the particle with the highest Mach number.
The top left panel shows the density profile along the slice to the cluster centers. While the
density shows no indication of a shock front, it is clearly visible in the temperature jump
in the left middle panel. Top and middle panel on the right show shock speed and sound
speed respectively. While the shock speed is a direct output of the shock finder, the sound
speed is calculated in post-processing via Eq. 2.36. This allows for a consistency check, via
calculating the Mach number of every particle ’by hand’. As they match perfectly with the
output Mach numbers we omit overplotting the result here for clarity. The output Mach
number is shown in the bottom right plot. The maximum Mach number is detected to be
M = 3.74 and nicely coincides with the maximum of the temperature jump. This almost
perfectly matches the original results by Beck et al. (2015a), even at the lower resolution.
Finally the bottom left panel shows the ratio between CR pressure and thermal pressure
Xcr. The maximum value reaches Xcr ≈ 3.5 10−3 which is very close to the ideal value
(see Fig. 4.2), albeit a little too low. Concerning the structure of the injected component
we can see that it slightly trails behind the temperature jump, contrary to slightly before,
as in the shocktube tests (Fig. 4.3). This gives further confidence in the applicability of
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Figure 8.5.: Particle properties within the slice indicated in Fig. 8.4.

the model to realistic problems.
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8.2.3. Analysis of a Single Shocked Particle
As a final step we analyze a single SPH particle and look at the injection of the CR
component and its spectral evolution. We picked the particle with the maximum Mach
number of Fig. 8.5.
The injection process can be seen in Fig. 8.6. The left panel shows the detected Mach
number, the middle panel the corresponding injection efficiency η(M) and the right panel
the shock energy and the final injected CR energy. We plot the values for every timestep
and normalize the total time the particle "feels" the shock to 1.
The Mach number panel on the left shows the familiar behavior of the particle running into
the shock, increasing its Mach number as it travels though the shock front and reaching
the maximum Mach number in the center of the shock, as the outskirts of its kernel can
reach both the real up- and downstream properties. Except for a single timestep with a
miss-identification of the Mach number this works very accurately in the first half of the
shock. The second half shows the expected decline as the particle leaves the center of the
shock, but shows considerably more noise. In the middle panel the efficiency shows very
similar behavior, since the efficiency model by Ryu et al. (2019) is fairly linear in this Mach
number regime and the variance in Mach number over the shock is not large. The miss-
identification of the Mach number lead to a detected Mach number below the minimum
one required by the model and therefore the efficiency was zero over two timesteps. While
this is unfortunate, it is only a small error over the course of the injection process. In the
right panel we can see that the shock energy stays very constant over the entire injection
phase, which again shows that our correction for the kernel broadening (Eq. 4.3) works
very well. The injected energy ECR is therefore also very constant, except for the already
mentioned two timesteps with zero injection efficiency.
Fig. 8.7 shows the spectral and density evolution of the same particle over the whole
simulation. In the top plot we can see the spectral evolution of protons (left) and electrons
(right). We plot normalization of the distribution function as a function of dimensionless
momentum. The colors indicate the time evolution of the simulation. In the lower plot
we show the density evolution of the same particle.
In the evolution of the proton spectra we can see the injection as a single power law at
t ≈ 1.5 Gyrs and the consequent left-shift of the distribution with adiabatic expansion,
as indicated in the density plot. Overall the distribution contains a consistent powerlaw
shape, with two exceptions. First we can see inconsistencies at the high momentum end
of the spectrum. The slopes of the higher momentum bins diverge from the slope of the
initial spectrum. While this is aesthetically unpleasing, the kinetic impact of the highest
momentum bins is too small for this to impose a large error.
What poses a problem is the rise in the low momentum bins over the last three snapshots.
As this happens in both protons and electrons it is either a problem with the shock
injection, or the adiabatic changes. Since the particle did not experience any more shocks
according to the output file, and the slope of the zeroth bin is larger than 12, which
can’t be achieved by a shock of minimum Mach 2.25, which is required by the efficiency
function, we attribute this issue to the adiabatic changes. More specifically since the
injection norm is defined by the number density and the norm is most likely the source
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Figure 8.6.: Properties a particles experiences over the first shockfront.

of the error we expect the error to be in the number density calculation. This needs to
be examined further in future work.
The evolution of the electron spectra shows an additional problematic feature at the high
momentum end. This feature must therefore come from the synchrotron and inverse
Compton cooling. One reason of that may be a lack of timestep constraint. Since the
high momentum cooling is so efficient we can’t resolve the update of the spectral cutoff
with the usual simulation timestep. Miniati (2001) notes that to accurately follow the
evolution of the high momentum regime the timestep ∆t must follow

∆t ≤ 0.1τ (8.3)

where τ is the cooling time of synchrotron and inverse Compton cooling at the spectral
cutoff. Considering Fig. 1.4 we can see that the cooling time at the highest momentum of
p̂max ≈ 1Myr this would lead to a maximum timestep of ∆tmax = 0.1Myr. We note that
this is about one order of magnitude below the mean timestep of the merger simulation.
Additionally we find that the error in the high momentum cooling is emphasized by the
spectral slope. As seen in Fig. 6.1 the cooling losses with a slope smaller than 4.0 are
more prone to error. Considering the Mach 3.75 shock in the merger we would expect
from the analytic solution a compression ratio of xs = 3.3 and with that an injection
slope of q0 = 4.3. In the simulation data at t ≈ 2 Gyrs we find a mean slope of q̄ = 3.47.
Part of that can be explained by our slope correction, introduced in Sec. ??. Assuming
again a correct compression factor from the shock finder we would expect a slope due to
our correction factor of q0 = 3.91. This means that the compression factor measured by
the shockfinder is slightly overestimated in physical simulations and that our correction
factor should not applied in this case to not increase this error. We will need to revisit
this problem in future work.

86



CHAPTER 8. CLUSTER MERGER 8.2. RESULTS

100 101 102 103 104 105 106

p/mpc

105

108

1011

1014

1017

1020

1023

1026

f(p
)

100 101 102 103 104 105 106

p/mec

1024

1026

1028

1030

1032

1034

1036

1038

f(p
)

1.0

1.5

2.0

2.5

3.0

3.5

t[
G

yr
]

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t [Gyr]

10 6

10 5

10 4

10 3

10 2

n e
[N

e/c
m

3 ]

Figure 8.7.: Top: Spectral evolution of a single particle. Left: Protons. Right: Elec-
trons.
Bottom: Density evolution of the same particle.

87





9. Conclusion and Outlook
In this work we presented a novel implementation of an on-the-fly Fokker-Planck solver
to model spectrally resolved Cosmic Ray physics in cosmological simulations. We will
summarize the key results of this work in the following and will address open problems
that need to be revisited in future work.

9.1. This Work
In Sec. 4 we showed the implementation of CR injection due to shock acceleration. We
presented four different models for Mach number dependent acceleration efficiencies. Tests
showed that we agree very well with the analytic solutions and can capture the post-shock
CR pressure component accurately, while showing high numerical stability even at very
strong shocks. Additionally we introduced an efficiency parameter depending on the angle
between shock normal and magnetic field. We showed that our description is capable of
capturing the angle with high accuracy and we again agree very well with the analytic
solution. The slope of the injected spectrum is also captured within a reasonable margin
by our implementation. Lastly we tested a subgrid model for CR injection at supernova
shocks. This model does not yet deliver satisfying results and needs to be revisited in
future work.
Sec. 5 discussed our implementation of adiabatic changes. We showed that our treatment
of boundary conditions leads to a consistent preservation of the shape of the distribution
function. For adiabatic compression this introduces a systematic error of ∼ 15%, which
is to be expected, since our implementation of compression does not conserve CR energy.
Nonetheless we found in shocktube tests that the total energy is still conserved and our
coupling to the hydro solver stays stable even for large Mach number shocks. In the case
of adiabatic expansion due to cosmological expansion our model also stays stable and
preserves its powerlaw shape within a small margin of error. Still we find a small error in
the CR energy under expansion, which has to be analyzed further in future work.
For the radiative losses in Sec. 6 we found excellent agreement in the standalone tests.
The model converges nicely to the analytic solution with increased bin count. We find
that the agreement for models with 24 bins is acceptable, while with 48 bins and above
it shows good convergence. Additionally the scaling tests showed that our improvements
to the slope finding method are rewarding and that our model scales very well with com-
putational cost. The cost in memory needs to be addressed in future work, but has many
options for improvement at this point.
The re-acceleration of particles due to turbulence discussed in Sec. 7 shows in principle
promising results, but needs to be revisited in future work, as our current treatment as
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an additional loss mechanism is likely not valid. Regardless of the implementation in the
Fokker-Planck solver our time-dependent calculation of D0(t) gives first promising results
and needs to be tested further in real simulation setups.
Finally in Sec. 8 we used most of the effects implemented in the model to run an ideal-
ized galaxy cluster merger simulation. This test showed overall promising results. The
injection worked even in more complex environments, adiabatic expansion shifted the
distribution function as expected and radiative losses for electrons lead to the expected
spectral cutoff. Nonetheless we still found some issues, like the wrong slope due to our
unnecessary slope correction at injection, noise in the high momentum radiative losses for
electrons and an unexpected upturn of the distribution function at low momenta towards
the end of the simulation. All these issues need to be investigated further.
All in all we are confident that this work lay the foundation for many interesting projects
in the future.

9.2. Future Work
To expand this model we will need to add some more effects in the near future.
First and foremost we will need to implement some form of spacial diffusion. This will
be based on the anisotropic thermal conduction model by Arth et al. (2014). Preliminary
studies could be done with a simple Bohm-like isotropic diffusion model, as a proof of
concept. It would also be worth to study different diffusion models, as recently done by
Hopkins et al. (2020b) and different diffusion velocities, see e.g. Holman et al. (1979).
Next we will need to implement Coulomb losses for electrons and protons to mediate the
kinetic impact of protons on the surrounding gas and to accurately trace the spectrum of
electrons.
In addition to that the treatment of catastrophic losses and production of secondary
electrons needs to be implemented. This can be based on the work by Dolag and Ensslin
(2000).
Furthermore we will need to reformulate the solver to use comoving coordinates and
code units. Currently we convert all required properties into physical CGS units. This
works well, as we saw in the case of the Bertschinger test for adiabatic expansion, but is
computationally expensive. A basis for this is given in Pfrommer et al. (2016).
On the post-processing side we will need to implement the construction of synchrotron
spectra and radio emission from our CR electron spectra into the SPH mapping code Smac.
We started some preliminary work on this for the similar code P-Smac2, which showed
promising results, see Fig. 4.11. This will allow us to construct mock radio observations
from our self-consistently evolved electron spectra and compare those to real observations.
Finally we will need to invest some more time into performance and memory consumption
improvements to meet the ambitious science goals of the upcoming COMPASS simulation
set.
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IV. Appendix

IV.1. Technical Setup of Sod Shocktubes
As a reference for future work this section gives a short manual on how to set up simple
shocktubes in SPH. These shocktubes were first investigated by Sod (1978), therefore
they are often simply called "Sod-shocks". Sod-shocks start out as a contact discontinuity
in density and pressure with all particles initially at rest. The first step is to obtain the
contact discontinuity in density. The right-hand side of this contact discontinuity can be
easily obtained by constructing a cube with a side-length of 1 and almost any number
of particles. For SPH one only has to account for the minimum number of neighbors in
the kernel to avoid self-interaction. To avoid numerical noise it is best to use a glass-like
distribution for the cube. This glass-like distribution can be obtained by setting up the
particles in a grid (or randomly) and letting it relax by running the cube in a SPH code for
a long while. The run should be reset a number of times by looking for the snapshot with
the lowest mean velocity of all particles, setting all particle velocities of that snapshot to
zero and using this file as a new IC. This process should be repeated until the particles
show hardly any movement after the end of the simulation. This guarantees that the
particles are as force-free as possible and have found an equilibrium state.
The left-hand side of the density discontinuity can be obtained by using the same cube
from the right and stacking it in such a way that a new large cube consisting of four small
cubes is constructed. The particles distances are then divided by two, to assure that the
large cube also has a side-length of one. This then results in the common density jump
of ρL = 1.0 to ρR = 1/8.
These two boxes can then be used to build a tube by stacking them in x-direction. The
number of stacks is arbitrary, although one should take care that the tube is long enough
to avoid interference from the back-running wave. Since shocktubes have to be run with
periodic boundary conditions there are two contact discontinuity, one in the middle of the
tube and one where the ends of the tube are connected by the periodicity. Commonly a
number of 70 stacks is used to get a tube of length 140.
After the tube is set up the pressure jump can be constructed from the equation of state

P = (γ − 1) ρ U (IV.1)
and the resulting U values can be written to the IC file.

IV.2. Exact Riemann Solver
A Sod-shock can be split into 5 zones, as shown in Fig. IV.1.
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CHAPTER IV. APPENDIX IV.2. EXACT RIEMANN SOLVER
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Figure IV.1.: Fully developed hydrodynamic shock with a target mach-number of
Mach 10. Blue solid lines show the simulation result of the OpenGad-
get3 code, while red dashed lines indicate the ideal solution.
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CHAPTER IV. APPENDIX IV.2. EXACT RIEMANN SOLVER

(1) Initial state left

(2) Rarefaction state

(3) Constant state

(4) Post-shock region

(5) Initial state right

Initial conditions need to contain: P5, P1, ρ1, ρ5. Optionally U instead of P.
This also gives speed of sound at both ends of shock tube:

c1,5 =
√
γth

P1,5

ρ1,5
(IV.2)

To find P34 solve:

2
γth − 1

c1

c5

1−
(
P34

P1

) γth−1
2γ

 =
(
P34

P5
− 1

) √√√√ 1− η
γth

(
P34
P1

+ η
) (IV.3)

with

η = γth − 1
γth + 1 . (IV.4)

Now we can solve the velocity component in the post-shock region:

v34 = 2c1

γth − 1

1−
(
P34

P1

) γth−1
2γ

 (IV.5)

Next we solve the post-shock density, defined by the Mach number and the adiabatic
coefficient:

ρ4 = (γth − 1)M2

2 + (γth − 1)M2 ρ5 (IV.6)

Final ρ component:

ρ3 = ρ1

(
P34

P1

) 1
γth (IV.7)

Other velocity components can now be solved:

vs = v34

1− ρ5
ρ4

(IV.8)

vt = c1 −
v34

1− η (IV.9)
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CHAPTER IV. APPENDIX IV.3. ADDITIONAL FIGURES

IV.3. Additional Figures

IV.3.1. Section 2
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Figure IV.2.: Result of a Mach 3 shock with Gadget (green) and Arepo (blue). For
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IV.3.2. Section 4
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IV.3.3. Section 5
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IV.3.4. Section 6
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IV.3.5. Section 7
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Figure IV.10.: Initial condition of the cluster merger simulation with substructure.
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