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1 Introduction

This thesis examines a set of modern programming
techniques, applying them to simulations of star-
forming molecular clouds. It is composed of three
main parts, each handling a distinct topic:

• Methods to efficiently set up, export, start,
and analyze runs of a Smoothed Particle Hy-
drodynamics (SPH) simulation. Example im-
plementations to use and test the Espresso
simulator (introduced in the next section) are
presented.

• Simulations of the radial density distribution
of isothermal star-forming filaments using a
custom one-dimensional grid simulator with
cylindrical symmetry.

• Assessment of the F# programming language,
Common Language Infrastructure (CLI) and
the functional programming paradigm in gen-
eral for use in physical applications.

The motive for a focus on programming practices
stems from the increasing performance of simula-
tors – and computational systems in general. When
an expert group sets up and runs a simulation over
months, it may not be significant how much time
was spent on realizing particle distributions, man-
aging simulations or transforming data. However,
when a single student on a typical machine is able
to run a simulation, such overhead may dominate
the overall time spent.

The following analyses and experiments aim to
manage and run simulations quickly, flexibly and
with a lower error rate. The methodology is given
deliberate emphasis compared to the algorithms
and results, since its importance rises as simula-
tions themselves become more efficient. I would
like readers to see this shift as the overall theme
that connects the only loosely related topics of this
thesis.

1.1 SPH, GPGPU, and Espresso

Smoothed Particle Hydrodynamics, introduced by
Gingold and Monaghan in 1977 [18], uses the po-
sitions and properties of particles to fully describe
the state of a simulated fluid. Spatial grids, the
central data structure to many other types of sim-
ulators, are not part of the representation; if they
are used at all, they only serve as a performance op-
timization. This can necessitate additional steps to
relate SPH states with analytical or abstract mod-
els; it can also complicate tasks such as visualiza-
tion or the placement of particles. Chapter 2 han-
dles this topic in detail.

The Espresso simulator is a not yet publicly re-
leased SPH simulator supporting general purpose
graphics processing unit (GPGPU) execution that
is currently under development by Martin Zintl
[34]. GPUs are able to massively outperform CPU-
based options, allowing simulations featuring mil-
lions of particles to run with reasonable speed on
workstation computers. Much of the material pre-
sented in this thesis, especially in Chapter 2, is re-
lated to the testing and development of Espresso.

There is no official release of Espresso at the time
of this writing. This thesis’ code version control
currently hosts Espresso; contact Martin Zintl [34]
for information on a public release or me for ac-
cess. Since the combined repository may contain
unpublished material, permission to use code from
this thesis by people outside the CAST group of the
USM Munich requires Martin Zintl’s consent. I can
separately provide the code relevant to this thesis,
which runs independently but is unable to run SPH
simulations without Espresso.

1.2 Stability of isothermal filaments

The exact processes leading to star formation in
molecular clouds are subject to ongoing debate.
Observations of star-forming filaments in molecu-
lar clouds, conducted in a 2011 study by Hacar et
al. [13], largely motivated Chapter 3. Studying
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1.3. Evolving views on programming

Figure 1.1: Shows a star-forming filamentary structure in the Taurus molecular
cloud, as observed by the APEX telescope [2], in a visible-light image super-
imposed with submillimetre-wavelength observations (orange glow). Individual
filaments of this cloud are the subject of studies by A. Hacar et al. [13] which
in turn motivated simulations of such filaments’ radial density profile detailed in
Chapter 3. Credit: ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized
Sky Survey 2. Acknowledgment: Davide De Martin.

the L1517 dark cloud in Taurus, pictured in Figure
1.1, it has found filaments to be surprisingly quies-
cent, featuring coherent velocity distributions very
different from their turbulent environment. This
gives new insight into the star-forming processes in
such molecular clouds, as dense cores that collapse
into stars may be formed by fragmentation of such
velocity-coherent filaments.

It also allows for more specific approaches in
the theoretical modeling of filaments’ structure,
strengthening the view that isothermal cylinder
models apply. Investigating the validity of this
theory and applying it in numerical simulations of
gravitationally supported filaments’ radial profiles
is the main topic of Chapter 3.

The model for comparison is an analytical equi-

librium solution of the infinite, self-gravitating
cylinder by J. Ostriker [24]. It has finite mass per
length, as its density scales with r−4 for large r.
Section 3.2 discusses its statements for the isother-
mal case and some of its implications for pressure-
supported filaments. The results of these analyti-
cal considerations are then reproduced in dynam-
ical simulations, under slightly dampened motion
and sufficient run-time to relax into a stationary
distribution.

1.3 Evolving views on programming

Recent years have seen a shift shift in program-
ming paradigms, the thought models that gov-
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1. Introduction

ern programming and the design of its languages.
Classical languages like FORTRAN have become
more object-oriented, while object-oriented lan-
guages such as C# have become more functional.
The evolution from C to the more object-oriented
C++ to the introduction of some functional fea-
tures in C++11 is an example of this development.

This thesis uses F# for most of its code and
places an emphasis on functional programming
style, which is briefly introduced in Section 4.2.

Hydrodynamics may be an especially interesting
context for the application of F# and its empha-
sis on the functional programming paradigm. The
book Expert F# 2.0 [7], a learning resource and
reference used for this thesis, begins its introduc-
tion to the concept of imperative programming –
the classical competitor to functional programming
– by naming the simulation of fluid dynamics as
a typical application. Other applications in the-
oretical astrophysics, such as the various n-body
simulations ranging from asteroid orbits to glob-
ular clusters and cosmology, show a similar dom-
inance. While classical, imperative programming
in the style of FORTRAN and its descendants has
certainly been an effective tool, astronomy – and,
in my personal experience, physics in general – is
so firmly in its hands that concepts from object-
oriented and functional programming tend to be
forgotten.

A special feature of F#, which is rarely seen in
this quality even in other functional languages, is
its support of units of measure in code. Implemen-
tations created for this thesis make heavy use of
them. Section 4.5 provides some additional infor-
mation about this.

1.4 Programming jargon

Due to the nature of this thesis, it includes pro-
gramming jargon that may not be in common use
amongst astrophysicists. I suggest that readers
who are not at all familiar with the concept of im-
mutability or functional programming read Section
4.2 early. It is only a rough introduction; trying to
explain the entire field of functional programming
within this thesis is not feasible. Still, it may help
explain some of the atypical design decisions in this
project.

Jargon can be especially confusing when it has a
conventional meaning that differs from the intended
meaning, such as the word “functional” when re-
ferring to the functional paradigm. Other terms to
look out for are:

• Method : in object-oriented programming, a
method is a function tied to an object instance.
In the CLI, static methods still bear this name,
even though they are tied only to a type, not
an instance. F# supports and distinguishes
between functions and methods, so the text
uses either term depending on the implemen-
tation.

• Record : an F# record is a data structure ag-
gregating named (and typed) values. Records
are often immutable. F# provides useful syn-
tax for creating a modified version of a record.
Many data types in this thesis are imple-
mented as records.

• Module: In F#, modules are a tool for struc-
turing. They group code and, unlike other
types, allow to expose functions (as opposed
to methods).

• CLI and CIL: The swapped letters may seem
like mistakes, but these are different – though
related – concepts. The CLI is the Common
Language Infrastructure; it forms the platform
F# is built on. Section 4.3 introduces it. The
CLI outputs a byte-code after its first compi-
lation step that is called CIL, the Common In-
termediate Language. Whether or not this pair
of abbreviations is sensible, it is considered
proper terminology and will be used through-
out this thesis.

1.5 Weighing optimization against
simplicity

When designing a project such as this one, relia-
bility and simplicity sometimes conflict with per-
formance. In most of these cases, I did not favor
performance. For instance, all floating point calcu-
lations are done in double precision and there is no
option to change this. Including such a “precision
switch” would, in my opinion, cost users more time
than the faster program gains them. The addi-
tional time-consuming steps users need to take due
to increased complexity can be subtle and tricky to
predict. Sticking with the example of a precision
switch: much of the code would be affected and re-
quire additional documentation. Users would have
to keep precision in mind as an error source. Type-
safe implementation would become more compli-
cated. The program run-times were just not long
enough to justify such optimization. In a similar
vein, random number generation uses an entropy
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1.5. Weighing optimization against simplicity

source of cryptographic quality by default. Ex-
tended versions of the library functions allow the
user to change this, but in most cases, that should
not be necessary. The cryptographic generator is
reasonably fast, yet a single case of artifacts due
to bad randomness can cost a lot of time. (See
Section 2.2 for a description of the used random
number generation.)

Generally, physicists’ time is a rather expensive
resource compared to CPU time. It should be in-
cluded in speed considerations. Setup and analysis
scripts usually take by far more time to write than
to run. When facing the option of improving a pro-
gram’s speed at the cost of adding complexity, it is
easy to underestimate the cost of the complexity.
As Donald Knuth famously said, “premature opti-
mization is the root of all evil.” Even though this
is a demonstration code without real users, it tries
to balance between performance optimization and
simplicity of the interface that users see – to respect
the constraints a project with multiple active users
would have. (And not be evil.)
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2 Functional setup and analysis of SPH
simulations

Modern programming methods have the potential
to improve the efficiency of writing code in compu-
tational astrophysics. The SPH setup and analysis
F# library that was written for this thesis, called
SPHS library in the following, is intended as a con-
crete example of how this can be achieved. It pro-
vides tools and data structures that can be called
from any F# program, or any CLI program when
abandoning units of measure. It aims to allow ef-
ficient combination of these tools, both with each
other and external programs.

One of the SPHS library’s tasks is to allow the
user to set new initial conditions as quickly as pos-
sible. The most intuitive way of defining initial
conditions is often by analytical functions, such as
density distributions, particle distributions, or ve-
locity fields. Unlike grid-based simulators, SPH
simulators cannot directly take such distributions
as input. This leaves it to the user to create
particles that approximate the desired distribu-
tion. To speed up the creation of initial condi-
tions, the SPHS.Make module and a space parti-
tioner are introduced. They provide functionality
to easily specify grids, glasses, and arbitrary distri-
bution functions. The outputs are 3D coordinate
sequences which can easily and flexibly be trans-
formed into particles.

2.1 Program structure and
intended workflow

Many tools, such as the common plotting programs
Gnuplot [11] and Octave [22], are written in one
language and used in another. Their front-end lan-
guages are often oversimplified; they demote the
user to a second-class citizen who does not have ac-
cess to the full capabilities of the program’s code.
The user ends up writing analysis code in a differ-
ent language, to then export the results into the
tool’s inferior language. The language is only used

because it exclusively offers certain features, not
because of its quality. The SPHS library attempts
to avoid this. By using a well-designed general-
purpose programming language as the front-end,
it allows the user to introduce new features in
the same way the library functions were written.
Users can integrate external tools by writing wrap-
per functions, in the same way the library func-
tion Simulation.RunLocal can compile and run
the Espresso simulator. Formally, there is no no-
table difference between using the library and ex-
panding the library. Both simply add new defini-
tions. Only the last step differs, in which a desired
computation is fully defined and executed.

The library loads the following definitions in or-
der:

• the EBT data format (See Section 2.5)

• CGS base units and astrophysical unit values
(parsec, M�, G, . . . )

• geometry types for 3D vectors, cubes and
cuboids

• a random number generator class (see Section
2.2)

• an SPH particle type and thread-safe ID gen-
erator

• tools and data types to run Espresso

• the Make module and partitioner (See Sections
2.3 and 2.4)

• 3D point cloud rendering and 2D function plot-
ting (see Section 2.6)

• a 1D grid simulator featured in Chapter 3

Figure 2.1 shows an overview of the library’s setup
and analysis features. Even though it shows addi-
tional programs only as tools to process output, all
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2.2. Random number generation

Figure 2.1: The data pipeline of the SPHS
library in its intended standard use case.
Arrows show information flow; grey ar-
rows pass behind boxes. User-written parts
are green, the SPHS library is blue with
the EBT part violet, and the native/GPU
Espresso simulator red. Usage of noisy
placement by Make.glass is omitted as
an irrelevant implementation detail. The
Rules record has two colors as its structure
is predefined, but its content set by the user.

user code can call external libraries if necessary –
both CLI and native code (e.g. using F#’s Native
Interop features).

The graphic shows how all functionality is ar-
ranged around the main program that is written
by the user. Assumptions on this program have
been avoided wherever possible; it could run mul-
tiple simulations or only use a subset of the li-
brary, using custom code in place of the remain-
der. Though its features rely on some common
definitions such as the geometry types, the library
consists of many parts that are independent in us-
age. Five such parts are visible upon closer in-
spection of Figure 2.1: continuous placement, ho-
mogeneous placement, simulation interaction, func-
tion plotting, and 3D rendering. In addition, the

data types, random number features, and EBT file
format could be used independently. (Though the
other library features could not be used indepen-
dently of these.)

Settings for Espresso are specified using the Rules
record. (Appendix A.3 has a list of implemented
rules.)

2.2 Random number generation

Many of the algorithms presented in the following
rely on randomness. For convenient use of ran-
dom numbers, a helper class is provided. It offers
the creation of double-precision floating-point num-
bers uniformly distributed in [0, 1] as well as three-
dimensional vectors with unit-of-measure support,
uniformly distributed in cubes or cuboids defined
by using the library’s vector, cube, or cuboid types.

The class is not thread-safe, but can be instanti-
ated multiple times for parallel usage. This is done
via one of three factory methods, which differ in
their entropy sources:

• Standard (): a cache-enhanced wrapper over
RNGCryptoServiceProvider, a class of the
CLI Runtime that creates very high quality
random sequences.

• Well512 seed: a deterministic pseudo-
random entropy source that returns the same
sequence for the same value of seed, which is a
64-bit integer. This is useful to create exactly
repeatable processes

• Well512 (): similar to the seeded version, but
uses the standard entropy source to obtain the
seed.

Performance between the entropy sources is hard
to judge as it varies, depending on compilation op-
timizations, CLI Runtime, operating system, and
hardware.

Caching code that greatly improves performance
and the Well512 pseudo-random generators have
been supplied by Christian Winnerlein, whom I
thank for his support. I also thank him for warning
me of serious flaws in the .NET library’s standard
random number generator, which caused me to re-
move it from the selection.
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2. Functional setup and analysis of SPH simulations

2.3 Setup of homogeneous shapes

Grids

The library’s simplest shortcut function,
Make.grid, creates any type of grid that can
be expressed by a cubic primitive cell. The param-
eters it takes are a grid type, a bounding box, a
binary distribution and the desired output density.
The grid type is provided either by picking from
three common grids – simple cubic, face-centered
cubic and body-centered cubic – or via a list of
occupied unit cell positions.

The algorithm scales the unit cell to have the
desired particle density and repeats it periodically
in all directions of space. It then fills the result
into the given bounding box, yielding all positions
where the binary distribution function returns true.
This allows it to cut shapes from the grid. The co-
ordinate system of the grid unit cell aligns with
that of the output. Make.grid does not attempt
to approximate the distribution function, calling
it for every possibly valid grid position inside the
bounding box. Therefore, if large voids exist in the
bounding box and run-time should become a prob-
lem, performance can be increased by using smaller
bounding boxes, calling Make.grid multiple times
for separate objects if needed.

Glasses

It is commonly required to fill shapes with a glass,
which is a fairly relaxed particle distribution that
shows no distinct grid axes. Glass is useful since
a simulation using it neither involves a sudden re-
laxation in the beginning nor shows anisotropic be-
havior due to the small-scale particle distribution.

Similar to Make.grid cutting from a grid, cut-
ting from a glass distribution is possible with
Make.glass. The function’s signature is analogous
to its grid-based counterpart, except that it – nat-
urally – takes no grid type. Instead, it needs the
simulator settings – provided via a Rules record –
and a boolean determining whether to generate a
new glass or use a cached one.

Despite being similar to the grid equivalent in
usage, internally glass creation is a comparatively
lengthy process. First a cube is randomly filled
with particles, then the result is exported and
shifted around by Espresso in glass creation mode,
so that the glass corresponds to the physical set-
tings of the simulation. The result is then imported
back to be used as an infinite periodic glass. From
this glass, the desired shape is cut. A typical next

step would be to generate particles from these glass
positions and export them again to finally start the
physical simulation.

To initially fill the cube, the “noisy” semi-
random placement algorithm for arbitrary distribu-
tions (described later in this chapter) is called with
a homogeneous distribution. This creates a fixed
amount of positions, currently set to 10,000, at each
of which a generic SPH particle is made. To ma-
nipulate these particles in Espresso, simulator rules
are prepared by copying the rules given as a param-
eter, with the following rule changes: the simulator
output is reduced to positions, boundaries are set
to the cube in which the particles were placed, glass
steps become 1,000 and physical steps 0, periodic
boundary conditions are set on all dimensions, and
gravity is disabled. Note that this implementation
may require to be edited if further simulator features
are introduced. Any member of the rules record will
be copied into the settings of the glass creation run,
so the implementation should disable all available
settings that can interfere with glass creation.

The new rules are exported, together with the
generic particles, into an EBT formatted file (see
Section 2.5), which is passed to Espresso. After the
simulator finishes compiling and running – Espresso
may need to recompile itself depending on the set-
tings – its output positions are re-imported. The
simulator output is also kept on disk as a cache. If
a cache file is present and the glass generation func-
tion is called with the parameter for enforced glass
generation set to false, all steps up to the import
from file are omitted and the cached glass is used.

Now that we have a periodic cube of glass, the
next steps are identical to Make.grid: the glass
is infinitely repeated and positions accepted if they
match the distribution. In fact, Make.glass should
call Make.grid at this point. It does not merely
for historical reasons. This restructuring step was
omitted due to time constraints concerning testing.
The current implementation is equivalent though;
the change would only remove a repetition of code.

Make.glass is intended for 3D use but does have
minimal handling of 2D simulations. It does cor-
rectly recognize 2D rules and disables z-repetitions
accordingly. However, due to the unit-of-measure
system being fixed at compile time, density units
and their interpretation remain three-dimensional.
To comfortably use this feature in 2D, the function
could be split into a 2D and 3D variant with differ-
ent unit-of-measure signatures.
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2.4. Placement of arbitrary distributions

2.4 Placement of arbitrary
distributions

The general form of a distribution is a density func-
tion over space. Most such distributions cannot be
reasonably approximated by homogeneous shapes
as done in the previous section, so a more general
method is required.

A simple but rather slow random placement algo-
rithm works as follows: it generates pairs of random
positions and numbers between 0 and the maxi-
mum of the density distribution. For each such
pair, it looks at the density distribution at the ran-
dom position and compares it to the random num-
ber. If the random number is below the distribu-
tion, this position is accepted into the output, oth-
erwise it is discarded. This process is repeated until
enough positions have been found. This is feasi-
ble for roughly homogeneous distributions, but be-
comes very inefficient if empty space or high peaks
in the distribution are involved. Since the algo-
rithm must account for the possibility of hitting a
peak in the distribution, the probability of plac-
ing a particle after randomly selecting a location
elsewhere becomes very low. This can make this
method of placement unacceptably slow. Another
inconvenience is that the maximum of the distribu-
tion is required from the start to run the algorithm.

The SPHS library provides quick random place-
ment following an almost arbitrary density distri-
bution. It is a two-step process: first, the distri-
bution function is examined to create an object
roughly describable as a partition of space, orga-
nized for particle placement. In the second step,
this partition object is used by a placement algo-
rithm, of which two are introduced, to get the final
positions. For a given use case, it is fairly easy
to wrap the process into one function that takes a
physical density and outputs particles. The gen-
eral implementation presented here is agnostic to
its physical use case to improve flexibility; it could
in principle be used for other distributions than
particle density.

This is actually the third random placement algo-
rithm implemented for this thesis. The first was a
single-step system that had similar abilities but was
replaced due to its excessive parameter complexity,
while the second was a different formulation of the
version presented in the following. Neither is of
special interest as their entire functionality would
be redundant with the library functions introduced
in this chapter.

As an example, let us define a disk with expo-

nentially declining density in both its radius and
distance from the disk plane. This is roughly what
one might find in a spiral galaxy’s disk. Our goal is
to obtain a particle distribution that approximates
it, as shown in Figure 2.2. A density distribution
can be expressed as an F# function that maps a
3D position to a dimensionless positive value:

let disk (p : Vector3<cm>) =

let r = (p.WithY 0.0<_>).Length()

let h = abs p.Y

exp (-h / hScale - r / rScale)

This function takes a 3D position vector and maps
it to the resulting density. In this case, we decide
to use CGS units for the disk, hence positions are
denoted in centimeters. The disk lies in the xz-
plane, with hScale and rScale defining the scale
heights in cylindrical axial and radial direction re-
spectively. Note that this function makes no state-
ment about the absolute density, but only about
its relative distribution in space, so multiplying the
last expression with a constant factor would not
yield a different distribution.

Figure 2.2: Output positions of the parti-
tioner using a distribution function expo-
nential in xz-radius and y-direction. See
Figure 2.3 for the space partitioning used.
See Figure 2.7 for a radial quality check of
the distribution.

Partition

To raise the efficiency of particle placement, it is
useful to distinguish interesting volumes of space,
such as an irregular surface, from volumes of space
with a simple distribution, such as empty areas.
This is the purpose of the partitioner. It splits
space into cubes similar to refinement in an oc-
tree, examining each cube to determine whether it
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2. Functional setup and analysis of SPH simulations

is interesting, meaning difficult to use for random
placement. It refines such cubes into smaller cubes
until either they are no longer interesting or their
density integral is estimated to be small compared
to the total distribution’s integral.

Cubes are examined by sampling the distribu-
tion at random positions. The algorithm tracks
the amount of samples, the maximum value found,
and the aggregate of all found densities. The aver-
age density divided by the maximum density is the
efficiency for random placement: it is equal to the
probability that a generated position is discarded.
In overview, a refinement step:

• obtains an estimate of the global density inte-
gral from the previous step

• distributes unfinished cubes to worker threads
for parallel handling

• splits unfinished cubes into 8 smaller cubes

• samples the new cubes

• discards cubes that are empty for all samples

• regards cubes as finished if their expected effi-
ciency is above the target value

• regards cubes as finished if they hold little con-
tent compared to the global distribution

• queues remaining cubes as unfinished work for
the next step

This means that the partition is not an actual oc-
tree, but only the last layer of it with empty boxes
removed.

Figure 2.3: Partitioner output of the exam-
ple disk. The outer cubes do not get deleted
as they are not perfectly empty; a particle
may appear in them with very low proba-
bility.

Figure 2.3 shows the cubes created by the par-
titioner by visualizing six edges per cube. Refine-
ment parameters are set to: an efficiency target
of 40%, a density integral limit of 10−5 of the to-
tal estimate (this defines “holding little content”
in the previous list) and 8M minimum samples.
These settings work for many distributions; they
are used when calling the shorthand version of
GeneratorPartition.Create.

Binary probability tree

The partition’s final data structure should be suit-
able to select boxes randomly in accordance with
the density distribution. To achieve this, each cube
is assigned a unique interval within [0, 1] and placed
in a binary tree sorted by these intervals. Any value
∈ [0, 1] maps to exactly one cube and the size of
each cube’s interval scales linearly with the proba-
bility of random position ending up in it if placed
according to the given distribution. The binary
search tree is constructed on top of the arbitrar-
ily ordered cubes. Nodes contain two sub-trees and
the boundary value separating the intervals of each.
This allows navigating to the cube corresponding to
a value in O(log n), where n is the number of cubes.

Leaves of the binary tree hold two pieces of infor-
mation: the cube’s location and the maximum sam-
pled density. Other statistics are discarded. The
partitioner outputs only the binary tree, which is
not ordered with respect to space.

Random placement

Given the binary tree introduced above, using it for
random placement is simple. First, the algorithm
chooses a random number in [0, 1] and navigates to
the corresponding box. Then it tries to randomly
place a particle until it succeeds: it chooses a ran-
dom location in the cube and a random number
between 0 and the distribution maximum of the
cube. If the number lies below the density at the
tested position, the position was found.

The implementation has some additional tweaks.
It is trivially parallel for multiple particles: a
thread that is generating positions – using its own
random number generator – does not interfere with
other threads that use the same partition. There-
fore, random placement runs multithreaded by de-
fault. The program also limits placement attempts
after a cube has been selected, eventually choosing
a new cube if it does not succeed. This way the
program terminates in reasonable time if the par-
titioner, by chance, hits a very small peak in an
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2.4. Placement of arbitrary distributions

Figure 2.4: Partition and randomly filled positions of a hard ball distribution.
Higher refinement is only necessary for volumes containing the surface: cubes
further outside are empty and get deleted, those further inside are efficient for
placement anyway.

otherwise empty box and the placement algorithm
fails to find it.

Using random placement on the disk defined at
the beginning of this section, which is done by using
Make.random on the partition of Figure 2.3, cre-
ates a distribution such as Figure 2.2. The com-
plete process to obtain randomly placed particles
for SPH would be:

1. Define the distribution function

2. Construct a GeneratorPartition using one of
its Create methods

3. Call Make.random (or Make.random ex for ad-
ditional options) with the partition and desired
position count. (An alternative algorithm will
be introduced later in this section)

4. Map the positions to particles using a cus-
tom mapper function that determines particle
properties.

Quality test and benchmark

To test the algorithm under extreme conditions and
compare implementations, a hard-to-select bench-
mark distribution was created. It is a combination
of two shapes: the outer shape is a fractal that cuts
lengths into thirds in each step and dimension, set-
ting the density to zero in some of the 27 result-
ing cubes. The inner shape consists of sharp-edged

fragments of a thin spherical shell. Since steps of
the partitioning algorithm cut lengths into halves,
forming eight cubes each time similar to an octree,
the partition does not align favorably with the frac-
tal – and not at all with the shell fragments.

Figure 2.6: Benchmark output distribution

Figure 2.5 shows a partition based on the com-
bined distribution. Thin edges and tips are hard
to select with this algorithm, so it is reasonable to
assume that most physical applications will show
better results than this benchmark. The symmetry
and clear geometry of the shape makes it easy to
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2. Functional setup and analysis of SPH simulations

Figure 2.5: Partition of an extreme shape used to test and benchmark methods
for particle placement. The fractal has 5 iterations of which the first has the shape
inverted. The shell pieces have a width of 0.18% of the box’s edge. Partitioner
samples per refinement layer have been raised to 40M (5 times the current default)
to reliably reproduce this structure.

see flaws in particle placement when displaying a
rotating image of it. This was useful in algorithm
development.

The algorithm produced the output shown in
Figures 2.5 and 2.6 in 45 seconds in cryptographic
random number quality using the Microsoft .NET
4 runtime on an AMD FX-8150 CPU. Performance
was limited by two factors: First, due to a compiler
bug in Visual Studio 12 that appeared late in the
writing of this thesis, enabling tail call optimization
slowed down a frequently run part of the algorithm
instead of accelerating it as it should. Therefore,
the optimization was disabled. Tail calls are a ma-
jor feature of functional compilers; their unavail-

ability may impact performance. This problem is
likely to disappear in future compiler versions. Sec-
ond, an optimization shortcut – skipping sampling
if refinement becomes very likely – was omitted in
the implementation. Fast placement of overly com-
plex distributions was not a priority for this work,
because after the optimization introduced by the
partitioner, the execution time of the presented al-
gorithm was no longer the bottleneck in a typical
simulation.

Reproduction quality of the partition in terms of
the position distribution appeared flawless in tests.
Figure 2.7 shows its precision for the radial direc-
tion of our example disk.
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2.4. Placement of arbitrary distributions

Figure 2.7: Quality check of the disk partition in Figure 2.3, measuring the radial
density distribution, spanning about seven orders of magnitude. The orange line is
the function Ce−r/rScale, where rScale = 2.5kpc is from the input disk definition
and C scales it with particle count. The partitioner was set to its standard
precision of 8M samples (and polled for 20M positions for the plot). Random
noise at low particle density is expected in random placement, so this result can
be considered a perfect reproduction of the input radial density function.

“Noisy” placement

Randomness is not always desirable on all scales.
The random placement algorithm may leave boxes
empty even though it estimated from earlier sam-
pling that they would typically yield multiple po-
sitions for particle placement. This is the correct
behavior for true random placement, where ran-
domness is equally present on all scales. For cases
in which this is unwanted, the noisy placement al-
gorithm presents an alternative. It is similar to
random placement in usage, but reduces the ran-
domness between cubes of the partition.

Let N be the number of particles to be placed.
We want to give each cube at least its fair share of
particles:

nmin(cube) =

⌊
N

´
cube

ρ(~x)dV´
global

ρ(~x)dV

⌋

≈
⌊
N · boxdint

gdint

⌋

Here, gdint is again the partitioner’s global density
integral and boxdint the corresponding estimate

for only the relevant cube. Given sufficient sam-
ples, the last expression approximates the actual in-
tegrals, except for extreme distributions which are
not relevant here. For each cube, the noisy place-
ment algorithm approximates nmin in this way and
generates the according amount of positions. Then
it places the remaining positions randomly.

This implementation is somewhat minimalistic;
it does not remove small-scale noise. This becomes
more sensible when put into context: Espresso al-
lows specifying a number of glass steps to be ex-
ecuted before simulating. These glass steps move
particles a small distance into a more relaxed state
without affecting their velocities. As random place-
ment sometimes positions particles very close to
each other, small-scale relaxation from this unphys-
ical initial positioning occurs when the simulation
starts. This problem can be significantly reduced
by only a few steps of glass-forming movement.
Such local, low-grade glass formation is useful in
conjunction with the noisy placement algorithm,
as it smoothes out any small-scale noise. Combin-
ing the two keeps the distortions to the distribution
caused by glass steps small and retains randomness.
Note though that the current partitioner considers
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boxes with high density “not interesting” if they
are efficient and ceases to refine them. This may
stop noise suppression on medium scales of sim-
ple distributions. Should this library be used in the
future and this feature become important, edit the
interesting (PGenBox<’u> -> bool) function of
the partitioner to consider boxes holding a large
fraction of gdint (the global density integral es-
timate) interesting. The threshold fraction could
become another parameter or be influenced by the
sample count.

There are experiments to allow the passing of
samples of the density function to Espresso. This
data could be used during glass steps to further re-
duce the distortions they cause in continuous distri-
butions. This has not been pursued further for this
thesis, as the increased precision was not necessary.

Possible extensions

In principle, many further placement algorithms
using the partitioner are conceivable. If the pre-
viously mentioned modification to the partitioner
is applied, so that the total density integral per
cube can be capped, the resulting partition could
be used to create especially homogeneous distribu-
tions instead of random ones, for example by simply
sampling down to a number of cubes on the order
of the number of particles. Though this particular
method would not offer very good performance.

An internal setup program of Espresso influenced
by the placement algorithms of this thesis uses a
Peano space-filling curve and makes moves a dis-
tance along it according to the density found at the
previous sampling point. This creates smooth dis-
tributions but has a bias to “jump” too deep into
sudden density spikes. Using the partitioner and
then applying this algorithm to individual cubes,
configured to match the locally desired particle
count, may allow to automatically fill arbitrary dis-
tributions both precisely and without small-scale
tension that needs to be smoothed out.

2.5 EBT data format

To allow the export and import of simulator states
between the user’s program and the simulator, as
well as storage of unprocessed results, the library
uses a custom binary file format named Easy Block
Tree (EBT). The decision to use a new format is
a trade-off: an existing, extensive format such as
HDF5 [14] could perform the same task while pro-
viding tools and compatibility, but would also in-
troduce much additional complexity and provide

features of little importance to the given use case,
such as the ability to efficiently alter files already
on disk. In contrast, text-based formats such as
CSV [5] waste performance and disk space if un-
compressed. Fixed blocks of binary data (e.g. the
GADGET2 format [10]) are not easily extensible,
i.e. may break compatibility on minor changes.
During development done for this thesis, the im-
plementations of the setup scripts, analysis tools
and simulator were often changed independently
and in parallel, so a certain level of compatibility
after changes was useful.

The main features desired for the format are:

• Simple: a small program should be able to
parse files to find and extract a piece of data.
Code complexity should be minimal.

• Compact: large data blocks should be effi-
ciently readable and induce minimal overhead

• Extensible: it should be possible to include ad-
ditional types of data without breaking com-
patibility with existing parsers

• Transparent: the format must allow any data
to be stored without modification

• Indexing: means for quick navigation of large
files should be provided

Structure

The idea of EBT is to only structure data and oth-
erwise be as simple as possible. High-level meaning
of data depends on context and need not be under-
stood by programs working outside this context.

Concretely this means that EBT is recursive:
data is stored in a sequence of blocks, which can
again be a sequence of blocks, and so forth. This
effectively creates a tree-structure, hence the name
block tree. Each block is marked with a block type
ID which signifies the meaning of the data within.
This is where context dependence comes into play:
if a block contains an EBT sequence, the meaning
of IDs inside it depends on the container block’s
ID and consequently on any blocks further up the
hierarchy. Further specification details, such as
whether block order matters or whether IDs are
unique, are deliberately undefined in the general
case to allow exploiting context.

The blocks come in two sizes, one with a 10 byte
header and one with a 3 byte header but a low
limit of content length. Figure 2.8 shows their ex-
act composition. See appendix A.1 for the specifi-
cation.
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Figure 2.8: Composition of EBT blocks. Each block has an ID and indicates the
length of its contents. The format comprises three types of blocks: a small one
limited to 255B length of data, one that allows for large amounts of data, and one
that contains a sequence of smaller EBT blocks. The flags to distinguish between
them are encoded in the sign bit of the ID and long size respectively. The smallest
possible blocks are 3 Bytes in length, end in 9 zero-bits and hold no information
except for their ID and existence.

Index

Fast seeking is provided as an optional extension.
It introduces a complete or partial index of EBT
blocks in a file. A minimal summary of the index
design targets would be: quick, easy to read, flexible
to write. More specifically, it should:

• accelerate navigation to a known address in
an EBT file, where the address is a sequence
of block type IDs and integers that specify the
amount of block occurrences to skip. Such an
address would read similar to “The third planet
in the fifth system in the first galaxy in the
sixth cluster of the file”. Here, planet, system,
etc. would be denoted by block type IDs.

• allow the index to be written such that it in-
duces minimal hard disk overhead (can be read

in one chunk).

• allow flexible writing of the index so that it
need not be completely rewritten on changes
and is not fixed to a position in the file, which
can be inconvenient for certain writing algo-
rithms.

• allow partial indexes; indexing of all blocks is
not required when the index is used.

• not complicate the code that reads the index
unnecessarily.

The indexing feature defines three types of blocks:
an index address block, an index container block,
and individual index blocks. Index blocks can list
block sequences in order, holding each child block’s
ID, position in the file, and the address of its index
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block if present. A top-level container block is in-
troduced that can be used to hold the entire index.
An index container can be written at any position
in the file and pointed to from the first block in the
file.

Enabling a parser to use the index is fairly sim-
ple. It must check whether the first block indicates
an index. If so, it navigates the index instead of the
actual blocks until it either finds what it is looking
for or hits a block that is not indexed. In the latter
case, it enters the lowest block it found by index
and then parses the child blocks normally.

The design idea behind the index is to allow ac-
celerating the most time-consuming seeking opera-
tions without unnecessary interference with the rest
of the format. Allowing to store the entire index at
one location in the file works towards this goal in
two ways: first, it improves performance, as the
entire index can be quickly read from disk in one
chunk. Second, if all sorts of blocks held indexes,
IDs would have to be reserved in all blocks for that
purpose, which is not the case with a central in-
dex. This should typically mean that the index is
written at the end of a file.

The index definition is not confined to this type
of usage though. Since index blocks reference each
other by file address, the sub-index need not be in
the same container. This would make it possible
to pack lots of indexed EBT files into one file and
write a “super index” that jumps to the individ-
ual indexes after the first level, removing the need
to reorganize the individual contained files’ indexes
or to write a second index. All addresses of the
individual indexes would have to be shifted by the
original file’s position in the new container though.

This detail may still be suboptimal, but it is not
relevant for our use case. I consider continuing the
development of the EBT index specification, for a
wider range of uses, after the completion of this
thesis. Generic EBT blocks themselves are already
agnostic to their position in a file, memory, or an
arbitrary stream. It may be useful to modify the in-
dex format to fulfill this condition as well, such that
lower-level index blocks remain valid, independent
of changes in higher-level block positions.

The technical definitions of the index are omitted
here, as it is merely a performance optimization and
longer than the main format definition. Please refer
to appendix A.2 for the specification.

SPH-specific format definitions

Using the abstract format defined above requires
concrete block meanings. A simulation file for

Espresso can be built using the following top-level
blocks:

• a rules block with simulator settings and global
properties.

• snapshot blocks that hold particle data at a
given time within the simulation. Initial con-
ditions of particles are also exported this way.

• the previously explained index container block
and the index address block to point to the
index.

• internal blocks used for Espresso development,
such as a benchmark and a debug block.

Each of these are again EBT sequences; the index
capability was used for navigation. This structure
is used for both input and output of simulations,
with input including the rules block and one snap-
shot block that represents the initial conditions.

Figure 2.9 shows an example structure of an
EBT file containing simulator output. The graphic
shows many different types of information stored,
but depending on the context repetitions of the
same block type can be allowed. As indicated by
the #1 for the snapshot, more snapshots can follow
– at any later position in the file. Importantly, the
EBT format fulfills its purpose of extensibility here.
A hitherto unknown block type could be inserted
anywhere and, unless the local block definition ex-
plicitly forbids it, it would cause no problems in us-
ing the remaining file normally. To my knowledge,
no block currently has restrictions in this respect;
the SPHS library and Espresso should skip over
any additional information they do not understand
without it interfering with their functionality.

A detailed listing of block contents is omitted
here, as it would be excessive and quickly outdated.
While this thesis was written, Espresso was still un-
der development and its format changed frequently.
Its implementation of EBT – and thus also the in-
and output of the setup library – did not yet match
the final draft of the EBT format as seen in Fig-
ure 2.8 exactly: blocks with EBT content output
by Espresso were not yet flagged as EBT formatted
and such flags may cause errors. Also, Espresso
was experimenting with a shortened version of the
index and a variation of the format introducing 2
bit type information. Anyone interested in using
the Espresso simulator is recommended to contact
Martin Zintl [34] for up-to-date information.
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Figure 2.9: Shows the rough layout of an
EBT-formatted output for Espresso. Much
of the content is optional. Espresso can be
set to not output unnecessary information.
When creating input, a file with just the
rules and snapshot top-level blocks is valid,
as is skipping most rules to use defaults.

2.6 Integration of plotting and
rendering

A common method to plot data resulting from the
simulation is to output data points to a file in a
primitive format, such as a sequence of coordinates
in a binary block or in comma-separated text repre-
sentation. Then, a separate plotting program (e.g.
Octave [22], Gnuplot [11], IDL [16]) is executed,
manually or by a separate scripting language. Such
an approach is viable in our use case, but subopti-
mal, especially when coming from a high-level con-
text: the extra conversion step complicates inter-
action between the main program and the plotting
routines.

For this thesis, a simple wrapper over the CLI
library ZedGraph [33] to create 2D-plots was writ-
ten. In addition, a program to interactively preview
simulation output as a 3D pixel cloud was imple-

mented via OpenTK [23] (a thin wrapper over the
OpenGL cross-platform graphics API).

2.7 Usage

Combining the modules of the SPHS library is
achieved by writing a program that uses them in
order. Remembering the slightly convoluted Fig-
ure 2.1 might make this appear more complicated
than it is. In usage, most interactions are imple-
mentation details that happen in the background
and need not be explicitly mentioned in the call-
ing code. A basic simulation can be set up in the
following steps:

• Write basic definitions to be used throughout
the program, such as scaling factors and ana-
lytically known distribution functions.

• Create simulator rules, usually by referring to
a common set of rules and applying changes
where necessary.

• Obtain the particle positions by using one of
the placement algorithms.

• Map the positions to particles with the desired
properties.

• Execute the simulation with the finished rules
and particles. The program waits for it to com-
plete.

• Import results and run analysis code on them,
optionally rendering the distribution or creat-
ing plots.

Figure 2.10 shows a concrete usage example of the
library. It shows an F# function called demo that
defines and executes a simulation. This function
could be declared like this in any F# program, pro-
vided that it has loaded the main SPHS features
and its CGS-based standard units, via open SPHS

and open SPHS.Units respectively. Of course, the
library itself has to be present and referenced so the
compiler can find it.

The example simulation is very similar to the
spherical collapse simulations in the upcoming sec-
tions 2.8 and 2.9. A glass with a particle density of
0.1 per cubic parsec is used to fill a sphere. Each
of the particles has a mass of 103M�, resulting in a
physical density of 100M�/pc3. When defining the
rules, the program copies Rules.DefaultSPH, a set
of rules defined in the library that contains typical
rules for SPH. So any rules that are not specified are
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01: let demo () =

02: let name = "example"

03: let box = Cuboid.CenteredCube (100. * parsec)

04:

05: let rules =

06: {

07: Rules.DefaultSPH with

08: bounds = box

09: dt = 1e4 * year

10: snapshots = 201L

11: enableGravity = true

12: }

13:

14: let ball (pos : Vector3<cm>) = pos.Length() < 40.0 * parsec

15:

16: Make.glass(true, rules, box, ball, (0.1/pc3))

17: |> Seq.map (fun pos ->

18: {Particle.Zero with Position = pos; m = 1e3 * MSun; e = 1e-4 * erg/g})

19: |> Simulation.runLocal rules name

20:

21: Plot.Interactive box name 0 200 0.0 1.0

Figure 2.10: A program that uses the SPHS library to simulate a homogeneous
gas ball. Lines 7–11 define how the simulator settings called rules differ from the
default, where dt is the time between output snapshots. Line 14 defines a boolean
distribution: a ball at the center with 40 parsec radius. Line 16 uses the glass
generator to obtain individual positions, which lines 17–18 map to a sequence
of particles with fixed properties. Note that the pipeline operator |> is used to
pass the previous result to the next expression. Line 19 exports the particles and
rules and runs the simulation, waiting until it finishes and stores the results on
disk (under “example”). Line 21 imports the results and launches an interactive
program to examine snapshots 0–200. The last two parameters influence color in
rendering.

filled with default settings. For example, the equa-
tion of state in the simulation is adiabatic. For the
simulations in Section 2.8, the lines isIsotherm =

true and constEnergy = Some(e) were added to
the rules, where e is the constant specific energy
for the simulation.

To readers not used to functional programming,
the most alien part of the example might be lines
16–17. (These were originally written as one line
that was split due to width restrictions in print, but
either way is valid.) They take the sequence of po-
sitions from the glass generator call above and map
the positions to particles, which are needed for the
simulation in the line below. Map here refers to the
higher-order function, which is a standard tool in
functional programming. It applies another func-
tion – which it is given as an argument – to each
element of a sequence, returning the sequence of

results. Seq.map is the most general (least restric-
tively typed) version of map in F#.

The particle sequence is then passed to
Simulation.runLocal, along with the rules and
a name for output files. This function conducts
the interaction with Espresso. Internally, it first
re-writes selected source files of Espresso and ex-
ports rules and particles into an EBT-formatted
file, then runs a batch file that causes Espresso to
check whether its compilation state matches the de-
sired one – if not, Espresso is recompiled – and runs
the simulation. The function blocks its thread until
Espresso terminates to allow waiting for the results.

The last line imports the results and launches
an interactive colored pixel cloud renderer that can
be used to watch the simulation progress. This in-
teractive renderer is not given much attention in
this thesis because Martin Zintl [34] is working on a
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high-performance volumetric visualization program
for Windows that can read EBT simulation output.
It utilizes DirectX 11 for GPU acceleration and will
provide interactive visualization for upcoming ver-
sions of Espresso.

Line 21 in Figure 2.10 can be seen as a place-
holder for any kind of analysis code. Usually, a
program to calculate properties of the results would
be in its place, such as a comparison between re-
sults and analytical expectations. This is where,
in the creation of this thesis, the plotting features
from Section 2.6 were typically used.

2.8 Test: isothermal spherical
collapse

When the setup library was first used in con-
junction with Espresso, the latter’s gravity imple-
mentation had not been active during recent code
changes. It thus needed testing to ensure that the
changes would not impede correct behavior.

A simple first test of gravity is to simulate the
collapse of a homogeneous sphere with no or neg-
ligible pressure support. This case is especially
suited because the acceleration of particles toward
the sphere’s center increases linearly with the par-
ticles’ distance to the center, keeping the cloud’s
density profile homogeneous during the entire col-
lapse. This is quite straightforward to show, as-
suming Newton’s formulation of gravity and non-
expanding Euclidean space – which is reasonable
in simulation of this type and scale. First, we note
that the gravitational potential outside a spheri-
cally symmetric body is equal to the potential of
a point of the same mass at the body’s center (see
Gauß’ gravity or Newton’s Shell Theorem). Then,
we calculate the acceleration and note that it is
linear in radius as long as the density distribution
remains homogeneous:

a(r) = −GM
r2

= −4Gr3πρ

3r2
= −4

3
Gρr

=⇒ a(r) ∼ −r

Here, ρ is the gas density in the sphere and thus
M = (4/3)r3πρ; G is the gravitational constant.
At the beginning of the simulation, the sphere is at
rest; it is neither contracting nor expanding. This
means velocity is a linear function of radius, albeit
with a slope of zero. From then on, at any point
in time until the sphere has collapsed, velocity re-
mains a linear function of radius: applying acceler-
ation to the velocity means that we add two func-
tions which are linear in the same parameter, which

is r in this case. Such an operation always yields
a function again linear in this parameter. The ve-
locity remains linear in r, so the sphere remains
homogeneous, which in turn means that the accel-
eration remains linear in r as well.

This implies that a very simple one-dimensional
solver can already predict its behavior in collapse,
providing expected results for comparison. Know-
ing that the sphere remains homogeneous, tracking
only its outer shell is sufficient to calculate its prop-
erties throughout the collapse. An iterative solver
can do this by updating only the radius and radial
velocity of the outermost end. The gravitational
acceleration at the outer shell of the sphere is just:

aouter = r̈ = −GM
r2

where M is the sphere’s total mass. This allows to
integrate approximately:

• Update ṙ using ∆t and r

• Update r to r + ṙ∆t

Given sufficiently small time-steps, this provides
the expected radii and densities of the sphere dur-
ing the collapse.

There is an analytical solution as well [25]. The
analytical expression for the free-fall time tff =√

3π/(32Gρ) is used in the following to calculate
the expected final collapse time.

The corresponding simulation in Espresso is a
sphere of 268,000 particles at negligible tempera-
ture, arranged in an FCC grid by the grid creator
introduced in Section 2.3. Figure 2.11 shows a com-
parison of the density over time between the iter-
ative solver and the Espresso simulation, spanning
over 92% of the analytical time of collapse, showing
nearly identical results.

As a consistency check for the multiple unit con-
versions between the SPHS library and Espresso,
the collapse program calculated densities with dif-
ferent methods. One counted particles in a shell
from 10 to 12 parsec from the center and multiplied
the count with the constant particle mass of the ini-
tial setup, then divided by the sampled volume; the
other set Espresso to export the physical densities
used for SPH in its EBT output, then filtered par-
ticles from the same area the previous algorithm
used. Both methods agreed very well with each
other (data not shown as it looks near-identical).

What either of these two method did not do
was to check the spatial homogeneity of the den-
sity. The sampling in a shell to plot density over
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2. Functional setup and analysis of SPH simulations

Figure 2.11: Collapse of an isothermal sphere at very low temperature in Espresso
and the iterative solver, showing very good agreement. The sphere is far enough
above the Jeans mass at its temperature to collapse freely.

time (for Figure 2.11) would have shown most ma-
jor inhomogeneities as oscillations around the ex-
pected density over time. But it could miss fluc-
tuations forming inside the shell and, though un-
likely, in theory a strange inhomogeneity could off-
set another error and yield the correct result for the
wrong reasons. To verify homogeneity, Figure 2.12
shows the radial density distributions at different
times of the collapse, including the density-over-
radius function produced by the iterative solver.
With the exception of the outer edge, which is dif-
ficult to sample due to the particle-based simula-
tion, the distribution looks very homogeneous and
develops as expected.

The simulation was repeated multiple times with
different parameters. The plot shown in Figure 2.12
comes from a simulation with a particle count of
2.68M, tenfold that of the original run. The dif-
ference in smoothness to the lower-resolution plot
is minor (data not shown); 3D renderings of the
distribution suggest that even this minimal differ-
ence is only caused by the sampling noise for the
plot; the algorithm for its creation simply counted
particles without weighting them.

Runs with deactivated hydrodynamics produce
a similar result as those with a very small tem-
perature at the beginning, but allow the simula-
tion to continue into the final moments of the col-
lapse. Analysis using 3D-visualization over time

showed that the collapse time matches expectations
to within 1% or better; it was exact within the pre-
cision of snapshot sampling used in that simulation.

Overall, the simulations reproduced the isother-
mal spherical collapse very well. Deviations from
the expected values were small, yet still dominated
by resolution and sampling.

2.9 Test: adiabatic energy
conservation

The more or less purely gravitational collapses of
the previous section are very specific tests of the
implementation of gravity; with the exception of
the late phases of some of the simulations, they ig-
nore hydrodynamics and thereby the essence of an
SPH simulation. For a wider test, another collapse
setup was created: the heating and re-expansion of
a contracting sphere with an adiabatic equation of
state.

The purpose of the simulation is again to test
Espresso, this time using gravity and hydrodynam-
ics in conjunction and running analysis code that
focuses on the conservation of energy.

In an adiabatic process, by definition no heat is
exchanged between the considered system and its
environment. Thus, in any simulation declared as
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2.9. Test: adiabatic energy conservation

Figure 2.12: Radial density profile plots of different times in an isothermal col-
lapse. For slightly better sampling, it was created from the 2.68M particles run.
Of the 81 snapshots during the free-fall time, those dividable by 10 up to 70 are
shown, each of which shows good homogeneity.

adiabatic, the total energy of an isolated gas cloud
should remain constant over time.

For the purposes of the simulation, there are
three variable energy components of the system:

• the thermal energy of the gas

• the kinetic energy of the particles

• the gravitational potential energy of the parti-
cle distribution

Since we are conducting SPH, the first two are
somewhat intertwined compared to the physical re-
ality. SPH particles substitute for a large quan-
tity of actual gas particles, so the distinction be-
tween thermal and kinetic energy is an arbitrary
choice defined by the size of simulated particles. In
other words, physical processes that are no longer
resolved become temperature. This is a general
property of the concept of temperature and not an
issue for the test at hand, as we only sum over both
quantities, while the SPH implementation must en-
sure that the particles’ properties correctly mimic
the microscopic systems they represent. Though
its meaning may be a little muddy, the total ki-
netic energy of the SPH particles, as measured from
their mass and velocities, gives a good impression
of the large-scale gas movement, so it is included
separately in plots.

Obtaining the first two quantities – thermal and
kinetic energy – from the simulator is very simple.
Espresso is set to output the specific energies and
velocities of all particles, then the analysis program
converts these to energies and sums over all parti-
cles. The gravitational potential energy is not so
simple. It is encoded in the positions of all parti-
cles, or, more precisely, all pairs of particles:

Epot =
1

2

∑
i 6=j

− Gmimj

|~xi − ~xj |

Calculating this sum (or half of it, by skipping the
duplicate pairs that only differ in swapped indices)
is called the direct summation algorithm for gravity.
Such an algorithm is evidently O(n2) and therefore
not suitable for the execution of simulations with
large particle numbers. Espresso therefore uses an
octree to approximate the gravitational forces on
particles.

For the purposes of measuring energy within a
single snapshot, direct summation can still be used:
since a sum over all particles must yield the cor-
rect result, sampling a subset of particles returns
an estimate of the exact result of direct summa-
tion. Given a sufficiently large, randomly selected
sample, this can be used to approximate the grav-
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2. Functional setup and analysis of SPH simulations

Figure 2.13: Energy measurements over time of an adiabatic spherical collapse.
The simulated object was a 40 parsec gas sphere in vacuum surroundings at a
density of 1 particle per cubic parsec weighing 1000M� each, set up using the
glass-cut generator described in Section 2.3 and a very small initial temperature
of 10−7 · EJeans. The noise in the gravitational and total energy is dominated by
insufficient sampling of distances to determine gravitational energy for the plot;
precision is also dependent on the CFL criterion parameter passed to Espresso.
Both sources of error can be reduced further at the expense of performance.

itational potential energy.

Epot ≈
1

2

(
n

nsample

)2∑
i 6=j

− Gmimj

|~xi − ~xj |
,

where i, j ∈ sample. This is rather imprecise
for small samples and slow otherwise, but has the
advantage of not using the same representation as
Espresso, which would somewhat defeat the pur-
pose of testing its validity.

Figure 2.13 shows the energy measurements over
time in the simulation. Due to the adiabatic equa-
tion of state, the collapsing gas heats up and stops
the contraction. The simulation setup is again a
40 parsec radius sphere, though set up using the
glass-cut placement algorithm. (See the figure de-
scription for more simulation details.) The glass
generator was preferred over a grid because the dis-
tinct grid axes can cause large-scale anisotropic be-
havior. Glass is agnostic to direction and therefore
considered to better represent problems such as this
one.

The outcome of this simulation was not strongly
dependent on particle count (multiple similar plots

to Figure 2.13 not shown), but sensitive to time-
resolution, which is determined by the Courant
number: the maximum factor between time-steps
and the Courant-Friedrichs-Lewy (CFL) [3] stabil-
ity limit. With increases in the average time-steps
for the hydrodynamical simulation, energy conser-
vation was increasingly violated. Espresso’s im-
plementation and default settings were undergoing
changes at the time of this writing, including al-
gorithmic changes that may affect the influence of
time resolution on energy conservation; please re-
fer to Martin Zintl [34] for a current specification
of simulator settings.

As a simple additional test, the same sphere was
set up again with a homogeneous temperature that
places it exactly at its Jeans mass. Figure 2.14
shows the outcome: the cloud only slightly rear-
ranged itself to form a stable density profile, but
otherwise showed very little change in the energy
distribution. As in the previous run, time is scaled
to the free-fall time that would be expected in the
absence of pressure support, as expected for this
setup.
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2.9. Test: adiabatic energy conservation

Figure 2.14: Energy measurements over time of an adiabatic simulation set up
similar to the one presented in Figure 2.13, but with the initial gas temperature
calculated such that the structure is exactly at Jeans mass. The run shows only
very little change in the distribution of energy between the potential, kinetic and
thermal fraction.
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3 Radial simulation of isothermal
self-gravitating filaments

Chapter 2 dealt with code employed around SPH
simulations – but not the simulation itself. This
chapter will attempt to make up for this, though
the code used for the most part is not an SPH code,
but a grid code, which is much better suited to the
problem at hand. To examine the radial profile
of isothermal filaments and their development over
time, a one-dimensional simulation in a cylindrical
space topology is implemented.

Analytically known stationary density profiles of
infinitely extended cylinders are introduced and
extended to pressure-supported and finite-radius
cases. Simulations are set up to attempt their re-
production and study their dynamics and stability.

Star-forming filaments are elongated structures
that to some extent resemble cylinders. Before we
get to the simulation details, let us begin with some
observational context and theoretical background
on these.

3.1 Star-forming filaments in
observations

Star-forming molecular clouds feature prominent
filamentary structures quite different from the dif-
fuse host cloud surrounding them. Dense cores ob-
served in their vicinity are an important source of
low-mass stars. Understanding the processes that
connect these two structures – and their environ-
ment – is integral to the understanding of star-
formation.

Hacar and Tafalla 2011 [13] studied filaments of
the L1517 molecular cloud in detail and their work
provides the main motivation for the content of this
chapter. The filaments consist of approximately
isothermal molecular gas at temperatures of about
10K. Multiple filaments can form long chains, such
as seen in Figure 1.1 of the introduction; individ-
ual filaments are thread-like shapes typically 0.5
parsec in length. In contradiction to theories that

proposed turbulence as a dominant factor in the
stabilization and behavior of filaments, these ob-
servations found them to be very quiescent objects
of sub-sonic inner motion and a strongly coherent
velocity profile.

This new image of filaments makes them very dis-
tinct from the molecular cloud’s components they
are embedded in, which is turbulent and dominated
by supersonic motion (see again [13] for many de-
tails and sources). The observed filaments appear
more similar to the dense cores that form individ-
ual stars, which are supported by internal thermal
pressure [12], than to their environment. The sur-
rounding gas can then act as pressure support for
the filament.

An isothermal cylinder model can be applied to
approximate the filaments’ behavior. Theoretical
analysis of radial stability in infinite isothermal
cylinders yields profiles known as Ostriker distribu-
tions (Discussed in Section 3.2 in detail). Of four
density profiles of filaments studied by Hacar and
Tafalla [13], three displayed a remarkable resem-
blance to the corresponding Ostriker distribution
function. The mass per length found for the fila-
ments was also reasonably close to a critical value
relevant in the same model.

These findings may imply a model on star for-
mation in molecular clouds:

1. Filament formation occurs. There are multi-
ple suggested mechanisms for this, for exam-
ple perturbations caused by uniform magnetic
fields, as proposed by Nagai et al. 1998 [21].

2. The individual filaments relax into a quiescent
state maintained by self-gravitation and pres-
sure support from the environment, while sup-
ported against collapse by their own isother-
mal gas pressure. Radial density profiles at
this time may resemble the cylinders of Os-
triker’s model.
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3.2. The Ostriker density profile

3. The filaments fragment into dense cores that
surpass their Jeans mass and collapse, until
they become opaque and leave the isother-
mal regime, to ultimately form stars. See e.g.
Schmalzl et al. 2010 [29].

Simulations of filaments face multiple problems.
For one, including a turbulence-dominated environ-
ment is not easy. Another issue is the filament’s
immediate instability when simulated in isolation.
From perturbation analysis, fragmentation along
the axis with a wavelength on the order of four
effective radii is expected. However, a näıve imple-
mentation to simulate a typical filament will not
live to see this. The structure’s gravitational pull
quickly collapses the outer ends, pulling them into
the center and forming more of a blob than a thread
as seen in reality. Multiple points may contribute
to this discrepancy; magnetic fields and the nature
of the pressure support may play a role and, im-
portantly, the presence of other dense filaments in
a chain as seen in L1517 provides gravitational pull
on the filament’s axis.

We focus on the radial profile and formulate the
following questions to the proposed theory:

• How does the Ostriker model, which is in-
finitely extended in both the radial and axial
direction, relate to the finite physical filaments
observed in the ISM?

• The Ostriker model defines a specific mass per
length for which it is valid. What is its mean-
ing in a real-world context that does not match
an exact mass value?

• Can we numerically support a model that an-
swers these questions and show its stability, in
agreement with observations?

To answer these questions, we first discuss the ana-
lytical implications of Ostriker profiles. We then
proceed to create a simulation that mimics the
radial dynamics of isothermal, cylindrically sym-
metric distributions – first attempting to use a re-
stricted version of Espresso, then implementing a
custom grid code.

3.2 The Ostriker density profile

J. Ostriker 1964 [24] derived the analytically sta-
ble – actually metastable – solution to the radial
density profile of infinitely extended self-gravitating

cylinders. His proofs yield a family of stable distri-
bution functions for the isothermal case:

ρ(r) = ρ0
1(

1 + 1
8ξ

2
)2 , where ξ =

√
4πGρ0

c2s
r

An important property of this result is that ρ0

is a free parameter. Theoretically, a solution ex-
ists for any central density. This is also why this
infinite-radius case is not stable in the sense of self-
stabilization; it could shift between energetically
equivalent solutions.

This density distribution can be reformulated a
bit more conveniently by defining H = r

√
8/ξ:

ρ(r) =
ρ0

(1 + (r/H)2)
2 ; H =

√
2c2s
πGρ0

This formulation has the advantage that H is easy
to relate to as a characteristic scale height: the
mass per length of a homogeneous cylinder with
density ρ0 and radius H equals that of its Ostriker
equivalent. Now, we integrate the distribution over
radius:

ˆ R

0

ˆ 2π

0

ρ(r)dϕdr =

ˆ R

0

2πrρ(r)dr =

= 2πρ0

ˆ R

0

r

(1 + (r/H)2)
2 dr = πρ0

H2R2

H2 +R2

This integration for finite radii will be useful in a
bit, but for now, let us use it to determine the total
mass per length in the infinitely extended case:(

M

L

)
crit

=

ˆ ∞
r=0

ˆ 2π

ϕ=0

ρ(r)r dϕdr

= ρ0H
2π =

2c2s
G

This shows that there exists an exactly defined
mass per length for all infinite Ostriker distribu-
tions, the critical mass per length.

How to apply the Ostriker solution to physical fil-
aments is not immediately clear. It is unlikely that
an actual gas cloud has the correct mass per length;
even if it were to match exactly, the free parame-
ter ρ0 would remain unaccounted for, as well as
the pressurized environment of the molecular cloud
that contains the filament.

Yet, these matters together can be used to fully
define the Ostriker distribution for a pressure-
supported case. Note first that ρ0 is the only free
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3. Radial simulation of isothermal self-gravitating filaments

parameter of the general Ostriker distribution. H
depends on it in an unambiguous manner and all re-
maining parameters have been assumed to be con-
stants.

Therefore, for finite-radius filaments, we have
four parameters which we want to constrain with
respect to each other:

• The central density ρ0.

• The outer radius after relaxation R.

• The outside pressure support Pouter.

• The mass per length (M/L) < (M/L)crit.

(We expect that any setup at or above critical
(M/L) that begins contracting contracts indefi-
nitely, restricting ourselves to lower masses.)

For the purposes of obtaining quiescent fila-
ments, we consider an external influx of mass not
relevant, as we are interested in a stable solution.
Thus we assume that mass is conserved. This
makes (M/L) a fixed, constant property of the
studied system. Mass influx was not examined for
this thesis. Should this become of interest, the con-
ducted simulations could easily be modified to in-
clude it.

Now, we have three remaining parameters to re-
late: ρ0, R and ρ(R). But we have already done
this. The integration of the Ostriker distribution
family to a finite radius must yield our fixed (M/L).

M

L
= πρ0

H2R2

H2 +R2

As we noted, H and ρ0 are essentially the same
parameter. So we have successfully related R with
ρ0 – and if either is given, the Ostriker distribu-
tion function ρ(r) is fully determined. Since the
filaments are isothermal and pressure should not
jump at the outer edge for a stationary solution,
the pressure support is then simply:

Pouter = ρ(R)c2s

An interesting interpretation of this is that we are
capping infinite Ostriker filaments at finite radii.
Gravitationally, there is no inward flow of informa-
tion. This will be explained for the gravity details
of Section 3.4. Hydrodynamical forces are local,
so when in pressure equilibrium, the inner part of
the filament is not influenced by its outer part; the
forces acting inside the filament are identical be-
tween the infinite and pressure-supported cases.

With this, we have derived a well-defined stable
solution for every (M/L) < (M/L)crit at a fixed
filament radius. In addition, we have shown that
given (M/L), specifying a distribution’s radius is
equivalent to providing the central density or the
external pressure.

3.3 Espresso runs

A first series of simulations of isothermal filaments
was conducted by running the Espresso simulator
using tools from Chapter 2. An isothermal, cylin-
drical filament was set up in “noisy” random place-
ment mode with a cylindrical distribution of parti-
cles of identical mass following an Ostriker profile.
To check its properties without immediately col-
lapsing it along its long axis, Espresso was modified
to restrict movement along this axis. All velocities
along it were reduced to almost zero, to still allow
some relaxation on the scales of particle distances,
while preventing any significant movement during
the simulated time.

Analyzing processes in the radial direction of fil-
aments this way proved difficult and ultimately led
to the custom simulator that is the main topic of
this chapter. The main issues were:

• A lack of a suitable 2D gravity setting. In a
real two-dimensional simulation, the gravita-
tional force of a circularly symmetric object
scales with r−1, not r−2 as for a spherically
symmetric object in three dimensions. When
the simulations were conducted, Espresso did
not have operational support for this.

• In a similar vein, the simulator does not allow
1D simulations, nor would it allow applying
a non-Euclidean space topology. Espresso is
not intended for this type of problem, so a full
3D simulation had to be performed, costing
performance.

• The placement algorithms were not intended
for a three-dimensional simulation with re-
stricted movement along one axis; they may
create layers with more particles than others,
creating spurious tension in the gas that may
need further analysis to not impair results. Al-
lowing minimal movement along the cylinder’s
axis removed these concerns, but in turn lim-
ited total simulation time as this caused an
unphysical type of collapse at the outer ends
when enough time passed for particles to move
significantly.
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3.3. Espresso runs

• Periodic boundary conditions were not sup-
ported in Espresso’s gravity implementation.
In combination with the lack of 2D gravity
this necessitates simulation of a long filament
to correctly represent the situation, rendering
results further to the ends of the filament in-
applicable to the simple radial problem.

• The simulation boundaries were fixed to
cuboids and streaming boundary conditions
only supported for a constant flux. Thus, the
simulation used hard boundary conditions of a
non-cylindrical shape, which interacted either
with the outer end of the filament or outer hot
particles placed to simulate external pressure.
Any waves from initial relaxation reflected on
these boundaries, causing anisotropic waves.

• SPH surface tension created disturbances
when particles intended to provide outside
pressure interacted with filament particles. Se-
tups partially mixing them initially resulted
in each type locked between the others; hot
particles did not escape from the cold fila-
ment as one might expect. Espresso was un-
dergoing changes to this at the time of these
simulations, the situation regarding this may
have changed now, depending on the settings
Espresso runs with.

• Gravitational softening became a major influ-
ence on results (this will be detailed next) and
Espresso did not support adaptive softening at
the time of this writing (which would change
softening with respect to the local conditions,
see e.g. Iannuzzi and Dolag 2011 [15]).

There were additional minor problems, such as ran-
dom placement or minimal random relative mo-
tion between the locked “layers” displacing the fil-
ament’s center, often differently for different sec-
tions, complicating automated analysis of the re-
sults.

Stability from softening

For the calculation of the gravitational force, simu-
lated particles in Espresso are not represented as a
point mass. They use a potential that is flattened
out at the center, which is represented by splines
in the default settings. This technique, which is
known as gravitational softening, is common in
SPH and used mainly for two reasons:

First, while approximating the gravitational po-
tential of spherically symmetric bodies – like SPH

particles – by point masses does yield the correct re-
sult at higher distances, it obviously does not when
sampled inside that body.

Second, even more importantly, the implementa-
tion of movement and acceleration in Espresso, like
in many particle-based simulators, relies on the as-
sumption that time-steps are small with respect to
any acceleration of their particles. Changes in ve-
locity, such as the effect of the gravitational force,
should not be major within a single time-step.

In typical implementations, gravitational soften-
ing reduces the overall effect of gravity. The effect
of this reduction is not large in typical simulations,
as gravity is equally important on all scales, but
only the smallest experience a significant reduction
and, as mentioned earlier, this may even be physi-
cally sensible in the case of overlapping particles.

Yet the effects of softening are not intuitive and
can be outright surprising. One might expect that
the scale at which the potential is flattened – the
softening parameter – sets the scale for distortions
to the physical reality and that in cases of high
mass concentrations effects from softening get out-
weighed anywhere outside this scale. A 1996 paper
by Sommer-Larsen et al. [30] shows that this is
not at all the case. To quote one of their findings:
“We demonstrate the perhaps somewhat surprising
result that even in the complete absence of rota-
tional support it is possible, for any finite choice of
softening length ε and temperature T , to deposit an
arbitrarily large mass of gas in pressure equilibrium
and with a non-singular density distribution inside
of r0 for any r0 > 0.”

Simulations in Espresso aimed at reproducing
the radial density profile of isothermal filaments
and their relaxation suffered from the same type
of problem. Ostriker filaments at rest were set
up, only to relax into unexpected configurations.
Figure 3.1 shows three variants of a simulation at
160% of the critical mass per length, differing only
in their softening parameters. They yield distribu-
tions that are much larger than the largest soften-
ing parameter used.

A similar set of simulations experimented with
varying initial velocities – and yielded differing fi-
nal results! This should not have a physical expla-
nation to my knowledge, as Ostriker filaments’ ra-
dial stability should only depend on their mass per
length.

Analysis of the effect and fine-tuning of the soft-
ening, or implementation of adaptive softening,
may solve this issue. However, the combination of
problems shown in this section made it preferable
to put this type of analysis on hold and instead
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3. Radial simulation of isothermal self-gravitating filaments

Figure 3.1: Radial profiles of theoretically unstable cylinders – above critical M/L
– after relaxation in Espresso, patched to restrict movement along the cylinder
axis, with varying softening parameter. The upper plot shows the radial density
distribution as measured from the center of the initial setup. The lower plot
shows ∂m/∂r from the same measurement. The gravitational softening plays a
larger role than one would expect, creating shapes much larger than the softening
scale. Impulse due to random noise allowed the most collapsed cylinder to drift
from the center. The mass distribution of the high-softening run (blue line) is
so expanded that its mass distribution plot is capped at the outer end, while it
shows no notable peak in its density distribution.
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3.4. Simulator implementation

concentrate on a kind of simulation specific to the
case of interest.

3.4 Simulator implementation

With the problems associated with the use of three-
dimensional SPH simulations for the radial analy-
sis and the model not yet numerically reproduced,
a specialized solution to the specific problem of re-
laxation in radial density profiles becomes an op-
tion. A one-dimensional approach to the problem
has the advantage that it is inexpensive in terms
of computations and allows to achieve much higher
resolution. A CPU-based solution written directly
in F#, without extensive optimization, suffices to
create a simulation of good speed and resolution.

The algorithm used is a custom grid-code for
isothermal hydrodynamics, with second-order ac-
curacy in space and slope limitation for the den-
sity. It can be switched between a simple “pipe”
topology and the radial direction of an infinite,
perfectly symmetric cylinder. It could in princi-
ple be switched to other 1D topologies described
by a function yielding cell interface widths along
the simulated axis. The time-step used is constant
in space but adaptive in time.

Grid

The simulation’s data structure is designed for sim-
ple grid advection. Space is divided into cells of
equal length along the simulated direction. Each
cell holds the density and velocity of the contained
gas; it is represented as a structure that holds two
double-precision floating point numbers as its only
data fields:

[<Struct>]

type Cell =

val rho : float<g/cm^3>

val u : float<cm/s>

(...)

We fix CGS units as the numerical representation,
which is unproblematic despite the somewhat large
numbers this produces: double-precision floating-
point values retain their full fraction’s precision in
an interval a little larger than [10−307, 10308]. Even
a cubic kiloparsec, 1 kpc3, only equals about 3 ·
1064cm3.

(The Struct attribute is specific to the CIL
type system; it indicates a value type that allows
the type to be used without allocating a separate,

reference-managed object. See F#/CLI references
[7] [20] for details.)

The topology of the 1D-space to simulate is given
by a record holding, among other fields, a surface
function that maps positions along the simulated
axis (e.g. radii) to cell’s cross-sections, which are
also the surfaces between the cells. This allows cells
to vary in size.

In terms of the unit-of-measure system, a cell sur-
face is a length and the content of a cell is a mass
per length. In other words, the simulator always as-
sumes that it is simulating a two-dimensional cut
that is infinitely repeated along the third dimen-
sion. This is useful for the cylindrical topology and
sufficiently flexible to test and debug in a simple
“pipe” topology. The latter can be achieved by pro-
viding a constant surface function. For the cylin-
drical simulation, the surface function is a circle:
S/L = 2rπ, where S is a surface between cells, L is
the length in the (not simulated) z direction, and
r is the position along the simulated axis.

The ability to switch topology could in principle
be used for other simulations, such as a pipe of
varying width or a pressure wave from one point
on a planet to the opposite side. It seems unlikely
that this feature will be used, but there was little
reason to restrict it, so it remains available.

Piecewise linear interpolation

The simulator only stores average densities of cells,
yet does use a piecewise linear density function in
calculations. It was created with the help of a lec-
ture script about grid codes by Springel and Dulle-
mond [31] which also introduces linear interpola-
tion schemes and slope limiters. This subsection,
as well as the following one on application of hy-
drodynamics, was written with repeated use of the
lecture as a reference.

Inside a single cell, both its width – the amount
of space per length – and density are a linear func-
tion of position. Thus, the topology gets reduced
to a piecewise linear function too. (This makes no
difference for cylinders.) The algorithm only sam-
ples cell size at their centers and borders. If one
were to input a non-linear topology, it would only
be approximated by the cells.

Interpolating the size of space is straightforward.
The slope of the density distribution inside a cell,
however, is not fully determined by the simulation’s
state. As previously mentioned, cells only store
their gas velocity and mean density. Any infor-
mation on the sub-cell distribution is lost between
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3. Radial simulation of isothermal self-gravitating filaments

time-steps. Therefore, the slope must be deter-
mined anew before each advection step.

For each cell, the algorithm estimates the slope
toward its adjacent cells in both directions. It as-
sumes that each cell has its mean density at the
center. Note that due to the varying cell shapes,
this is only an approximation. Next, it chooses the
slope such that it interpolates between these central
points:

s(i, right) =
ρi+1 − ρi

∆r

s(i, left) =
ρi − ρi−1

∆r

Here i is a cell index, s a slope on one side when
doing simple linear interpolation, ρ the density and
∆r the distance between two cell centers. Now, in
a typical case, something like the average of these
two slopes might be a sensible choice. The trouble
is that they can be vastly different. What would
seem like the proper interpolation on one side then
would create an overshoot – or undershoot – of the
interpolation at the cell interface on the other side.

The choice of a slope-limiting scheme determines
how steep slopes can become in questionable cases.
For this one-dimensional simulator, spatial preci-
sion was already high without interpolation, so
avoiding numerical artifacts was the priority. Hence
a conservative option is used: picking the less steep
slope if their signs match and zero – no interpola-
tion at all – otherwise. (Which happens at peaks
and bottoms of the distribution.) This method is
known as the minmod slope limiter, named after
the minmod function it uses:

minmod(a, b) =


0 if ab ≤ 0

a if ab > 0 ∧ |a| ≤ |b|
b if ab > 0 ∧ |a| ≥ |b|

This formulation emphasizes symmetry but may
look strange. With ab > 0 and |a| = |b| both the
second and third cases are true. This is consistent;
it implies that a = b. Therefore, both the second
and third cases are indeed true.

Using both slope estimates and the minmod
function, a cell’s final density slope is:

slope(i) = minmod (s(i, left), s(i, right))

= minmod

(
ρi − ρi−1

∆r
,
ρi+1 − ρi

∆r

)
.

Hydrodynamics

The algorithm for fluid dynamics follows the
methods detailed in Chapter 5 of the Springel-
Dullemond lecture notes [31] and adapts them to
the case at hand. The main modification is the in-
clusion of the interpolation scheme for cell size and
density introduced in the previous subsection.

With simulations limited to the isothermal case,
there is no need for an energy equation. We must
adhere to Euler’s continuity and momentum equa-
tions though:

∂tρ+∇ · (ρ~u) = 0

∂t(ρ~u) +∇ · (~u⊗ ρ~u) +∇P + ρ∇Φ︸ ︷︷ ︸
gravity

= ~0

Here, ~u indicates gas velocity and P its pressure.
We ignore the gravitational term; a Gauß solver
detailed in a later part of this section will handle
it. Since we only use one dimension of movement,
these equations become:

∂tρ+ ∂r(ρu) = 0

∂t(ρu) + ∂r(ρu
2) + ∂rP = 0

Since the actual simulations are in a cylinder’s ra-
dial axis, this axis is denoted with r. With the
exception of the pressure term in the momentum
equation, these equations can be applied by using
an advection algorithm: a program that lets mass
and momentum flow between cells, in accordance
with the local gas velocity. The pressure term can
then be added by approximating the pressure gra-
dient for each cell and applying the corresponding
acceleration. We begin by dividing the algorithm
into two steps.(

ρnew

(ρu)new

)
= pressurize

(
advect

(
ρ
ρu

))
The advection equations follow from the previous
1D Euler equations when the pressure term is ne-
glected. For a time-step of ∆t, we obtain new val-
ues for ρ and ρu:

ρnew = ρ−∆t∂r(uρ)

(ρu)mid = ρu−∆t∂r(uρu)

The subscript “mid” signifies an intermediate re-
sult, “new” the resulting values after the time-step
was applied. The final density of one time-step fol-
lows directly from advection, while the resulting
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3.4. Simulator implementation

impulse – and thus velocity – is still missing the
pressure term.

The two terms of the form ∆t∂r(u · quantity)
are nothing more than the integrated fluxes of the
quantities to adjacent cells. The algorithm acquires
these by calculating what fraction of one cell’s mass
moves into the other in ∆t at the local velocity. It
subtracts the resulting amount of mass and impulse
from the cell with outgoing movement and adds it
to the other. The velocity at the boundary is esti-
mated by averaging over the gas velocities of both
cells. These calculations heed the linear interpola-
tion schemes for cell size and density.

Note that this is an upwind scheme that limits
the flow of gas strictly to the direction of the cur-
rent velocity at the cell boundary. No information
flows opposite to the velocity’s direction in the ad-
vection step.

Time-steps throughout the simulation were lim-
ited such that in any of them, advection does not
move gas further than 0.39 cell-lengths. Such a fac-
tor connecting cell size to the gas movement during
one step of time-integration is known as a Courant
number, named after the Courant-Friedichs-Lewy
(CFL) condition introduced in the thee authors’
1928 paper [3], which states the somewhat sensi-
ble rule that algorithms with a one-cell interaction
range should not execute movements in a single
step that exceed one cell’s size.

We are now left with only with the pressure term,
which is added in a second step:

(ρu)new = (ρu)mid −∆t∂rP

In the isothermal case, pressure is related to the
speed of sound by P = c2sρ. This allows us to ap-
proximate ∂rP :

∂rP = ∂rc
2
sρ

= c2s
ρright − ρleft

2 ·∆rcell

With this, we can calculate the acceleration. We
have now obtained both ρnew and (ρu)new. Divid-
ing the two yields the new velocity and concludes
the time-step.

Gravity

The simulator has a gravity feature, which can be
enabled with a boolean called EnableGravity in
the topology record. It is implemented using the
Gaussian formulation of gravity:

∇~g = −4πGρ

This means that density is the source term for the
gravitational field. The law can also be written in
integral form:

‹
~gd ~A = −4πGM

where M is the total enclosed mass. This means
that the total flux through any closed surface scales
linearly with the mass contained within the surface.

This formulation makes it evident that the to-
tal gravitational flux through a closed surface only
depends on the mass inside the surface, not on its
distribution, nor on any mass outside of it. This is
exploited by the algorithm. It is assumed that the
first simulated cell is the innermost area and that
gravitational field lines can only “escape” through
each cell’s outer surface. The algorithm iterates
outward from that innermost cell, applying the
gravitational acceleration on each cell. A rough de-
scription of the function applied to each cell would
be:

• Take the total mass of all cells further inside
as a parameter.

• Calculate the size of a closed surface at the
center of the cell, e.g. a ring around the center
for the cylinder (this calls the space topology
function).

• Calculate the total mass up to the center of
the cell (the mass in the inner half of the cell
plus the mass of all cells further inside).

• Use the obtained surface and contained mass
to calculate the gravitational flux at the cell’s
center. Apply the corresponding acceleration
to the cell.

• Recursively call this function on the next cell,
adding this cell’s mass to the running total.

Note that this method is O(n) in the number
of cells. However, as in pure hydrodynamics,
time-steps effectively scale with (1/n), limiting the
computational order of simulating a fixed time to
O(n2).

Pressurized Surroundings

Star-forming filaments are usually embedded in a
molecular cloud, a comparably hotter, more turbu-
lent environment that provides pressure support.
To allow simulation of such situations, a constant
external pressure can be provided as an optional
value of the topology record:
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3. Radial simulation of isothermal self-gravitating filaments

/// External pressure at the higher end

/// of the simulation

ExtPressure : float<g/(cm * s^2)> option

If provided, this changes the behavior of the simu-
lator. The amount of simulated cells becomes vari-
able, allowing cells at the outer end of the simula-
tion to be disabled. If the external pressure suffices
to push the contents of the outermost simulated cell
into the second-outermost, the cells are collapsed
and the then-empty outermost cell gets disabled.
Conversely, if the outermost active cell is filled at a
density sufficient to surmount the external pressure
and is currently moving outward, normal advection
to the next cell in the outward direction is enabled,
adding the cell to the active simulation.

The current implementation does not re-allocate
cells, so an absolute maximum size of simulation
space must be provided, above which the number
of active cells cannot grow. This could be triv-
ially changed if ever needed – it might not be useful
though, since growth of the simulation beyond ex-
pected sizes could indicate a problem and indefinite
expansion of simulated space might cause extreme
slowdown of the simulator, delaying termination of
a faulty run.

3.5 Artificial dissipation

The simulator implementation presented so far only
dissipates waves as a numerical artifact. It does
not conserve energy – by definition, as it uses an
isothermal equation of state. Still, this formulation
is not inherently dissipative.

For a very simple example that disregards nu-
merical dissipation, take a system of only two adja-
cent cells at different densities, contained in reflec-
tive boundary conditions to the outside, initially
at rest. The difference in pressure will cause gas
to start flowing from the more densely filled cell to
the other. But when they close in on equal density,
the gas velocity has been significantly accelerated.
To slow down the flow again, the inverse process of
the acceleration has to occur, leaving the initially
more thinly filled cell with the excess gas – and the
cycle repeats. This would be a typical example of
a harmonic oscillator. If left to run for a very long
time, it may dissipate due to time-step discretiza-
tion errors, but the time this takes would depend
strongly on numerical simulator settings, which is
not desired to play a major role in a simulation’s
outcome.

The analog effect for multiple cells enables them
to reflect density waves off the simulation bound-

aries. The limited resolution of the cells smears out
such waves as they propagate, but left to its own
devices, the simulator would tend to show numeri-
cally generated oscillations long before relaxing into
a steady state.

We are primarily interested in the relaxed distri-
bution, so a way to dissipate movement from the
system is needed. There is no requirement for a
physically exact relaxation process, so it is viable to
simply pick a time-scale and modify the algorithm
accordingly, such that it removes impulse from the
system. This can be expressed by a parameter Ω
indicating velocity dissipation over time:

v(t+ ∆t) = e−Ω∆t v(t) ≈ (1− Ω∆t) v(t)

Wherein the approximation is simply the first-order
term of the Taylor series. Applying the last expres-
sion reduces the overall velocities – provided that Ω
is chosen such that Ω∆t < 1, which it should be. If
not, the algorithm falls back to setting all velocities
to zero.

Oscillation suppression

The methods described to this point are not en-
tirely sufficient to ascertain that simulations reli-
ably relax into a steady state. We have not proven
our simulation stable in combination with both the
asymmetric, varying cell topology and the impulse
dissipation that was just introduced. By using al-
gorithms based on physical laws, we have provided
reasonable interactions on short lengths and time-
scales, but remain vulnerable to systematic errors
of the representation. A simple example of such an
effect is odd-even decoupling.

A cell’s change in impulse due to pressure is cal-
culated using values from exactly the two neighbor-
ing cells. This has the silly consequence that in the
absence of other forces, an equilibrium distribution
can have completely different density profiles for
odd and even cells! Because of the diffusive nature
of the grid on a moving fluid, this is usually not a
problem. But in general, it may produce artifacts.

Using only the previously introduced features
can create such resolution-dependent artifacts.
They are most problematic at the center of simu-
lated space, where the geometry of cells and the
difference to their neighbors is most prominent.
For the cylindrical simulation, this can cause wave-
generation at the innermost end of the grid. A
multi-cell variant of odd-even decoupling creates a
resolution-dependent preferred frequency of waves,
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3.6. Fixed-border Ostriker simulations

which can interact with the velocity dissipation al-
gorithm in such a way that it drives the waves
continuously. It may sound strange that an ex-
ponential dampening of velocity does not stop this
process, but the interaction between a simple pres-
sure approximation, advection between differently-
sized cells (note that the second-innermost cell is
three times the size of its inner neighbor), and
odd-even decoupling no longer reflects physical na-
ture reasonably. Indeed, the process was not self-
strengthening until a steep density slope close to
the center triggered it.

The cause of such unphysical behavior lies in
the algorithm’s inability to correct density oscilla-
tions close to its resolution limit without larger-
scale movement. Therefore, a correction to the
dissipation algorithm was included; it specifies a
slow diffusion velocity, typically of 1% of the sound
speed, at which material diffuses away from local
peaks. The scale of its effect is small compared to
the overall movement in the simulation, so it does
not reduce precision significantly.

3.6 Fixed-border Ostriker
simulations

Let us begin by setting up the first run with reflec-
tive boundary conditions at the outer end of the
simulation, so that we effectively simulate a hard-
walled cylinder. This allows to set a fixed radius
for the distribution and observe its relaxation, final
shape, and stability.

As we know from Section 3.2, obtaining Ostriker
solutions for comparison requires an extra step
when dealing with “capped” distributions that do
not extend infinitely as in the original theory. We
equate the finite integral over the general Ostriker
distribution with the fixed (M/L) in the simulation
setup:(
M

L

)
setup

= πρ0
H2R2

H2 +R2

†
=

(
M

L

)
crit

R2

2c2s
πGρ0

+R2

At †, we used:

H2 =
2c2s
πGρ0

;

(
M

L

)
crit

=
2c2s
G

We can rearrange to obtain:

ρ0 =
(M/L)crit

R2π
(

(M/L)crit
(M/L)setup

− 1
)

This expression for ρ0 is used in the Ostriker pro-
file function to obtain the expected distributions,
represented by orange lines in upcoming plots.

The first simulation’s space features 2, 000 cells;
they are limited by a reflective wall at 0.6 parsec
radius. 25% of the critical mass per unit length
is chosen to fill the volume, distributed homoge-
neously. To this end, we divide 0.25(M/L)crit by
the cylinder cross section r2π and initialize all cells
with the resulting density. The initial velocity is set
to zero and the constant speed of sound to 0.2km

s .
With this, we run the simulation. Figure 3.2

shows how it progresses: it begins with the ho-
mogeneous distribution contracting to the center.
Then, it reaches a central density at which isother-
mal pressure provides support against further col-
lapse. Compressed by the remaining inward ve-
locity, The gas is accelerated outward again. The
process repeats, but with reduced strength due to
the simulator’s dissipation. In this manner, the dis-
tribution oscillates around the stable Ostriker pro-
file and ultimately settles down to exactly the pre-
dicted curve.

The detail simulations of this section are avail-
able as videos. Feel free to contact me about them.

The central density over time in this simulation
can be seen in Figure 3.3. It features a period of
approximately 5 · 106 years. This value should be
dominated by the physical dynamics of the system,
though the artificial dissipation is expected to have
some impact on it, as it systematically slows down
all movement. How representative the value is for
physical filaments is difficult to say, as this is still a
very theoretical setup. Though we are running on
physical units, the initial conditions were chosen
to demonstrate the method’s validity rather than
match any real filament. Also, the hard outer lim-
its, serving for consistency testing with respect to
Ostriker filaments, create unnaturally strong resis-
tance to filament expansion. Section 3.7 will fea-
ture a simulation that removes these.

One may now ask whether fixed-radius simula-
tions of filaments reliably relax to their respective
Ostriker solutions for other radii. Since we have
the entire simulation and analysis process available
from our program, it is easy to automate the execu-
tion of multiple simulations. We pick the interval
[0.5pc, 1.5pc] for the radii we are interested in and
run the simulation 130 times.

To assess whether a simulation returned the ex-
pected result, The central density ρ0 after relax-
ation is a simple indicator, for which the analytical
formula for comparison was provided in the previ-
ous simulation. The remaining settings are chosen
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3. Radial simulation of isothermal self-gravitating filaments

Figure 3.2: Shows the density distribution at different times during a simulation
with hard boundaries. The blue line shows the simulator cells’ densities, while
the orange line shows the analytically stable solution for the given parameters as
derived by Ostriker. The last two snapshots are taken at significantly later times
to illustrate the final and perfect relaxation to equilibrium. The simulation was
conducted with physical units, i.e. the radii of the images are in parsec and the
densities in M�/pc3. Note that the scale changes slightly between some snapshots.
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3.6. Fixed-border Ostriker simulations

Figure 3.3: Central density ρ0 over time of an initially homogeneous distribution
weighing 25% of the critical mass per length, confined to a hard-walled cylinder of
0.6 parsec radius. The simulation was run on 2,000 cells at an isothermal sound
speed of 0.2km

s . The dampening time-scale is caused by arbitrary algorithmic
dissipation (see Section 3.5), but this should not falsify the measured period of
approximately 5 · 106 years strongly.

similar to the previous simulation, including the
mass per unit length of (M/L) = 1

4 (M/L)crit, so
the returned value at an outer radius of 0.6 parsec
represents the simulation we have seen in detail.

In Figure 3.4, the central densities of the simula-
tion series is plotted over the outer radius of simu-
lated space. Evidently, the relaxed result is stable
and consistent with the analytical prediction over
multiple runs and different radii.

Setting up simulations exactly at expected Os-
triker profiles kept them stationary in very good
approximation. Changing the densities of a valid
solution by only ±0.1% caused visible contraction
or expansion when compared to the initial distribu-
tion, indicating that the simulation is very precise
and sensitive to minor changes.

Simulations close to critical mass per
length

Multiple additional simulations were conducted us-
ing different sub-critical values for M/L; their data
is not shown because they provided no qualitatively
new results. Simulations with a low amount of mass
featured shallow density profiles, while those us-
ing high amounts of mass revealed a larger portion

of the infinitely extended Ostriker distributions, as
theory predicts.

What did cause different behavior was approach-
ing the critical mass per length, especially for
simulations beginning with a homogeneous profile
or other distributions involving high outer densi-
ties. The initial contraction causes a spike in cen-
tral density, which was already prominent in Fig-
ure 3.3. This phase becomes increasingly diffi-
cult for the simulator to handle as the contained
mass increases. Simulations conducted significantly
above (M/L)crit consistently collapse and must be
stopped due to excessive densities and accelera-
tions. Choosing exactly (M/L)crit and involving
any initial contraction (or relevant outer limit that
causes contraction) also quickly results in an indef-
inite collapse that terminates the simulation. An
example of this process be seen in Figure 3.5.

This result is consistent with expectations: an
Ostriker filament at critical mass requires an in-
finitely extended distribution to remain stable.
Even provided this, or a sufficiently large simulated
space to approximate it, the system lacks a mech-
anism to stop collapses once they have begun.

Possibly, the variable simulation limit introduced
in Section 3.4 and used in the upcoming Section 3.7
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3. Radial simulation of isothermal self-gravitating filaments

Figure 3.4: Density at the inner end of the distribution after relaxation over 130
simulations with varying outer boundary and mass per length set to 25% of the
critical value.

could be utilized with a very low external pressure
value to produce a gravitationally dominated full
collapse to a singular distribution, but this would
be meaningless, as the assumptions made for the
simulation – such as the non-opacity of gas that
justifies isothermal calculations – would no longer
hold.

Setups slightly below the critical mass per length
behaved similar at first glance. This turns out to
be a numerical rather than physical property of the
simulation. Simply retaining earlier settings while
increasing M/L to over 99% of the critical value
results in the termination of the simulation, very
similar to what we saw in Figure 3.5. However,
closer inspection reveals that the extreme setup
does not cause an indefinite collapse the way the
critical setup does. It only blurs the distinction
between runaway processes that should be stopped
and extreme conditions that are time-consuming to
handle, causing the simulator to terminate prema-
turely as it hits limits such as a minimal time-step.
As the restrictions that terminate simulations are
loosened, it is possible to approach the critical value
more closely, yielding increasingly extreme ampli-
tudes of the oscillations in central density.

3.7 Variable-border Ostriker
simulations

Real filaments are not contained in hard walls,
which is why the option for pressurized surround-
ings of Section 3.4 was introduced. Figure 3.6
shows a relaxation process where, instead of set-
ting radius directly, the constant outside pressure
was configured to match the stable profile’s pres-
sure at a radius of 0.5 parsec. The initial mass
distribution is again homogeneous; it is spread out
over 0.7 parsec radius, but quickly contracts after
the start of the simulation. The maximum simula-
tion space spans one parsec and 1500 cells, but at
no time in the simulation are all cells in use.

The simulation evolves similarly to its fixed-
radius predecessors.

Approaching (M/L)crit in this type of setup
would likely not give physically sensible results,
as the external pressure accelerates the initial col-
lapse until the distribution is very dense. The den-
sity peak after this initial contraction would create
extreme conditions. This would clearly leave the
valid domain of the algorithm, as a very strongly
compressed filament may accrete additional gas
and become critical, or become opaque and non-
isothermal.
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Figure 3.5: Simulation at critical (M/L) starting with a homogeneous initial
distribution. To approximately mimic a stable Ostriker solution at this cylinder
size – it is not possible to perfectly reach it with a finite radius – mass would
have to be much more concentrated at the center. Thus, the distribution quickly
begins to collapse. Given the full critical mass per length to maintain an arbitrarily
high central density, the pressure support is insufficient to halt the distribution’s
collapse. Central density continues to rise until the simulator halts (last snapshot)
as it is unable to handle the excessive outer velocities in fixed-radius simulation
mode. Note the density scale change to 103M�/pc3 in the last snapshot.

3.8 Conclusions

The pressure-supported variable-border simulation
concludes the simulation series to reproduce stable
Ostriker filaments of finite size. We have shown
how the infinite Ostriker model can be utilized to
relate finite physical filaments’ radii, pressure sup-
port, and radial stability.

Results align with the theoretical solution that,

under the assumption of an isotropic cylinder with-
out movement along its axis, complete radial col-
lapse is possible if and only if a critical mass per
length of (M/L)crit ≥ 2c2s/G is present. Unlike
infinitely extended isothermal cylinders, the finite
variant can be stable below the critical mass per
length. In such pressure-supported filaments, sig-
nificant oscillations can occur without the filament
becoming unstable.
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3. Radial simulation of isothermal self-gravitating filaments

Figure 3.6: Plots of the density distribution at different time-steps of a radial
simulation with external pressure, which was calculated to match the pressure of
the corresponding Ostriker filament at 0.5 parsec. The blue line shows the simu-
lated density distribution, the orange line is the analytically calculated Ostriker
distribution for the given mass and external pressure. The maximal simulation
space ranges up to 1.0 parsec and allocated 1,500 cells, of which any outside the
distributions outer cut-off are disabled. Density is denoted in M�/pc3. Note that
snapshot 50 was skipped to make room for the almost fully relaxed distribution
at Snapshot 60.

The results’ insensitivity to the exact type of sim-
ulation and parameters used make it plausible that
the model of stable Ostriker density profiles applies
to filaments in pressurized environments, as sug-
gested by Hacar et al. 2011 [13].

It may be of interest to conduct simulations of
this type using real-world settings and observa-
tional data. Also, studying the lengthwise stability
of filaments and their interaction with the environ-

ment, such as a possible influx of gas, might allow
further interpretation of the stability limits of fila-
ment contraction, which ultimately define the bor-
der to star formation.
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4 Assessment of F# in computational physics

This chapter can be seen as a distinct addition to
the numerical and physical topics discussed in the
previous two chapters. It focuses entirely on the
programming concepts used in this thesis and the
reasoning behind them.

As this project was largely independent from ex-
isting software, its programming language could be
chosen freely. A selection of relevant choices can be
seen in Figure 4.1, which lists some of their prop-
erties. The suitability of functional style and type
safety, which will be discussed in the upcoming sec-
tions, made the “sharp” (#) languages of the listing
preferred choices.

The project implementation began in C#, the
CLI’s most prominent language, which is similar to
F# but has less functional emphasis. After evaluat-
ing some of the points described later in this chap-
ter, new parts of the code were written in F# in-
stead, linking to the existing C# code easily thanks
to good interoperability between the two.

F# showed multiple advantages and ultimately,
almost all the code was moved into the project’s F#
part. After further evaluation, multiple parts were
re-implemented again in a more functional style.
This chapter attempts to give an impression on
what motivated this change.

4.1 Introducing F#

F# (pronounced “F Sharp”) was designed and in-
troduced at Microsoft Research, by a team led by
Don Syme [8]. It follows in the footsteps of func-
tional languages such as OCaml, to which it is sim-
ilar enough to allow a “verbose syntax” mode that
can compile a subset of OCaml programs as F#
programs. Its main influence outside the functional
realm is C#, the dominant language of the Com-
mon Language Infrastructure, with which it shares
most of its type system.

Despite its name, in which the F reminds of the
functional programming paradigm, F# is not a
pure functional language. It is, on the contrary,
a multi-paradigm language that combines object-

oriented and imperative programming with func-
tional programming. In addition, it introduces var-
ious language features that provide improved com-
patibility with other programming languages.

This can make it appear as a heavyweight lan-
guage, a property that is generally not seen as de-
sirable. Yet, when used correctly, only a subset
of F# is relevant for any specific case. For ex-
ample, multiple features are designed to improve
language compatibility; they are only intended for
interfacing with another language. For its inter-
nal operations, a program properly formulated in
F# need not rely on such language features, even
though some of them are seen as essential or useful
in other languages. The fact that an F# program-
mer can get by without them is due to the way the
language combines features from different program-
ming paradigms.

Many features, especially amongst those of non-
functional origin, are widely used in languages that
influenced the design of F# but are discouraged
or even unsupported in F#. This is usually the
case when they are redundant to another feature
of different origin which the language’s designers
deemed preferable.

This way that F# cherry-picks or neglects fea-
tures is not always intuitive, especially when one
is not used to the paradigms the chosen feature
originates from. For example, in C#, the concept
of nullable types, where null is a non-value, are a
prominent feature that enables programmers to de-
clare variables that might either have their desig-
nated type or not exist at all. F# allows nullable
types only for compatibility. They are replaced
by the almost identical options, which can explic-
itly be some object of a predefined type or none.
The reason behind this seemingly absurd change is
that options are not a core language feature, but
implemented in just three lines of code using dis-
criminated unions, which are a general solution to
problems involving heterogeneous data. (See F#
learning resources [20] [7] for details.)
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Language Preferred style Typing OO Functional Interactive Execution Speed

FORTRAN imperative static † no no* assembly fast
C imperative static‡ no no no* assembly fast
C++ imperative, OO static‡ yes no no* assembly fast
C++11 imperative, OO static‡ yes partially no* assembly fast
Java OO, imperative static yes no no* JIT (JRE) med.
C# OO, imperative static yes partially in Mono JIT (CIL) med.
F# functional, OO static� yes yes yes JIT (CIL) med.
Python imperative, OO dynamic yes partially yes interpreted** slow

† Depends on version. FORTRAN 2003 introduced multiple object-oriented features.

‡ My personal experience raises concerns about type safety in C and its direct descendants.

� F# uses inferred typing but applies very strict rules to type casts and introduces units of measure.
It uses structural comparison in some of its constructs, but the cases are not considered dangerous
to type-safety.

* External tools provide interactivity of varying quality.

** Python uses byte code that can be partially JIT-compiled. IronPython JIT-compiles to CIL.

Figure 4.1: A comparison of languages considered for this thesis, listing for each
its preferred style(s) (the paradigms endorsed by structure and syntax), its pre-
ferred/primary type system, whether it can formulate object-oriented programs,
whether it can formulate functional programs, whether it has a native interac-
tive mode, its method of compilation or interpretation for execution, and a rough
indication of the typical performance of programs in execution. For the latter, lan-
guages are divided into three classes: languages that are used in the fastest CPU-
run programs, languages that compromise between features and performance, and
the interpreted language Python that allows “duck typing” at the expense of type
safety and performance. The procedural imperative paradigm is omitted in the
listing as all languages support it.

4.2 The functional paradigm

Functional programming is a declarative style of
programming derived from lambda calculus. Un-
like the common imperative style, which performs
computations via a program state and routines to
mutate this state, it approaches problems through
variable binding and the evaluation of functions.
Where an imperative programmer uses a for or
while loop, a functional programmer might use
a recursive definition; where an imperative pro-
grammer changes a position variable, a functional
programmer defines the shifted position with re-
spect to the original one. Altering the original po-
sition is not a possible (or meaningful) operation
in pure functional style, similar to mathematics,
where changing a variable’s meaning is not a sen-
sible operation. (However, redefining a symbol is
meaningful in mathematics and valid in functional
programming.)

The function as a first-class value is a core
principle of the functional programming paradigm.
Defining a function within another and returning
it, or passing it to yet another function, is a com-
mon sight. Higher-order functions that take other
functions as input parameters are frequently used
in high-level control code; this thesis has already
seen their usage multiple times, for example in the
partitioner of Section 2.4 (that takes a distribution
function as input) or in the usage of Seq.map in
Figure 2.10 on page 20.

Such operations do not require convoluted spe-
cial syntax, additional explicitly created objects, or
other such detours, as necessary in many impera-
tive languages. Functions can be declared anony-
mously – without naming them with an identifier
– directly where they are used, just like integers
can be written as numbers directly where they are
used.

An impression of a functional programmer’s view
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on the paradigm is given in the foreword of Expert
F# 2.0 [7], a book on the language authored by its
designers:

“Functional programming today is a close-kept
secret amongst researchers, hackers, and elite pro-
grammers at banks and financial institutions, chip
designers, graphic artists, and architects. As the
grandchildren of Lisp, functional programming lan-
guages allow developers to write concise programs
that are extremely close to the mathematical models
they develop to understand the universe (...) How-
ever, to the uninformed developer, functional pro-
gramming seems a cruel and unnatural act, effete
mumbo jumbo.”

Imperative and functional programs can be for-
mulated to be equivalent and, with some draw-
backs, be used in combination.

Immutability

Mutable types, as opposed to immutable types, are
those data structures that can partially or com-
pletely change their data. In principle, this concept
can be used outside of functional style and pro-
grams can mix both kinds of types as required. F#
supports both mutable and immutable data types,
but is designed such that immutable types are as
short and comfortable in usage as possible, while
mutable types and mutation operations use special
syntax.

At first glance, it may seem absurd that func-
tional languages deliberately prefer, or even en-
force, an inability to change.

Removing mutability can be preferable because
it reduces spurious interactions. This step is a log-
ical continuation of the shift away from global state
machines, which rely on a program-wide mutable
state that is read and written to from many dif-
ferent routines. These can be hellishly error-prone,
as programmers who write the individual routines
make assumptions on the state that do not hold.
A sufficiently complex program involving state has
the same fundamental problem. It can suffer from
all the typical issues of a global state machine if
formulated unfavorably.

When a variable’s value changes, its meaning
changes. After such a change, running any oper-
ation that relies on the former meaning will fail.
This creates code that must adhere to strict limits
on its order of execution. Any change to this or-
der may impede the program’s validity, often under
nontrivial conditions. Reformulating an algorithm
to use immutable types removes this entire class of
problems:

• The reordering of code based on immutable
types is unproblematic. Undefined inputs will
cause a compiler error, notifying the program-
mer about the inconsistency, while valid code
remains valid independent of its new position.
Reordering code based on mutable data can
change its meaning in an arbitrary fashion,
without any warning to the programmer.

• Immutable types are trivial to use as shared
objects in parallel programs. Once con-
structed, they can be safely accessed by any
number of threads without locks, atomics, or
analysis of cache coherence. Mutable types,
however, are extremely dangerous when used
in parallel, possibly creating an exponentially
large state space on a single error in synchro-
nization.

• Analyzing the meaning of code based on im-
mutable types does not require context beyond
the declared meaning of the values it uses. For
mutable types, analyzing the possible program
states can become necessary, which can be a
very complex and unpredictable problem.

Figure 2.10 on page 20 in Chapter 2 shows im-
mutability in action. No value defined in the pro-
gram ever changes; the code is merely a sequence
of definitions that build on top of one another.

4.3 The Common Language
Infrastructure

F# is part of a large effort to create a hardware-
independent programming platform called the
Common Language Infrastructure (CLI). It was
originally developed by Microsoft and is currently
standardized via ISO/IEC and ECMA [4]. Among
its purposes are allowing the re-use of compiler fea-
tures between languages as well as improving the
interoperability between them. Recently, the CLI
has gained additional interest from cross-platform
development, since it allows for the re-use of exe-
cutables on different operating systems and proces-
sor architectures.

When compiling a CLI program from source
code, a language-specific compiler is called as usual.
However, it is typically not compiled into hard-
ware instructions, but instead into the Common In-
termediate Language (confusingly abbreviating to
CIL). The CLI normally compiles the final program
from there. This final compilation step happens
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Figure 4.2: Languages using the CLI cre-
ate similar and compatible compiler output
that is also independent of the runtime and
platform later used for execution. Public
domain image by Jarkko Piiroinen [26]

only shortly before usage, a practice known as Just-
In-Time compilation, allowing the usage of identi-
cal programs on different runtimes and platforms.

The CLI defines a large set of standard con-
ventions for its languages. A common type sys-
tem specifies not only basic types, but, in conjunc-
tion with a common language specification, enables
compatibility of custom types between programs,
even for those of different languages. This is as ab-
stract and incredible as it sounds: complex, high-
level data structures defined in one programming
language can be used in another, directly, includ-
ing metadata such as documentation snippets for
development, without most of the quirks one might
expect when doing such a thing. To use another
program, it is simply loaded as a library file; any
compatible features become available to the host
program.

This is a huge step forward in my opinion. This
thesis shows how plotting and rendering were in-
cluded into programs. One might think that was
tedious and error-prone. Actually, including both
libraries and getting them to run was done in a mat-
ter of minutes. The difficulty was the lack of ready-

made high-level functions for the renderer. Almost
all of the programming time for visualization was
spent interfacing the high-level code with the out-
dated OpenGL API of OpenTK – in part because of
its reliance on the global state machine paradigm,
which complicated integration.

CLI runtimes

There exist multiple implementations of the CLI,
but the vast majority of current Runtimes is based
on one of two projects:

• The Microsoft .NET Framework, which is the
first implementation of the CLI, and its vari-
ants. See the MSDN [20] for information on
the main version and the Compact Framework.

• The cross-platform Mono Project [19], of
which the main code-base is licensed under the
free software GPL license and maintained by
Xamarin [32].

Frameworks of the .NET family offer good perfor-
mance, but target only platforms of interest for Mi-
crosoft. Mono-based solutions have a very wide va-
riety of platforms, from its main, free Runtime in
Linux, Windows, and OSX, over Xamarin’s propri-
etary Android version and cross-compiler to Apple
iOS, to the Quantalea GPU compiler [27] privately
offered to financial clients.

4.4 Performance

The speed F# programs execute with is currently
notably dependent on the type of problem, lan-
guage features used in the program and the Run-
time it is executed on. F# is a statically typed
language that is suited for compiler optimization,
but the usage of functional and high-level language
constructs tends to impede optimization by current
compilers.

Generally, CLI compilers still yield assemblies
of lower performance than that of the heavily op-
timized and specialized solutions like the Intel C
compiler or Visual C++ compiler.

An anonymous employee of Trapeze Software has
published a benchmark series in 2011 [28] that com-
pares the Visual C++ compiler with the .NET and
Mono CLI Runtimes for different settings and prob-
lems. In summary, it shows that the .NET Run-
time is slightly slower than C++ VC9 and VC10
in comparable cases and about a factor 2 slower
in cases that are problematic to optimize in C#,
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which was the language the CLI programs for com-
parison used. Using Mono or x86-64 compilation in
.NET results in a further performance penalty.

In the programming for this thesis, programs run
on the Mono Runtime in SuSE Linux tended to run
slower than on .NET in Windows, more so than
the difference in the CPUs, RAM between the used
machines should justify. The most significant case
was in a C# implementation of 3D Fast Fourier
Transformation (as-of-yet unused library feature,
see Section A.4), where the slowdown depended on
multi-threading settings and may have been domi-
nated by an inefficiency in the dispatching of worker
threads for parallel tasks in Mono.

The performance of F# on Mono when used for
n-body simulations, one of the relevant cases for
astrophysics, has been analyzed and compared to
a multitude of languages and implementations in a
series of benchmarks by Brent Fulgham [9]. The
comparison is frequently updated; at the time of
this writing, F# on Mono executes this benchmark
at 2.8 times the time of the fastest implementation.

From a high-performance computing standpoint,
these are not very good results. However, this must
be put into the perspective of intended use cases.
The most prominent project similar to the pro-
grams drafted for this thesis is the Astrophysical
Multipurpose Software Environment (AMUSE) [1],
which uses Python as its front-end. In the above-
mentioned Fulgham n-body benchmark, Python 3
had an execution time about 36 times longer than
F# had even on Mono, 100 times slower than the
winner. An exact comparison would depend on the
Python implementation and problem, but given its
design as a dynamically typed scripting language,
it seems unlikely that Python can compete with
F# on either CLI Runtime in performance. (A
CLI implementation of Python called IronPython
exists, but does not change this situation.)

Outlook

F# and the CLI are not in principle constrained
in terms of performance. Rather, their compil-
ers and tools are much newer than those of C
or C++ and thus have undergone less optimiza-
tion. The performance of Mono especially may im-
prove. Mono is a younger re-implementation of the
.NET Runtime, which included many of its features
only in recent years, and subject of ongoing de-
velopment. Mono is transitioning to compilation
via LLVM [17], which is designed to provide re-
usable optimization algorithms for compilers. In
LLVM-enabled Mono, code is compiled in three

steps: from its original language first to CIL, then
to LLVM Intermediate Form, and finally to assem-
bly for execution. As LLVM is used in many other
compilers, there is a high level of interest in its fur-
ther optimization, from which the Mono compiler
would benefit.

Projects exist to compile F# for GPU, most no-
tably a commercial framework by Quantalea [27]
called Alea.cuBase that seamlessly integrates GPU
programming with code executed on the normal
CLI Runtime. It is also utilizing LLVM, but in
this case to interface with NVidia CUDA [6], the
compiler that also handles Espresso’s performance-
intensive SPH routines. Due to the concepts of
computation expressions and code quotations in F#
(see the MSDN [20] or Expert F# [7] for details),
the language itself requires no modification to work
with code blocks that are intended for special use
instead of normal compilation. Alea.cuBase is a
commercial product intended for financial analysis,
with a restrictive license and case-by-case pricing,
therefore it was not evaluated for this thesis. As
far as I could tell, other projects did not yet seem
viable for deployment.

4.5 Units of measure

The F# language allows values to be denoted in
physical units of measure, such as the units defined
in the SI and CGS systems. Computations involv-
ing values tagged this way will be checked for incon-
sistencies either when the program is compiled or
even live by the IDE. The CIL byte-code output by
the compiler holds information regarding units of
measure only as metadata, so that the performance
of the running program is not affected. Other pro-
gramming languages can call library functions writ-
ten in F# without a need to heed any special rules.
Programs in F#, however, will fail to compile if
units are specified incorrectly. This includes unit
errors in calls to library functions such as the ones
introduced in Chapter 2.

This feature deserves special mention as it proved
tremendously useful in two ways. First, working
with the wide array of units used in astrophysics,
such as denoting lengths in cm, m, AU, light-years,
and parsec, is neither an issue nor does it draw
much attention away from the physical problem
at hand. And second, even more helpful, is the
system’s ability to highlight inconsistencies due to
incompatible units, caused by mistakes such as a
missing factor in a calculation.

In the programming for this thesis, the IDE and
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unit of measure system caught the majority of nu-
merical mistakes within seconds of the faulty code
being written.

4.6 Typing and type safety

Language support for units of measure can be seen
as one specific tool concerning the much more gen-
eral topic of type safety. In modern programming,
expressions that implicitly convert between ways to
interpret a value are considered not type-safe. For
example, in C++, the following statement is valid:

if (myInt - 15) Start();

This line of code executes Start() if myInt 6=
15, because in C++, the number zero is also the
boolean value true.

Such expressions can shorten code, but from an
abstract standpoint, the line is a nonsensical state-
ment. Proponents of type safety argue that fea-
tures of this kind are dangerous because they can
cause compilers to output an absurd interpretation
of a program where they should output an error
message.

Most typing can be categorized using the follow-
ing categories:

• Strong versus weak and duck typing: in strong
typing, objects are either explicitly compatible
or not. Weak typing, or its extreme case of
“duck” typing, “make ends meet” if they can,
even if this involves conversions.

• Static versus dynamic typing: dynamic types
can change at run-time, static types cannot.

• Explicit versus implicit, inferred typing: in ex-
plicit typing, the programmer must state types
explicitly. In implicit typing, only the min-
imal necessary information need be provided
for code to be valid.

It is important to distinguish between inferred
static typing and dynamic typing, which can ap-
pear very similar at first sight. Inferred typing,
sometimes called implicit typing, does not alter
the compiled program or any other behavior of the
compiler, it only allows omitting annotations where
they are obvious from context.

F# picks strong static inferred typing and is very
consequent about type safety. Wherever possible,
F# predicts the types of user-defined values, so pro-
grams only require minimal type annotations. But
even something as simple as the lossless conversion

from a 32-bit integer to a 64-bit integer must be
explicitly declared, or else the program will fail to
compile. There is the exception of structural com-
parison, but discussing this topic is omitted here as
it would go beyond the scope of this thesis.

I believe that this choice of typing discipline is
the correct choice for the majority of applications in
physics – and also in other disciplines that involve
high complexity and a low tolerance for errors. Dy-
namic typing is slow, cannot be reliably analyzed
by IDEs, and is inherently unsafe, creating unnec-
essary room for errors for little benefit. Weak typ-
ing removes safety exactly where it is needed most:
good code tends to execute numerical conversions
at few, well-defined locations in the program. This
means that weak typing saves its user a few local
annotations that probably then become comments
instead. The cost of this is the uncertainty that any
part of the program may accidentally cause conver-
sions, inducing a wide range of possible errors, with
little indication as to where this might happen.

The case for implicit typing is, in a way, the op-
posite of weak safety in conversions. The benefit of
being allowed to omit redundant type annotations
is big, as these can significantly inflate code, espe-
cially when using descriptive type names. The pro-
grammer is free to write redundant annotations if it
improves clarity. Should an invalid definition occur,
the programmer can insert additional annotations
and the development environment (or interactive
compiler) can highlight the contradiction with in-
creasing precision. There is virtually no downside
to this approach, on the contrary: automatic gen-
eralization allows code to be used in its minimally
constrained meaning, enabling it to remain type-
safe while being valid for multiple different types
at once, without additional programming effort.

4.7 IDE options

The integrated development environment (IDE) is
a major component of modern programming. It as-
sists the user in writing, debugging, analyzing, edit-
ing, visualizing, organizing, compiling, and test-
ing programs, among many other possible features.
The preferences in IDE choice vary wildly between
use cases and users, with some using simple text
editors, sometimes without even the highlighting of
syntax in color. Others use specialized editors for
graphical applications, as offered for mobile phones
by Xamarin [32].

Figure 4.3 shows an experiment that combines a
plotting window with a graphical user interface and
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Figure 4.3: A forms-based cross-platform plotting window with a built-in F#
compiler. This program was one of the plotting methods created for the SPHS
library, but was abandoned since it offers little advantage over either a full IDE
or the F# interactive console, while not benefiting from the features of either.
It still serves to demonstrate the versatility of the library-focused programming
methods that both created it and made it obsolete.

an F# compiler. It worked flawlessly, but was still
discarded, because its user interface is redundant
with the versatility F# programming offers anyway
– and a plotting window can be launched from pro-
grams written in any F# IDE, including the F# in-
teractive console, which is a simple console window
operated by typing line-by-line F# code. Calling
Chapter 2’s SPHS library features from the interac-
tive console worked immediately on both Windows
.NET and Linux Mono. With a variety of alterna-
tives, the plotting program was redundant.

4.8 Evaluation summary

Before we draw conclusions for the case of numer-
ical physics, let us summarize the traits of F# in
general. Amongst its prominent disadvantages are:

• Interacting with native libraries can cost per-
formance and involve some additional effort.

• Its compilers and thereby run-time perfor-
mance is not on par with the high-performance
competition. (As seen in Section 4.4.)
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• For very small and simple tasks, it can be
slightly more verbose than dynamic languages,
which can become the limiting factor in such
use cases.

• F# feels alien to many and may be more diffi-
cult to learn than other languages.

General advantages of F# are:

• It is an expressive language that is well suited
to represent mathematical models.

• Its design is directed at reducing the error rate
when programming.

• The language is suited for live analysis and
feedback from IDEs.

• Compiled programs, especially libraries, are
automatically cross-platform usable, unless
they rely on native code.

• It features very good interoperability to CLI
libraries, including those written in other lan-
guages.

• It has a very lightweight syntax when com-
pared to other strongly typed solutions to com-
plex problems.

Distinguishing between high-level and
high-performance code

Physical applications tend to face a slightly differ-
ent situation compared to typical general-purpose
programming projects. Some prominent differences
are:

• Applications tend to be performance-intensive.

• Physicists spend much time programming and
are willing to learn new concepts.

• Complicated, mathematically formulated
problems are common.

• Units of measure are frequently used.

Of these four points, three arguably support the
usage of F# and one, performance, does not. This
suggests to distinguish between programming tech-
niques for projects that are primarily limited by
computer performance and those that are primar-
ily limited by the writing of programs.

It may be a sensible decision to support a divide
between programming languages that solve either
problem, to then use two languages in combination.

In most programs, the performance-intensive code
is only a fraction of the program and increasingly
executed on GPUs. Writing exactly these parts in
a language that allows highly optimized routines,
while using a safe and expressive high-level lan-
guage for the remainder of the program, might be a
very strong combination. Such a divide could have
the consequence that languages forming a “middle
ground” between the two could lose importance, as
a case-by-case combination of the extremes may be
hard to compete with.

The SPHS Library shows this approach when
it interacts with Espresso: the SPH simulation
in Espresso is executed using CUDA, which offers
extremely high performance by running on paral-
lel GPU multiprocessor units, but cannot compete
with F# in other aspects.

4.9 Closing remarks

This thesis has demonstrated a modern program-
ming style with functional emphasis by using it in
multiple applications relevant to physical research.
We have seen the abstraction of an inherently im-
perative high-performance GPGPU simulation of
fluid dynamics for inclusion in an entirely separate
analysis software that uses a strongly functional
formalism. Example code demonstrates that the
definition of a simulation can be of minimal length,
retain type safety, and still be very clear and con-
cise. We have also seen the implementation of a
grid-based simulator in F# and the integration of
various tools into the setup and analysis process.

The usefulness of many of the shown methods
may depend on the scope of the projects they are
used for. Strong typing, functional programming,
library interoperability, cross-platform usage, the
combination of multiple languages and compilers –
implementing such concepts requires some extent
of effort even if they seamlessly integrate into a
project. The programming style used here is in-
tended for large projects with high complexity; it
likely would show greater effect in a project involv-
ing more than one to two people.

But this is where great potential may lie hid-
den. Many projects do involve a lot of people, high
complexity, and an almost desperate demand for
improvements in usability. There is much work to
be done to improve workflow itself – and quite pos-
sibly, the effort would amortize.
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A Appendix

A.1 EBT file format specification

EBT (Easy Block Tree) is a recursive format for
structuring serialized data.

• The EBT format is a sequence of blocks.

• Integers defined in this section are serialized in
little-endian format.

A block always consists of three parts:

• 2B (signed Int16) Block type ID; sign indicates
whether the length field is 1B or 8B

• Length of content and possibly isEBT flag, for-
matted depending on the sign of the ID:

– If the ID is positive, the content length
field is an unsigned Int8 (1B) indicating
content length in bytes.

– If the ID is negative, the content length
field is an Int64 (8B).

∗ A negative value is used if the block
content is again in EBT format.

∗ The absolute value indicates the con-
tent length in bytes.

• Content

A.2 EBT index specification

To allow quick access, an index may be provided.
Indexing of individual block contents is optional.

File addresses

File positions are stored as little-endian Int64 val-
ues (8B size). The beginning of the file and first
valid position is at 0.

Index Address Block

• Is a top level block

• ID = +32512 = +7F00hex

• Content length 8B

• Must be the first block in the file

• Contains the address of the Block Index Block
that holds the top level index

Index Container Block

• Is a top level block

• ID = −32512 = −7F00hex

• IsEBT: contents have EBT format

• Contains only “Block Index Blocks”

Block Index Block

• ID (local) = -1

• Holds the addresses of all elements in a block.

• Is to be used as index for its own file if and
only if it can be navigated to from the Index
Address Block

• Contains a sequence of indexer structures

Indexer

• 2B target block ID

• 8B target block address; points to the very be-
ginning of the block (first byte of ID)

• 8B target index address option. If not 0, it
contains the address of the index block for the
target block. If 0, it is meaningless.
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Notes

For performance and easy writing, it is often suit-
able to write one Index Container with all desired
indices at the end of the file.

A.3 Implemented Rules

The following lists implemented settings the SPHS
library could pass to the development version
of Espresso. They are written in the format
identifier : type. The IOFlags type will be ex-
plained later in this section.

Main simulation definition

• bounds : Cuboid<cm>: Boundaries of the sim-
ulation

• d3 : bool: Use three-dimensional simulation,
false gives two-dimensional

• dt : float<s>: Time between two snapshots

• enableGravity : bool

• enableHydro : bool

• isIsotherm : bool: Set to true for isothermal
computation

• iterationsPerSnapshot : int64 option

• snapshots : int64: Number of snapshots

• stepmax : int64 option: log2 of maximum
time-step size in units of dtmin

Numerical constants

• cfl scale : float option: Courant number.
Typical value is 0.15.

• constEnergy : float<erg/g> option: If set,
all particles will have this specific energy
throughout the entire simulation.

• constMass : float<g> option: If set, all par-
ticles will have this mass throughout the entire
simulation.

• gamma : float option: physical γ value

• gravConstant : float<cm3̂/(g s2̂)>

option: Gravitational constant to use if
gravity has been enabled

• gravSoftening : float<cm> option: Scale
for the gravitational softening parameter

Other settings

• boundX : byte: Boundary behavior for X-
direction: 0uy = Open; 1uy = Periodic; 2uy
= Reflecting; 3uy = Streaming in/out; Exten-
sions may introduce more

• boundY : byte: see above

• boundZ : byte: see above

• dataFileOutput : bool: Specifies whether an
output in the standard data format is created.

• export : IOFlags: Which particle fields to ex-
port when writing to file

• glassPass : int64: How many passes of glass
generation should be performed? Default is
zero.

• isscale : bool: Toggles Espresso’s internal
unit scaling.

• simOutput : IOFlags: What per particle data
should the simulator output?

• waitOnEnd : bool: If set, Espresso halts after
the simulation instead of terminating.

Internal and temporary features

• cRhoMin : float option: Lower density limit
for CIT-SPH output in data format units

• cRhoMax : float option: Upper density limit
for CIT-SPH output in data format units

• cEMin : float option: Lower energy limit
for CIT-SPH output in data format units

• cEMax : float option: Upper energy limit
for CIT-SPH output in data format units

• EType : byte: experimental Espresso setting

• HType : byte: experimental Espresso setting

• MType : byte: experimental Espresso setting

• VType : byte: experimental Espresso setting

IOFlags

This type allows to specify which data should be
transferred to or from Espresso via bit-flags. It is
best described by its definition, which is in binary
form:
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[<Flags>]

type IOFlags =

| Nothing = 0b0000000000

| All = 0b1111111111

| id = 0b0000000001

| x = 0b0000000010

| y = 0b0000000100

| z = 0b0000001000

| vx = 0b0000010000

| vy = 0b0000100000

| vz = 0b0001000000

| m = 0b0010000000

| rho = 0b0100000000

| e = 0b1000000000

| Position = 0b0000001110

| Velocity = 0b0001110000

A.4 Unused feature: 3D Fast
Fourier Transform

A three-dimensional multithreaded Fast Fourier
Transform has been implemented in C# for this
thesis. Due to a shift in the project’s direction it
has not been used.

The intended use case for the feature was the
setup of turbulent velocity fields, which can be
more easily defined by their representation in
Fourier space. A backwards Fourier transformation
would then yield the velocity field for the particles.

For such a part of the program, C# may be
preferable due to its availability of unsafe code
blocks, which allow manual code optimization us-
ing pointer manipulation, as common in C++ pro-
grams. Such operations are normally forbidden in
C# and F# due to their breaches of security fea-
tures and bad compatibility with garbage collec-
tion. With the current compilers, the usage of un-
safe code still improves program speed, so an unsafe
C# code block was used for the inner operations of
the Fourier Transformation.

This feature appeared operational; referring to it
from the SPHS library and writing a function that
applies the velocity field should enable the ability
to set up turbulent velocity fields.
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