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Chapter 1

Introduction

The theory of cosmic structure formation predicts through n-body simulations that mat-
ter in the universe should be concentrated along sheets and filaments and that clusters
of galaxies form where these intersect (Kauffmann et al. 1999; Bond et al. 1996). This
filamentary structure, often also dubbed “cosmic web”, has been seen in galaxy redshift
surveys (Vogeley et al. 1994) and more recently and at higher redshift by Méller & Fynbo
(2001). Because of the greatly varying mass—to-light (M/L) ratios between rich clusters
and groups of galaxies (Tully & Shaya 1998) it is problematic to convert the measured
galaxy densities to mass densities without making further assumptions. Dynamical and
X-ray measurements of the filament mass will not yield accurate values, as filamentary
structures are probably not virialized. Weak gravitational lensing, which is based on the
measurement of shape and orientation parameters of faint background galaxies (FBG), is
a model-independent method to determine the surface mass density of clusters and fil-
aments. Due to the random orientation of the unlensed FBG every weak lensing mass
reconstruction is unfortunately an inherently noisy process, and the expected surface mass
density of a single filament is too low to be detected with current telescopes (Jain et al.
2000).

Cosmic web theory also predicts that the surface mass density of a filament increases
towards a cluster (Bond et al. 1996). Filaments connecting neighboring clusters should
have surface mass densities high enough to be detectable with weak lensing (Pogosyan
et al. 1998). Such filaments may have been detected in several recent weak lensing studies.

Kaiser et al. (1998) found a possible filament between two of the three cluster in the
z = 0.42 supercluster MS0302+417, but the detection remains somewhat uncertain because
of a possible foreground structure overlapping the filament and possible edge effects due
to the gap between two of the camera chips lying on the filament. Gray et al. (2002) claim
to have found a filament extending between two of the three clusters of the Abell 901/902
supercluster, but the significance of this detection is low and subject to possible edge
effects, as again the filament is on the gap between two chips of the camera. Clowe et al.
(1998) reported the detection of a filament extending from a high-redshift (2 = 0.809)
cluster. Due to the small size of the image it is unknown whether this filament extends to
a nearby cluster.
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Figure 1.1: N-body simulation showing the cosmic web of sheets and filaments. Taken
from http://www.mpa-garching.mpg.de/Virgo/LCDM.gif (Jenkins et al. 1998).



A significant detection of a filament between clusters of galaxies and the determination
of its surface mass density would be an important step in observational cosmology and
would provide important constraints for the theory of structure formation.

This thesis consists of several parts. I start with a brief review of the basics of gravita-
tional lens theory and mass reconstructions in chapter 2. In chapter 3 I try to develop a
statistics based on weak gravitational lensing to quantify the presence of a filament between
a pair of galaxy clusters using the results of n—body simulations. Although mostly unsuc-
cessful, some results of this chapter are applied to observational data of the Abell 222 and
Abell 223 clusters. This and various other weak lensing analyses are presented in chapter
5. A spectroscopic and photometric study of the Abell clusters is described in chapter 4.
A discussion of the results of this thesis and their implications for future studies in this
field is given in chapter 6.
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Chapter 2

Gravitational Lensing

Although already Newton discussed the deflection of a light ray traversing the gravitational
field of a massive body, a definite answer to the question whether and how much such a
light ray would be deflected could only be given after Einstein developed his General
Theory of Relativity (GRT). The prediction of GRT that light is indeed deflected when
traversing an inhomogeneous gravitational field was confirmed in 1920 by Dyson et al.
(1920) who measured the shift of position of stars close to the sun during a solar eclipse. The
measurement confirmed not only the existence of a gravitational light deflection but also
the value predicted by Einstein’s theory which is twice as big as predicted from Newtonian
theory. The first gravitational lens on cosmological scales was found in 1979 by Walsh
et al., who observed a double image of the quasar 0957 + 561. Since then gravitational
lensing has been a flourishing field with many different applications.

In the following I will give a brief overview of the basics of gravitational lensing, and
especially weak lensing and mass reconstructions from weak lensing. A much more in—
depth treatment of gravitational lenses in general can be found in Schneider et al. (1992)
and of weak lensing in particular in Bartelmann & Schneider (2001).

2.1 Cosmological Background

Since gravitational lensing takes place on large scales the effects of space-time curvature
and expansion cannot be neglected. I will review a few of the fundamental equations
and facts of the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological
model. A thorough treatment of this subject can be found in many textbooks, e.g. Peacock
(1999).

The FLRW model relies on the two fundamental postulates that (1) the matter dis-
tribution and motion is isotropic on sufficiently large scales and that (2) every comoving
observer observes the same history of the universe. The last property is called observer
homogeneous.

General Relativity describes space—time as a four dimensional pseudo—Riemannian man-
ifold with a metric go4  that depends on time and space. The components of the metric

5



6 Chapter 2. Gravitational Lensing

tensor are determined by solving Einstein’s field equations. Robertson and Walker showed
that for an isotropic and homogenous universe the metric can be written in the simple
form

ds? = 2dt* — a*(t)di? (2.1)

where a(t) is a scale function that depends only on time because any spatial dependence
would violate the requirement of homogeneity. di? is the comoving line element in three—
space. The most general form to write the line element in spherical coordinates (w, 6, ¢)
fulfilling the conditions of isotropy and homogeneity is

di? = dw® + fx(w) (d6* + sin® d¢?®) . (2.2)

The functional dependence of fx(w) on the curvature K of the spatial hypersurface, de-
scribed by the line element di?, is given by

K12 sin(K'/?w) (K >0),
fx(w) =< w (K =0), (2.3)
—(K) Y?sinh [(-K)"?w] (K <0).

I choose the normalization ag = a(tp) = 1. Here and in the following any quantity with a
subscript 0 denotes the value at the present epoch.
Because spacetime expands, photons traveling from a source to an observer are red-

shifted on their way. A photon that was emitted at time ¢, and is observed today is
redshifted by

Qo 1 )\obs
a(te)  alte) Ae (24)

Here we already made use of the scale function a(t) but have not yet determined how
it depends on time. For the simple metric given in eq. (2.1) and (2.2) the stress—energy
tensor has to have the form of a perfect fluid with density p(¢) and pressure p(t). Einstein’s
field equations then simplify to the two independent equations

.\ 2
a 8tGp K A
Z) = - 4= 2.
<a) 3 a? * 3 (2:9)
and
a 4rG 3p A
Z2__77 = _ 2.6
I (S (2.6

which together with the normalization ay = 1 completely determine the scale function a(t).
A is called the cosmological constant. A universe obeying eq. (2.5) and (2.6) is called a
Friedmann—Lemaitre universe.
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The geometry of an FLRW universe depends on its energy density. The critical density
Periv Of the universe for matter is given by

3H?
= —0 2.7
and the density parameter
P
Om = 2.8
Perit ( )
is the density in units of the critical matter density. In case of vanishing A, 2y = 1

corresponds to a universe with flat spatial hypersurfaces (K = 0). This case is called
Finstein—de Sitter (EdS) universe. Likewise we define a density parameter for the cosmo-
logical constant:

Q) = — . 2.9
AT 3H? (2.9)
The ratio
a
H=—- 2.10
! (2.10)

is called the Hubble parameter and its value at the present epoch is used in the local Hubble
law to determine the distance of objects (for z < 1):

cz
dist = — 2.11
istance 2 (2.11)

The value of the Hubble constant Hy is often given as Hy = 100 hkms ‘Mpc™" with
h = (0.5 — 0.8) to reflect the uncertainty in the actual value of H.

Generally, the notion of distance is not unique in curved spacetime and the dependence
of distance on redshift is more complicated than in eq. (2.11). The angular diameter
distance relates the cross—section JA of an object to the solid angle dw under which it

appears,
1/2
D = <%) . (2.12)

In terms of redshifts, the angular diameter distance between to objects of redshift z; and
29 is given by

Dang(21, 22) = a(22) frc[w(z1, 22)] (2.13)
or can be written in terms of the density parameters as
1 Z2 dZ’
Dang(zl, 22) = / . (214)
T+20 /oy /(1= Qm — Q)1+ 2)2 + Qu(1 +27)3 + Q4
In an EdS universe with a Hubble constant Hy (2.14) can be integrated to
2¢ —1/2 —-1/2

Dane (21, 2 =7[1+z 2_(1+2 . 2.15
() = s [T ) = (L4 2) (215)
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2.2 Basics of Gravitational Lens Theory

2.2.1 The Thin Lens Approximation

Figure 2.1 sketches a typical situation considered in gravitational lensing. A light ray
emitted from a source S is deflected when it passes a gravitational lens D. The observer O
sees the source at the position angle 6 instead of the undeflected position 5. The light ray
is deflected by the deflection angle @. Angular diameter distances are used because with
them the intercept theorems are valid.

[

Dys Dy

Figure 2.1: Simplified geometry of a gravitational lens system. A light ray emitted from
the source S is deflected by the gravitational lens D, and observed at the position angle 6
by the observer O. Dy, Dy, and Dgys are the angular diameter distances from the observer to
the lens, from the observer to the source, and from the deflector to the source, respectively.

The vector 77 denotes the two dimensional position of the source in the source plane.

In most astrophysical cases the spatial extension of the lens along the line of sight is
small compared to the travel path of the light ray and the light ray can be considered as
a piecewise straight line, even in the vicinity of the lens. If we additionally require that
the impact parameter is much bigger than the Schwarzschild radius of a point lens with
mass M, |§| > 2GMc 2, the field equations of General Relativity can be linearized. The
vectorial deflection angle of a lens is then the superposition of the deflection angle of the
individual mass elements.

This enables us to write the deflection angle in terms of the surface mass density (),
which is the projection of the three-dimensional density distribution of the lens onto a
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plane perpendicular to the line of sight:

—

( )=/dr3 p(E,rs) . (2.16)

The deflection angle is then given by

ét; .
§I|2

=

o 4G 2 g
o d=&" Y& =2 17
(@ = ./5 @2 (2.17)

2.2.2 The Lens Equation

We now need an equation to relate the source position to the observed position. From
Fig. 2.1 we see that

=

5 Dgsai(€) (2.18)

@‘@

with the impact parameter 5 Introducing the scaled deflection angle

a(0) = DE&(D) (2.19)

S

- =

and using the relations 77 = Dyf3, £ = Ddg eq. (2.18) takes the form of the lens equation,

- -

B=6-a@). (2.20)

Depending on the surface mass density, eq. (2.20) can have multiple solutions g for a given
B. A lens whose surface mass density exceeds the critical surface mass density

2 Dy
Yt = T )
4G DdDds

(2.21)

which depends on the angular diameter distances between source, lens, and observer, some-
where, will produce multiple images for some source position 5 . Because the critical surface
mass density is a characteristic value for any lens system, the surface mass density is often
written in units of X¢j:

= 2(D4b)

w(0) = =~ (2.22)

k is called the dimension—less surface mass density and its value gives a qualitative descrip-
tion of the lens. If kK > 1 for some region in the lens plane, the lens is said to be ‘strong’
and it can produce multiple images of the background source. If kK < 1 the lens is called
‘weak’ and cannot produce several images of a source.
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Eq. (2.17) can now also be written in terms of x

: (2.23)

where we used the scaling relation (2.19). From eq. (2.23) we see that the scaled deflection
angle can be written as the gradient of a two dimensional deflection potential, @ = V1),

() = 1 / @20 k(F)In | — & . (2.24)

s
In analogy to the three-dimensional Newtonian potential, v satisfies a Poisson equation

V2 (6) = 2k(6).

2.2.3 Properties of the Lens Mapping

Because eq. (2.20) is non-linear a gravitational lens will not only change the position of the
source image, but also its shape. The local properties of the lens mapping are described
by its Jacobian matrix

_9F PO\  (1-k-m -7
A= 00 (5” 00,0 ) Y2 l=k+m)’ (2.25)

where in the last step we defined the complex shear v = ; +iv, = |y|e?¥ as the trace—free
part of A, which is related to the deflection potential via

M= %(1/1,11 —Y2), Yo =12 . (2.26)

Additionally, from Liouville’s theorem we can conclude that gravitational lensing conserves
surface brightness. Let 1()(3) be the intensity of a source in the source plane. An observer
then sees the intensity

— = =

1(6) = IW[3(6)] , (2.27)

—

which locally linearized around a point Bo =8 (50) becomes

=

1(0) = I | By + A(By) - (6 - 50)] . (2.28)

Equation (2.28) has a geometric interpretation. Assuming a circular background source,
the image will be an ellipse with semi-axes

a=r-(1-r-)7",

ber-(1— kv (2:29)
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r being the radius of the unlensed background source. From eq. (2.29) we see that the
convergence x magnifies the image, while the shear v distorts the image. The magnification
factor of an image is given by computing the ratio of the integrated lensed and unlensed
intensity distribution I(f) and I®)(6), respectively. From equation (2.28) we determine
this to be

I 1
CdetA  (1—k)2—|y[2°

1 (2.30)

Thus, not only the convergence but also the tidal distortions of the shear contribute to
the magnification. We call a lens sub—critical if it cannot produce multiple images, i. e.
det.A(6) > 0,V 0.

Two competing effects can change the number density of background objects by gravi-
tational lensing. We will look at this for sub—critical lenses. First, lensing magnifies while
leaving the surface brightness constant. Hence, the flux of background objects changes
such that fainter objects can become visible in a flux-limited sample. Second, the magni-
fication locally stretches the sky and thus decreases the number density of a fixed set of
sources by a factor u.

Let no(> S, z)dz be the unlensed number density of objects with redshift between z
and z 4+ dz and a minimum flux §. Then the observed number density is given by

1 S
n(>S,z) = @no (> M’Z) : (2.31)

Generally, no redshift information for the FBG will be available and only the redshift—
integrated count

n(>9S)= /dz ﬁno <> %,z) (2.32)

will be observed. It is known from observations that the number counts of faint galaxies
closely folllow a power law,

no(> S, 2) = aS™po(z; 5), (2.33)

where the exponent o depends on the observed pass band (Smail et al. 1995), and py(z; S)
is the (currently unknown) redshift probability distribution of galaxies with flux > S.
Combining (2.32) and (2.33) we get

For small lens redshifts (z4 < 0.3) this can be approximated by

% — ot (2.35)
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because for all background sources the redshift dependent magnifaction is approximately
equal to the magnification of a fiducial source at infinity (see Bartelmann & Schneider
2001, section 4.3.2).

As k determines the deflection potential, and the shear is given by second partial
derivatives of the deflection potential, we can suspect that a relation between k and 7y
exists. Combining equations (2.24) and (2.26), we find that v can be written as the

=

convolution of the surface mass density with a kernel D(6),

= 1 - -

(@) = 1 / @20 D(F — 0)k(@) |

mw
02 — 6% — 2ip,0 -1
D) = 21 172 _ .
@ L 0, =16,)°

(2.36)

Equation (2.36) implies that by Fourier—transforming and applying the convolution theo-
rem, the surface mass density can be determined from measuring the shear alone.

2.2.4 Weak Gravitational Lensing

Weak gravitational lensing makes use of the fact that the surface mass density x of a lens
can be reconstructed from measuring its shear ~.

The shape of the FBG is changed as their light passes by a gravitational lens. If the
population of FBG were intrinsically circular, measuring the ellipticity of their images
would immediately provide information on the shear of a gravitational lens at the position
of each galaxy. As galaxies are intrinsically elliptical, measuring the shape of individual
galaxies does not provide significant information about the tidal gravitational field. If we,
however, assume that the ellipticity distribution of FBG galaxies is intrinsically random,
the shear can be estimated from the net ellipticity of a local galaxy sample.

Many FBG are of rather irregular shape and cannot be well approximated by elliptical
isophotes. Moreover, on CCD images we do not measure a continuous brightness distri-
bution, but brightness on CCD pixels. We thus have to develop a measure of ellipticity
that is well adapted to observational data of not only elliptical galaxies, but also of more
irregular objects.

=

First we define the center § of an object with brightness distribution (),

=

_ [0 a[10))0
J 426a:1(9)]

with ¢;(/) being a weight function. E.g. if ¢ = H(J/ — ) is the Heaviside step function,

Dy

: (2.37)

0 is the center of the area enclosed by the limiting isophote Ii,. If ¢; is fixed we define the
tensor of second brightness moments,

Qi = J 420 as[1(8)](6; — i) (6; — 6;)
’ J 426 ¢,[1(6)]

, 1,5 €{1,2}, (2.38)
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(Blandford et al. 1991). The shape of an image can now be quantified in terms of the
components of the tensor Q;;. We define the complex ellipticity?,

_ Q11 — Q22 + 2iQ12
Q11 + Qa2 + 2(Q11Q2 — Q%,)1/2

(Bonnet & Mellier 1995). For elliptical isophotes with axis ratio r < 1, ¢ = (1 — r)(1 +
r)~Lexp(2id), where ¥ is the angle of the major axis with respect to the 1-axis. The factor
2 on the exponential function ensures that the ellipticity is invariant under a rotation by
m, reflecting the symmetry of an ellipse.

The relation between source ellipticity €(®) and image ellipticity ¢ is given by

(2.39)

3

ey <1,
@ = { 1o 9= (2.40)
e lgl>1.

where the asterisk denotes complex conjugation and we have defined the reduced shear

l

g(0) = % , (2.41)

(Seitz & Schneider 1997). As the expectation value of £(*) is zero, the expectation value of
of the observed ellipticity is

X |

(e8) = 9() . (2.42)

for |g| < 1. In the case of weak lensing, x < 1, |y| < 1, and thus |g| < 1, (2.40) becomes
e ~ ¢®) + g, under the condition that || ~ [¢®)| < 1/2.
The reduced shear g does not change under the following transformation:

=@ =A[1-s@] , 7@ =10), (2.43)

or

K(0) = Xe(0) + (1= N) . (2.44)
This means that replacing x by a rescaled x minus a mass sheet of constant surface mass
density does not change the observed ellipticities. The invariance transformation (2.43)
is the so—called “mass—sheet degeneracy” and implies that from observing image shapes
alone, (1 — k) can be determined only up to a multiplicative constant. Recalling eq. (2.30),
we see that the magnification transforms as

1 (6) = @ . (2.45)

Thus, taking magnification effects in to account, the mass—sheet degeneracy can be lifted.

!This is not the only measure of the shape of an image that is dubbed complex ellipticity. In the

literature one finds for example xy = % under the same name.
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2.3 Mass Reconstruction

As stated in the previous section, the surface mass density of a lens can be reconstructed
(up to an additive constant) from the observed shapes of the background galaxies. One
way to achieve a measurement of x, the inversion method of Kaiser & Squires (1993, KS93),
was already mentioned in section 2.2.3. By Fourier-transforming eq. (2.36) and applying
the convolution theorem, the surface mass density can be computed from the integral

k() = ko = - / R [DF - ()] | (2.46)

™

where the constant kg is due to the mass-—sheet degeneracy. For applying (2.46) to obser-
vational data, the integral is replaced by a sum,

w(6) = % SR [P0 0)z] (2.47)

where the summation is carried out over galaxies at position 6;, and n is the number
density of galaxies. Unfortunately, as already noticed by KS93, this estimator has an
infinite variance, because of the sampling noise introduced by the random position of
galaxies. This problem can be overcome by spatially smoothing the shear data. While the
form of eq. (2.47) stays the same if the shear estimate is smoothed, the expression for the
kernel D changes. For the case of Gaussian smoothing with smoothing length 65 the new

kernel reads
o 912 g2
D(O) = [1 - (1 + ‘OT) exp (—%)] : (2.48)

(Seitz & Schneider 1995). While the smoothing allows estimates for x with finite noise it
also introduces a strong spatial correlation of errors. van Waerbeke (2000) showed under
the assumption of no lensing, i.e. v = 0, that the covariance of a k-map obtained with the
kernel (2.48) is

2

Cov(k(@), £(@)) = —2=— exp (—%) | (2.49)

YR

meaning that the correlation extends to scales of the order of the smoothing scale. It
should be noted that in the presence of shear, the random galaxy distribution contributes
shot—noise. This effect is studied in detail in Lombardi et al. (2002). It turns out that
smoothing the shear data and applying eq. (2.46) results in less noisy mass maps than
using (2.47) with the kernel D (Seitz & Schneider 1995), because eq. (2.47) contains the
shot—noise contribution.
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2.3.1 Finite Field Inversion as a von Neumann Boundary Prob-
lem

The obvious disadvantage of the KS93 method is that the integration (2.46) has to be
carried out over R? while the observed field will always have a finite size. KS93 avoid this
problem by setting v = 0 outside the observed field. While this allows to do the integration,
it invents data, that is not actually there. The result is that KS93 reconstructions are
dominated by systematic errors in the corner of observed fields, where the influence of
regions on which 7 is set to zero is largest.

To avoid this problem inversion methods on finite fields have been developed. I will in
the following discuss the method of Seitz & Schneider (2001, hereafter SAS) in more detail.

We first define the quantity

=

K(6) =n [1 - &(5)} . (2.50)

Due to the mass—sheet degeneracy, K can only be determined up to an additive constant.
Kaiser (1995) showed that the following relation for the gradient of K holds:

ﬁ(g) VK —1 (1 —91 —92 > (91,1 + 92,2) ' (2.51)

T 1- 9?2\ —92 1+91) \g210 — 912

Eq. (2.51) can be solved (up to an additive constant caused by the mass—sheet degeneracy)
by line integration, and several methods have been developed (Schneider 1995; Kaiser et al.
1995; Bartelmann 1995; Squires & Kaiser 1996) to do this.

=

Observational noise is present in the vector field @(#) for all real data. Thus, in general,

=

@(f) will not be a gradient field but will have an additional rotational part ,

mjzvk+vXq®=vK+(%£$), (2.52)

where s(0) is a scalar field (Seitz & Schneider 1996). Although this decomposition is not
unique, it can be uniquely fixed by setting s = const on the boundary OU of the observed
field Y. This implies that the mean of V x s(f) = 0 on U , as is expected for a noise
contribution, and that V x s(d) = 0 if #(f) is a gradient field. Then, if we identify VK

with VK, eq. (2.51) can be solved to (Seitz & Schneider 1996)

= — — = =

K(f) - K = / 420" H(@,6) - 4(6) , (2.53)

where H(6',6) is a vector field obtained from the Greens function of a Laplace equation
with Neumann boundary conditions, and K is the average of K over the data field U.
Taking the divergence of eq. (2.52) we arrive at

— -

V2K () =V -d(f) , (2.54)
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=

and since we required s = const on 0U, V x s(f) is perpendicular to the normal vector 7
on OU. Thus, on oU

i-VK=1-i (2.55)

holds. K can now be computed by solving the Neumann problem given by eqgs. (2.54)
and (2.55). SAS provide a FORTRAN-77 implementation of this method that uses the
successive overrelaxation algorithm of Press et al. (1992b, p. 857).

The practical implementation of the method described above employs the following
steps:

1. The galaxy ellipticities are spatially smoothed. The reduced shear at the position g
is calculated from

o6 = S w(|6— 6; )|5i (2.56)

where ¢; is the ellipticity of the ¢th galaxy at position g;. N, is the number of all
galaxies and w(f) is a suitably chosen weight function. SAS set

w(8) = {eXp (‘(AL@)) —exp(=q) 0= aAd, (2.57)

0 otherwise.

with Af being the smoothing scale and ¢ a constant fixed at ¢ = 9, so that the
smoothing is nearly Gaussian and w is continuous at § = /gA§. From eq. (2.56) the
reduced shear can then be calculated on a regular grid.

— —

2. Employing eq. (2.51) the vector field #(#) is obtained from the smoothed g¢(#) by
finite differencing.

3. The Neumann problem (egs. (2.54), (2.55)) is solved using successive overrelaxation.

2.4 The Aperture Mass Statistic

A statistic that is not affected by the mass—sheet degeneracy is the aperture mass M,p,
which is a generalization of Kaiser’s (Kaiser 1995) (-statistic,

C(go;ﬁlaﬂz) = R(Jo;ﬁl) - R(go;ﬁlaﬁQ) ) (2.58)

which is the difference of the mean surface mass density in circle of radius 19, around ]
and in an annulus of inner and outer radii ¥; and 5, respectively. Because the invariance
transformation (2.44) corresponds to an unknown additive constant in &, it drops out of
equation (2.58).
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The aperture mass at a point 50 is defined to be

M,y (6)) = / 420 «(

=

U0 - 6y) (2.59)

=

where U(f) is a weight function. For instance if

— 0< <Y,
U(W) = U(|§_ §0|) = —m V1 <9 <y, (2.60)
0 otherwise.

the (—statistic (2.58) is recovered.

Now let the weight function be constant on closed curves ¢()), A € I, where I is a finite
interval. Without loss of generality we require ¢ X ¢ = ci1é2 — co¢; > 0. We then define a
new coordinate system (b, \) around the point 8, by 6 = 6, + b&(\). U now only depends
on b, and (2.59) is transformed to

Moy (6) = /O T b bU ) ?{ A (& x &) K[y + bEN)] | (2.61)

where we used the Jacobian bé x € of the coordinate transformation. Integrating (2.61) by
parts with respect to b gives

M,y (0) = — /Ooo db bu(b) }édx (€ x é)g—’g[e”o +bE(N)] (2.62)
where we set
w(b) = % /0 "W U | (2.63)
and required that the weight function is compensated:
/0 T bU®m) =0, (2.64)

so that the boundary terms vanish.
We note that by partially differentiating eq. (2.26) and combining suitable terms we
find

Vi = (71’1 * 72’2) . (2.65)
Y2,1 — V1,2
Using this relation we transform the partial derivative 0x/0b to
o6 _ 08 Ok (Om 0n) (01 On
ob — 106, 96,  \90,  96,)  \96, 00
1 N, ) NG
= 7 E’ [(0102 =+ 6162)% + (6202 - 6161)%]
1 o 2 2,07

- | —2c100—— ) 2.66
L reall s @ - F) (2:60)
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We insert (2.66) into eq. (2.62) and integrate the terms containing partial derivatives to b
and A by part to b and A, respectively. We then have an expression for M,, that depends
only on the observable :

My () = /0 " db [2u(b) — bU D) ff} A\ [= (16 + G100 + (C161 — eaéa)a] - (2.67)

We can write this in more compact form by defining

Qb) = b% 2bu(b) — U(b)] = b% /O v YU () — U(b) (2.68)

and writing ¢(\) in complex notation C'(\) = ¢;(A) + ica(N). The final result then is

=

M@ = [ 0 Qe TE2S

: (2.69)
Z[C*C¥]
In most cases circular apertures will be of interest. Then (b,\) = (9,¢), Clp) =
exp(ip), Z(C*C*) =1, and
I(yC*C*) = (0;00) = —[11 cos(2p) + 72 5in(2¢)]
= —Ry(0'+Oo)e ], (2.70)

where we have defined the tangential shear +; relative to a point 50. Eq. (2.69) then
becomes

My = [ 0 QUG (2.71)

For use on real data the integral in (2.71) is replaced by a sum over background galaxies

N
Map(0) = % Z Q(V:)ewi (2.72)
i=1

where 7 is the number density of FBG in the aperture and we define £¢; in analogy to 7,
as the tangential ellipticity of the ¢th background galaxy with respect to the point 6,

e = —R(g;e72%) . (2.73)

The significance of the M,, statistic can either be assessed analytically or numerically.

We calculate the rms dispersion o(M,,) = ((MZ) — (Map>2) 2 for the case of no lensing,
i. e. the expectation value (M,,) of the aperture mass vanishes. This is a valid approx-
imation for weak gravitational lensing. The analytic expression of the rms dispersion for
background galaxies with intrinsic two—dimensional ellipticity dispersion o, is given by

N 1/2
0(Map) = % [; Qz(é‘i)] : (2.74)



2.5. Aperture Multipole Moments 19

where we used the fact that

o2
(etiesg) = 365@' . (2.75)

Numerically the signal-to-noise ratio is determined by randomizing the orientation of
background galaxies within the aperture while keeping their position and absolute value
of the ellipticity fixed. The dispersion is obtained from many realizations of the random-
ization. If o; denotes the randomized aperture mass value for the ith randomization, the
signal-to—noise ratio is given by

M,
M (2.76)

5
N \V w20 0%

The weight function is arbitrary at this point. However, it can be shown that the

—

signal-to-noise ratio is maximized if the weight function U(f) follows the surface mass
density. A common choice for circular apertures is

9\ 1 9 \?
1_<q9 ) z+2_<q9 )] (2.77)

(Schneider et al. 1998), for ¥ < ¥,ax and zero elsewhere.

(1 +2)?
192

max

Ud) =

2.5 Aperture Multipole Moments

The idea of integrating over the shear in a circle to compute the weighted mass within

an aperture can be modified to yield multipole moments of the mass distribution within

an aperture (Schneider & Bartelmann 1997). Contrary to the aperture mass statistics the

aperture multipole statistics does not require that the weight function is compensated.
We define the complex nth multipole in a circular aperture by

oo 2
Q™ = / de 0"'U(6) / dyp e"?x (00 +0) , (2.78)
0 0

where U(|f]) is a radially symmetric weight function.? Integrating (2.78) by parts with
respect to ¢ yields

: o0 21
=1 [ q9eUe / do 005 2,
Q== [ Ue) | dperiet (279

2Contrary to the statement made in a footnote in Bartelmann & Schneider (2001), the aperture mul-
tipole moment statistics is limited to radially symmetric filters. This can be easily understood, if one e.g.
tries to calculate the quadrupole moment in an elliptic aperture on a field with constant surface mass
density kg. The quadrupole moment will then depend on k¢ which, due to the mass—sheet degeneracy, is
only fixed up to a constant.
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Transforming (2.65) into polar coordinates we get

S = 0 sin(2e) — Gl cos(2) + 650 cos(2p) — Fsin(2g) (280

which we insert into (2.79). Partially integrating terms that contain derivatives with respect
to # and ¢ with respect to 6 and ¢, respectively, leads to

00 2w
@ = [Ta0erue) [ g @)
0 0

: o0 27
+l/ do [n"*'U(9) + 9”+2U'(9)]/ dy e, (0;6;) . (2.81)
nJo 0

Here U’ (#) is the derivative of U(6), U(f) has to be continuous and piecewise differentiable

and we define the radial shear at position 6 relative to position 6, in analogy to eq. (2.70)
by

Ye(6: 0p) = — [72 c08(2¢) — 71 sin(2¢)] = =T |7(6 + bp)e 29| . (2.82)

For the boundary terms to vanish in the integration leading to (2.81), the weight function
has to fulfill the conditions

|v|0" U (6) — 0 for # — 0 and 6 — oo . (2.83)

To simplify notation we define
(2.84)

We then can get a local estimate of the aperture multipole moment in a circle of radius
R from

Q™ = / Ca8 0 U010 (6) + : / 00 U0) < 0] 00) . (259

As in the case of the aperture mass statistics the integral is replaced by a sum over galaxy
ellipticities to compute the aperture multipole statistics from real data.

p (2.86)

N
Y 1 io; 0r[nU(6;) + 60U (6,)]
(n) I E : nip; ) pn Ve, i )
Q"™ (o) [y ‘ {91 U(0;)ey +1i Eri ¢

where 7 is the number density of galaxies in the circle, (6;, ¢;) are the polar coordinates
of the ith galaxy with respect to fy, and ,; = —Z(g;672%) is the radial component of the
ellipticity of the ith galaxy with respect to the origin of the coordinate system.
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As is the case for the M, statistics, the significance of a multipole moment measurement
can in the no-lensing limit either be computed from an analytic expression,

N . . 9 1/2
= 2 {Z (Q?U(ei))g(ei (nU(6:) +0U (0»)) ” sy

- n
=1

where in addition to (2.75) we used

2
<5ri5rj> = %6” and <€ti5rj> =0 s (288)

or from randomizing the orientation of the FBG.



22

Chapter 2. Gravitational Lensing




Chapter 3

Quantifying Filaments

In order to quantify the presence of a filament and the significance of its detection three
problems must be solved. First, due to the correlation of error bars described in section
2.3 the significance of a filament in a reconstructed mass map cannot be assessed directly
from the reconstruction. Statistics like the aperture mass (section 2.4) and aperture mul-
tipole moments (section 2.5) allow the calculation of signal-to—noise ratios for a limited
spatial region and are thus well suited to quantify the presence of a structure in that re-
gion. Aperture statistics, however, integrate over the weighted surface mass density in an
aperture. Hence, to quantify the presence of a structure between two galaxy clusters, the
aperture has to be chosen such that it avoids the clusters and is limited to the filament
candidate. This is the second problem. The third and most fundamental question that
has to be answered is, “What is a filament?”. How for instance can we distinguish the
overlapping halos of two close galaxy clusters from a filament? While in some cases the
question whether a structure between two cluster indeed constitutes a filament is easy to
answer intuitively, it can be difficult to quantify in many other cases.

3.1 N-Body Simulations

I used results of n-body simulations of close pairs of galaxy clusters in an attempt to
solve these problems. These results were provided to me by Emilio Romano-Diaz. The
simulations use 64 particles in box with 50 A~ Mpc side length in a standard CDM,
Qpr =0, Qm =1, h = 0.5 cosmology. The mass of an individual particle is 3.308 x 10'M .
The simulations were carried out using a particle—particle-particle—-mesh (P3*M) code. P3M
codes use a particle-mesh (PM) code for calculating long-range interactions, while the
interaction of particles at smaller separations is directly computed as particle—particle
(PP) interaction. Direct evaluation of the forces between all particles would scale with
the square of the number of particles. For large n-body simulations the computational
resources needed would become prohibitively large. PM codes interpolate the density
distribution onto a grid and solve the Poisson equation for the gravitational potential using
a Fast-Fourier-Transformation (FFT). The force acting on each particle is then computed

23
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by evaluation of the gravitational field at the respective particle position. While the latter
operation scales linearly with the number of particles, the FEF'T scales with N,log Ny, N,
being the number of grid points. For sufficiently large grids the speed of PM codes is
thus determined by the number of grid points. Particle-particle interaction, however, is
directly calculated when particles come close to each other, as the spatial resolution of the
PM method is limited by the size of the grid cells.

The discrete particle distribution in the simulation represents a smooth mass distri-
bution, which we need for lensing simulations. The simulated particle distribution thus
has to be smoothed to gain an estimate of the underlying smooth distribution. Instead
of choosing a Gaussian smoothing with a fixed smoothing length I decided to adopt the
adaptive kernel density estimate described by Pisani (1996, 1993).

> Q
< <
o 1ot :
T 1 Tr ]
e e
Mpc/h Mpc/h
Figure 3.1: Zoom in on the central 10 x Figure 3.2: Smooth density distribu-
10 Mpc?/h? of an n—body simulation. tion of the data in the left panel
Displayed is the projection of a slice of from the adaptive kernel density es-
2.5 Mpc/h thickness. timate. The contours are at kK =

{0.03,0.05,0.1,0.5}.

To get density estimates in a reasonable time I applied the adaptive kernel method
usually not to the full simulation output, but only to an interesting subsample of the
simulation showing the galaxy clusters and the filament connecting them. Figures 3.1
and 3.2 show such a subsample and the corresponding smooth density distribution. The
subsample is a 10 x 10 x 2.5 Mpc?/h? slice of the n—body simulation at a redshift z = 0.21.
The surface mass density in the right panel was not calculated from the mass of the
particles but linearly scaled, such that the surface mass density in the cluster center is just
undercritical.



3.2. Lensing Simulations using N-Body Data 25

3.2 Lensing Simulations using N—-Body Data

The next step in employing the results of the n-body simulations in a gravitational lens
study has to be the derivation of the lensing properties of the simulated mass distribution.
While it is in principle possible to gain the deflection potential and from that the shear
by finite integration and differentiation via egs. (2.24) and (2.26), this is a cumbersome
and time consuming method. It is much faster and simpler to calculate the shear directly
from the simulated surface mass density using eq. (2.36) and the convolution theorem. The
Fourier transformation of the complex kernel D (eq. (2.36)) reads,

k2 — k2 + 2iki ks

D) =m = , 3.1
(F) 7 (3.)
and thus the Fourier transformed shear is given by
I R, -
(k) = ;D(k)/%(k) ) for k#0. (3.2)

The shear is then calculated via the inverse Fourier transformation and the magnification
is easily computed from the right hand side of eq. (2.45).

The Fourier transformation is calculated with the Fast Fourier Transformation (FFT)
algorithm. A description of FFT can be found for example in Press et al. (1992b). An
implementation that readily computes lensing quantities like the shear and magnification
on a grid from discrete k—maps as outlined above is the kappa2stuff program from Nick
Kaiser’s IMCAT package (http://www.ifa.hawaii.edu/~kaiser/imcat/). To account for
the finite field size, FF'T uses periodic boundary conditions. The surface mass density at
the edges of the simulated fields is small enough to not lead to any artifacts due to the
boundary conditions.

For the lensing simulation, catalogs of background galaxies were produced. Galaxies
were randomly placed within a predefined area until the specified number density was
reached. To each galaxy an intrinsic ellipticity was assigned from two Gaussian random
deviates. Until noted otherwise all simulations have 30 galaxies/arcmin® and a one dimen-
sional ellipticity dispersion of o, = 0.2.

Since the shear and magnification is only known on a grid, they were linearly interpo-
lated between the four grid points neighboring each galaxy to compute these quantities at
the galaxy position. To simplify the program, galaxies at the edges that have less than
four neighboring grid points were removed from the catalog. The “observed” ellipticity of
each galaxy was calculated according to eq. (2.40) while the number density of galaxies
was adjusted following eq. (2.35) with o = 0.5. For each galaxy a uniformly distributed
random deviate from the interval [0; 1) was drawn. If the random deviate was bigger than
1% the galaxy was deleted from the catalog.

Figure 3.3 shows a mass reconstruction of the simulated density map in Fig. 3.2 with
the method of SAS described in section 2.3. The lensing properties of the simulation were
calculated as described above on a 2048 x 2048 points grid and the computed shear and
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Figure 3.3: Reconstruction of the mass distribution in Fig. 3.2 on a 206 x 206 points grid.
The scale of the axes is given in arcminutes. The contours mark an increase of k in steps
of 0.025 above the mean of the edge of the field.
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magnification were applied to a random catalog of background galaxies. The reconstruction
was performed on a 206 x 206 points grid with a 1’3 smoothing scale.

The quality of the reconstruction is much higher than one would expect for real obser-
vational data for a number of reasons.

1. All galaxies in the catalog are indeed background objects. In real data, the catalog of
background galaxies would inevitably be contaminated by stars and faint foreground
galaxies (mainly dwarf galaxies in the cluster one observes).

2. No effects like atmospheric smearing and distortions of the image by the telescope
and/or camera optics deteriorate the determination of the observed galaxy ellipticity.

3. The intrinsic ellipticity dispersion of the background galaxies is too low compared
with real data, which suggests 0. = 0.3 or even higher.

4. Likewise, the assumed number density of background objects is at the high end of
what one typically can achieve with ground—based observations.

The few differences between the original mass distribution and the reconstruction thus
indicate systematic deviations due to the smoothing and not due to noise caused by the
intrinsic ellipticities of galaxies and their random distribution. Of course, some degree
of noise is still present in the reconstructed mass distribution but it is not the dominant
feature of the reconstruction.

It is immediately obvious that many small scale features present in the simulation are
not recovered in the reconstruction. This is due to the smoothing done to the shear data.
One can show that in the absence of Poisson noise and under the assumption g = v the
smoothing of the shear data is equivalent to a convolution of the mass distribution with
the smoothing kernel (van Waerbeke 2000). This also explains that the density peaks in
the reconstruction are broader and not as high as in the original mass map.

3.3 Fitting Elliptical Profiles to Galaxy Clusters

With all the tools needed to simulate the weak gravitational lens effect at hand, we can
now concentrate on the quantification of a filament. In a first attempt we try to represent
the galaxy clusters by elliptical mass profiles. We then define the filament as the part of
the mass distribution which is in excess of the mass fitted by the ellipses.

Two different approaches can be used when fitting elliptical profiles to the clusters.
First, the fitting can be done to the reconstructed mass distribution. Second, the fitting
can be done adjusting the elliptical profiles so that their shear matches the observed shear.

The first method has the advantage that the surface mass density is a much more
intuitive quantity than the shear. Problems in the fitting procedure are easier to understand
when working with the surface mass density. On the other hand, x is not an observable. The
only observable is the reduced shear and the surface mass density has to be reconstructed
from the shear first. As we have seen in the previous section, even in the absence of strong
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observational noise, the reconstructed mass profile deviates systematically from the true
mass profile.

Fitting directly to the shear avoids the additional intermediate step of mass recon-
struction and is thus not susceptible to the broadening of the core radius introduced by
the smoothing of the shear data. Directly using the shear as the quantity to which the
elliptical profiles of the clusters are fitted also has disadvantages. First, the shear at a
given position is determined by the surface mass density on the whole field. This makes it
much harder to control the fitting process by chosing suitable weight functions that guide
the fitting process in the right direction. Second, the profiles for which the shear can be
computed analytically are very limited. While fitting to the surface mass density allows
one to have a flexible radial profile, one is limited to radial profiles for which analytic
expressions for the shear are known, when fitting directly to the shear.

Common to all fitting procedures is that they try to minimize a quantity

¢ = [ €0 [fuel®) ~ finl®)] @) 3.9

=

For example if one fits to the reconstructed surface mass density, fiue(d) is %(f) from
the reconstruction, while fym(f) is the surface mass density of the fitted ellipses. w(f)
is a weight function that can be chosen to guide the minimization procedure in the right
direction.

Various methods for multidimensional minimization are available. All programs used
for fitting either used the Downhill Simplex or Powell’s Direction Set algorithms discussed
in detail in Press et al. (1992a). I could not find any systematic differences between the
results of the two methods. In general, their results agreed quite well if the same starting
values were used.

Common to all algorithms for multidimensional minimization is the problem that they
cannot guarantee to find the global minimum but only a local one. One has to choose
the starting parameters so that they are already close to the suspected global minimum to
help the minimization procedure find the right minimum.

3.3.1 Fitting Elliptical Profiles to the Simulated Surface Mass
Density

As a first test to see how well clusters could be represented by elliptical profiles, I fitted
two ellipses with a King profile directly to the simulated data. The surface mass density

of a circular King profile is given by
1
0\ 2
1 — 3.4
+(3) ] , (3.4

where Y, is the surface mass density in the center, 6. is the core radius of the profile,
and @ is the distance from the cluster center. There are 12 parameters that have to be
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determined in the minimization procedure, 6 for each cluster. The parameters are position
of the cluster center, X, 6., axis ratio of the ellipse, and orientation of the ellipse. As the
position of the clusters in the simulation is well known, the central position can be used
as a starting value. This is necessary to avoid that the minimization procedure puts both
ellipses on one cluster or even on a small mass peak away from the clusters because this
might very well be a local minimum in which we are not interested. It is sufficient to set
the starting values of the other parameters to values in the right order of magnitude to
achieve reasonable fits.
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Figure 3.4: Fit of two elliptical King Figure 3.5: Difference image between
profiles to the simulation data in the simulated data in Fig. 3.2 and the
Fig. 3.2. The contours are at the same fit in the left panel. The contours are
levels as in Fig. 3.2. at the same level as in Fig. 3.2. Clearly

visible is an excess in the surface mass
density between the two clusters.

Figure 3.4 shows the fit of two elliptical King profiles to the simulated data displayed
in Fig. 3.1. To reduce the computer time needed for the minimization, which is dominated
by the repeated calculation of the integral (3.3), the data was smoothed on a 512 x 512
points grid instead of the 2048 x 2048 points grid which was used to calculate the lensing
properties of the simulation. The weight function was chosen to be unity on the whole
field.

Fig. 3.5 shows the difference between the simulated data in Fig. 3.2 and the fit to the
simulation in Fig. 3.4. While the two clusters are not fitted perfectly — after all galaxy
clusters are not perfect ellipses — most of the cluster mass is removed in the difference
image. An overdensity of the surface mass density is visible between the two clusters,
which supports the definition of the filament being the surface mass density that is in
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excess of the elliptical cluster profiles.

However, the main problem in all fitting procedures is already visible here. Both clusters
in the simulation have rather elliptical profiles. The orientation of the major axis of the
left cluster is almost parallel to the 1-axis, while the major axis of the right cluster runs
from the upper left to the lower right corner. Contrary to the simulation the fitted mass
profiles are almost perfectly circular. Finding the right ellipticity and orientation seems to
be the crucial difficulty in all fitting procedures.

3.3.2 Fitting Elliptical Profiles to the Reconstructed Surface Mass
Density

While the fitting described in the previous section can be used as proof of concept that
filaments can indeed be understood as mass that is in excess of elliptical profiles, the true
surface mass density is not accessible in the case of observational data. If one wants to use
the surface mass density to fit elliptical profiles, only the reconstruction is available.
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Figure 3.6: Fit of two elliptical King Figure 3.7: Same as Fig. 3.6 but with
profiles to the reconstruction shown in different starting value for the orienta-
Fig. 3.3. The contours are at the same tion of the right cluster.

level as in the reconstruction.

Figures 3.6 and 3.7 show two such fits to the reconstruction displayed in Fig. 3.3. The
only difference between both fits is the starting value for the orientation of the right cluster
in the minimization procedure. Again, the weight function was chosen to be unity. One
can clearly see the dependence of the orientation of the ellipses on the initial value. Even
worse, although two completely different starting values were used, none of them lead to
an orientation that is close to the actual orientation of the cluster.
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I tried various weighting schemes in order to control this problem. E.g. only regions
close to the cluster center were taken into account to reduce the influence of the noise
further away from the clusters. None of this lead to more stable solutions. Also the
attempt to use flexible radial profiles instead of the King profiles did not lead to positive
results.

3.3.3 Fitting Non—Singular Isothermal Ellipses to the Shear

Although fitting elliptical profiles to the surface mass density seemed promising when done
directly to the simulated data, it failed when reconstructed mass maps where used. Fitting
directly to the ellipticities and avoiding the intermediate step of reconstructing the mass
distribution may be a remedy for the problems described in the previous section.

An ellipsoidal density distribution for which the shear can be calculated analytically
is that of a softened, oblate isothermal ellipse. Consider an oblate spheroid with axis
ratio g3. In projection this becomes an ellipsoidal density distribution with axis ratio
q = (g3cos?i + sin?4)'/2, i being the inclination angle with 7 = 90° face-on and i = 0°
edge-on. If s is the core radius and e = (1—¢2)'/? is the eccentricity of the mass distribution,
the density distribution for this model in cylindrical coordinates is
v? e 1

Cc

— 3.5
P 47Gqs arcsine s2 + R2 + 22/q3 (3:9)

(Keeton & Kochanek 1998). In the limit of s = 0 and g3 = 1 this becomes the density
distribution of a singular isothermal sphere (SIS). With b; = (2meDgsv?)/(Dsc? arcsin e)
the dimensionless surface mass density becomes
i
K= .
2/ (2 + 07) + 03

(3.6)

Introducing the abbreviation ¥? = ¢?(s*+6%)+63 the shear of this profile can be expressed
as

Y1 = kl COS2 ¢ — kg sin2 ¢ y (37)
Yo = kisin®¢ +kycos’ ¢, 3.8)
where ¢ is the angle of the major axis of the ellipse with respect to the 1-axis and
b
by = ﬁ[eg — 02— (1-¢%)sY?, (3.9)
ky = —é(ﬁl cos ¢ + 05 sin @) (0 cos ¢ — 0 sin @) . (3.10)

Unfortunately, it turned out that minimizing the quantity x* = >_.|e; — ~(0;)]? is
extremely sensitive to the noise introduced by the random orientation of the FBG. While
simulations based on catalogs with circular background galaxies gave reasonable results,
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simulations based on the small value of o, = 0.2 used here did not achieve reasonable fits
and were extremely sensitive to the initial values.

Generally, a tendency to overfit the filament region, so that the difference image had
negative surface mass density there, could be observed.

3.4 Using Aperture Multipole Moments to Quantify
the Presence of a Filament

Aperture multipole moments (AMM) quantify the weighted surface mass density distribu-
tion in a circular aperture. If it is possible to find a characteristic mass distribution for
filaments and express it in terms of multipole moments, AMM can be used to quantify the
presence of a filament.

G U

Figure 3.8: Simple toy model of two Figure 3.9: Toy model of two galaxy
galaxy clusters connected by a filament. clusters without a filament, illustrating
A quadrupole moment is present in the why it is important to choose the cor-
aperture centered on the filament. rect size of the aperture.

Fig. 3.8 illustrates with the help of a simple toy model of two galaxy clusters connected
by a filament why one expects to find a quadrupole moment in an aperture centered on
the filament. Fig. 3.9 illustrates that it is crucial not to choose the aperture too large.
If the aperture also covers the clusters a quadrupole moment will be measured even if no
filament is present.

Figures 3.10- 3.13 show quadrupole moment |Q®| maps calculated from simulated
lensing data of the simulation shown in Fig. 3.2. The weight function was chosen to be

vy =14"" (e,fax)z 0 < O

0 else .

(3.11)

While this weight function is clearly not ideal as it does not closely follow the mass profile
of the simulated data, it is sufficient to identify all relevant features. In the quadrupole
maps O, increases from 2'to 5. The maps were computed on 55 X 55 points grid, so that
each grid point is 1’ x 1’ big. Overlayed are the contours of the surface mass density of the
reconstruction of Fig. 3.3.
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Figure 3.10: Quadrupole Moment of Figure 3.11: Same as Fig. 3.10 in a
the simulation in Fig. 3.2 in a circle of 3' radius circle.
2" radius.
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Figure 3.12: Same as Fig. 3.10 in a Figure 3.13: Same as Fig. 3.10 in a
4' radius circle. 5" radius circle.
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One clearly sees that the quadrupole moment between the clusters increases as the size
of the apertures increases. This is of course due to the growing portion of the clusters in
the aperture, that with their large surface mass density dominate the mass distribution.

Most interesting for the quantification of filaments are the two maps in the top panel.
The aperture quadrupole moment centered on the middle of the line connecting both
clusters does not overlap with what one intuitively would call the galaxy clusters in these
two maps. Noteworthy in Figs. 3.10 and 3.11 is also that they show a quadrupole moment
on a ring-like structure around the cluster center. This is indeed to be expected for all
galaxy clusters because there is a non-vanishing quadrupole moment if the aperture is not
centered on the galaxy cluster, but somewhere on the slope of the mass distribution. This
now raises the question how we should distinguish the quadrupole moment present around
any cluster from that caused by a filamentary structure between the clusters.

The most obvious answer, that the quadrupole moment between the clusters has to
exceed the quadrupole moment at the points having the same distance from the cluster
center on the axis connecting both clusters outside the filament fails, due to the partic-
ular geometry of this simulation. The two small mass clumps to the left and the right
of the clusters create a situation similar to that depicted in Fig. 3.9 and thus increase
the quadrupole moment to the point where it is roughly equal to that in the filament
center. Other simulations without this special geometry show no such behavior and the
applicability of this criterion will be discussed below.

However, even in this special case there is evidence that the quadrupole signal in the
center is caused by a filament and not by the clusters alone. This evidence is the asymmetry
of the quadrupole moment around the galaxy clusters. An almost closed ring, on which
the quadrupole moment is lower, is visible around the filament. This ring is easier is to
spot in the maps generated from filter functions with larger radii. All aperture statistics
act as bandpass filters on structure comparable in size to the filter radius. As the ring
has a radius of ~ 7’ it is better visible in the maps generated from larger filters. Still, the
asymmetry is well visible in Fig. 3.11 and less well visible but still present in Fig. 3.10.
Thus, the quadrupole maps clearly indicate that the measured quadrupoles on the filament
are not caused by a symmetric situation, that two galaxy clusters without filament would
constitute.

The geometry of the simulation displayed in Fig. 3.14 is less peculiar than that of the
previous simulation but poses other challenges to the quadrupole statistics. As can be seen
in the figure, the surface mass density of the filament connecting both clusters is lower
than that of the simulation in Fig. 3.2. A continuous filament is only visible because an
additional contour line at k = 0.02 was added. As a consequence only the small peak in
the filament rising to x ~ 0.03 is visible in the reconstruction, but only at the level of
the noise fluctuation, as we can infer from the spurious peaks in the lower left corner of
Fig. 3.15.
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Figure 3.14: Smoothed surface mass
density distribution of a second simu-
lation. The projection parameters are
the same as in Fig. 3.1. An additional
contour line is drawn at x = 0.02 be-
cause this filament is weaker.
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Figure 3.16: Aperture quadrupole mo-
ment in a 3’ radius. Overlayed are the
contours of Fig. 3.15.
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Figure 3.15: Same as Fig. 3.3 for the
simulation in Fig. 3.14 with an addi-
tional contour at k = 0.02.
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Figure 3.17: Absolute value of the aper-
ture quadrupole moment along a line
running through the centers of both
clusters from the left edge to the right
edge of Fig. 3.16. The arrows mark the
cluster center.
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Figure 3.16 shows a quadrupole map from simulated lens data for this simulation. The
aperture quadrupole moment was computed in a 3’ radius. Again the size of the aperture
was chosen such that the aperture in the middle between both clusters does not cover what
one intuitively would identify as part of the clusters. The two lowest contours, which are
partly covered by the aperture in the filament center, do not belong to the region that
obviously belongs to the cluster.

Again we see a quadrupole moment on the filament and around the galaxy clusters.
As there are no small mass clumps on the connecting axis outside the clusters we can test
the hypothesis that the quadrupole moment in the filament region exceeds the quadrupole
moment on the corresponding point on the cluster slope. Fig. 3.17 shows the absolute
value of the quadrupole moment in Fig. 3.16 along a line running through both cluster
centers from the left edge of the image to the right. Points which are not exactly on a grid
point were approximated by linear interpolation. The same was done for the error bars,
which were calculated from 1000 randomizations of the galaxy orientations. The points
are connected by straight lines.

Clearly visible is the broad central double peak on the filament bounded by the two
minima of the cluster centers. The quadrupole moment on the slope of the left, less massive
cluster is well below that of the filament. The center of the filament corresponds to the
small minimum left of the little “bump” in the middle of the broad double peak (at ~ 27').
Although the maximum of the quadrupole moments is on the outer slope of the massive
right cluster, the quadrupole moment having the same distance from the cluster center as
the filament center is below the value in the filament center (at ~ 43).

The double peak structure of the quadrupole moment on the filament is probably caused
by the small mass concentration in the filament. The quadrupole moment in aperture
centered on this peak will be lower than that of aperture which covers this peak and
already part of the cluster and thus leads to a situation comparable to that of Fig. 3.9 with
one cluster replaced by the small peak.

It is interesting to note that the quadrupole statistics gives a positive result if the
reconstruction fails to show a filament. In fact, until now I have ignored the possibility that
the clusters could have filamentary extensions that do not join. An observer not knowing

o O

Figure 3.18: Quadrupole moment of filamentary extensions of cluster that do not join.
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the true mass distribution of Fig. 3.14 would conclude to observe the case illustrated in
Fig. 3.18. This example shows, that while the quadrupole moments can be used to quantify
the significance of a filament by computing the significance of the quadrupole moment,
measuring a quadrupole moment alone is not sufficient. Ideally, the filament is also visible
(and significant) in a map of the aperture mass with the same filter radius.

3.4.1 Defining Cluster and Filament Regions

While in the (failed) attempt to separate the clusters and the filament by fitting elliptical
profiles to the clusters, the filament was naturally defined as the surface mass density excess
above the clusters, there is no criterion in the AMM statistics that defines cluster and
filament regions. Much of the discussion of the quadrupole statistics in the last section was
based upon “intuitive separation” of clusters and filament. That this can be problematic
in many cases can be seen from the simulation in Fig. 3.14. While the contours show
a continuous connection between the clusters, one could argue that the clusters in this
simulation overlap. The cluster on the right in this simulation has a mass extension to
the right, whose maximum spatial extension from the cluster center is comparable to the
distance of the peak in the filament from the cluster center. The situation for the cluster on
the left is approximately the same. This illustrates the need for a more objective criterion
to separate the clusters from a possible filament, which I try to develop in this section.

Fig. 3.19 shows a simple one-dimensional toy model of the mass distribution of a cluster
with a filamentary extension. The model consists of the following components: We assume
a cluster with a King profile. This is the solid line in Fig. 3.19. In all simulations we
see that the clusters are not circular but stretched and have their major axes oriented
approximately towards each other. I attribute this to tidal stretching and account for
it in the model by stretching the right half of the King profile (long dashed line) by a
factor, which has to be determined. This factor will be called the “stretch factor”. The
contribution of the filament (dotted line) is added to the stretched King profile. The result
is the observed surface mass density profile on the right-hand side (short dashed).

I tried to define the “start” of the filament and the “end” of the cluster by the following
procedure: The unstretched King profile, observed on the left-hand side, is stretched by
a factor, to model the influence of tidal stretching. By this step we try to obtain the
(unobservable) cluster profile on the right side without the contribution of the filament.
This stretched profile is then compared to the observed profile containing the contribution
of the filament by computing the goodness of fit

=y (nstrmh(ei) - ntme(ei)f | (3.12)

o

i=1g

at sample points #; in the reconstruction along the main axis of the system. o; is the
estimated error in k at the ith point and the summation is carried out from the 73th point
to the Nth point. x? is repeatedly computed for increasing values of N. Unless noted
otherwise, 7o = 1. We can define the end of the cluster and the start of the filament by the
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Figure 3.19: Simple model of the surface mass density distribution of an elliptical cluster
and a filamentary extension along the main axis of the system. The axes are labeled in
arbitrary units.
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Figure 3.20: Surface mass density profiles of the cluster on the left in the reconstruction
displayed Fig. 3.3 along the main axis of the system. The crosses mark the surface mass
density in the filament part, the dashes the surface mass density on the lefthand side of
the cluster. The x—axis denotes the distance from the cluster center in arcminutes.

point N, where the probability that Kgyeten is @ good representation of ke falls below a
predefined level (“cut—off confidence level”).

We now have to find a way to determine the stretch factor. I assume that the inner
portion of the observed profile on the right-hand side is a fair representation of the (un-
observable) stretched profile. The stretch factor can then be determined by fitting the
unstretched profile to the inner portion of the observed profile. This “stretch factor fit”
was done using a x? minimization with linear interpolation between the observed sample
points. The size of the inner region to be used in the stretch factor fit was measured in units
of the core radius of the unstretched profile. Its value is called the “cut—off parameter”.

The cut-off parameter and the cut—off confidence level have to be determined from
simulations. Figure 3.20 shows the mass profiles to the left and right of the center of the
cluster on the left in the reconstruction displayed in Fig. 3.3 along the main axis of that
system. For simplicity the error bars were assumed to be equal to the standard deviation
of a reconstructed mass map of a randomized catalog of background galaxies.

I determined several combinations of the cut—off parameter and confidence level that
match the visual impression of filament beginning and cluster end. However, if these were
applied to other clusters, the separation point between cluster and filament was placed at
non—sensical positions.
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I also modified the starting value iy in the summation in eq. (3.12). First, I placed it at
the point closest to the cut—off parameter of the stretch factor fit in order to exclude the
central region, which by definition of this procedure has a small x2. Second, I calculated 2
in a moving window of fixed size and set the separation point between cluster and filament
to the start of the window for which x? fell below the cut—off confidence level. This was
done for various window sizes and confidence levels. Again, parameters that worked well
for one cluster failed horribly for others.



Chapter 4

Spectroscopy of the Abell 222 and
Abell 223 System

Spectroscopy allows us to study the properties of the luminous part of galaxies and galaxy
clusters more precisely than any other method. Multi-object spectroscopy (MOS) allows
the simultaneous acquiration of large numbers of galaxy spectra. With extensive spectro-
scopic data at hand, it is possible to study the spatial and kinematic properties of the
visible component of galaxy clusters.

In the following I will describe the spectroscopic and photometric data of Abell 222 and
Abell 223, its reduction, and the spatial and kinematic properties we can derive from this
data. Essentially this chapter is the same as Dietrich et al. (2002), section 4.2.4 was mainly
written by Douglas Clowe and is reproduced here to provide the necessary information on
the reduction of the wide field images and the photometry performed on them.

Throughout this chapter I assume a Qx = 0.7, O, = 0.3, Hy = 70 hy7p km s=! Mpc™!
cosmology.

4.1 Overview of the Abell 222 and Abell 233 System

Abell 222 and Abell 223 are a close pair of two rich galaxy clusters, both having Abell
richness class 3 (Abell 1958), separated by 18, which at the cluster redshift of ~ 0.21
corresponds to 2600 h7y kpc. Their Bautz—Morgan (Bautz & Morgan 1970) types are
ITI-TIT (A 222) and IIT (A 223). While these are optically selected clusters, they have been
observed by ROSAT (Wang & Ulmer 1997; David et al. 1999) and are confirmed to be
massive clusters. 9 spectra of galaxies in the cluster region, most of them being cluster
members, were known (Sandage et al. 1976; Newberry et al. 1988) before Proust et al.
(2000) published a list of 53 spectra and did a first kinematical study of this system.
Proust et al. also found 4 galaxies at the cluster redshift in the region between the clusters
(hereafter “intercluster region”), indicating a possible connection between the clusters.

41
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4.2 Data and Data Reduction

Multi—object spectroscopy of the two clusters Abell 222 and Abell 223 was performed at
the N'T'T on three consecutive nights in December 1999. The instrument used was EMMI
with grism 2, which has a dispersion of 11.6 nm/mm. With the 2048x2048 CCD pixels
of 24 pm this leads to a dispersion of 0.28 nm/pixel. With one exception two exposures
of 2700 seconds each were taken for 6 fields, 3 on each cluster. For the field centered on
A 222 in the second night only one exposure of 2700 seconds was available. The wavelength
calibration was done using Helium—Argon lamps. The calibration frames were taken at the
beginning of the night for the masks used during that night, before the science exposures
were made.

4.2.1 Reduction of Spectroscopic Data

For the data reduction a semi-automated IRAF! package was written by me that cuts out
the single spectra of the CCD frames and then processes these spectra using standard IRAF
routines for single slit spectroscopy. To determine the wavelength-dependent detector
response and correct for non—uniform sensitivity across the CCD, “flatfield” spectra of a
uniformely illuminated plane in the telescope dome were taken.

All ground—based spectroscopic observations are superposed with the spectrum of the
night sky. The sky spectrum was removed from all spectra using a linear fit with a 20
rejection on measurements on each side of the galaxy spectrum where the position of the
galaxy on the slit permitted it. Measurements from only one side of the spectrum were used
otherwise. A 20 rejection was used in the coaddition of the two frames to remove cosmic
rays and hot pixels. Remaining hot pixels or cosmic rays in the sky spectrum introduced
fake absorption features, while hot pixels or cosmic rays in the spectrum itself lead to fake
emission features. These were removed by hand.

Because the sky spectrum removal was done column by column and no distortion cor-
rection was applied, some residual sky lines remained in the final spectra, most notably
the strong [O1] emission at 5577 A. At the typical redshift of the cluster members of
z & 0.21 this line does not coincide with any important feature and thus does not cause
any problems in the subsequent analysis.

4.2.2 Redshift Determination

The radial velocity determination was carried out using the cross-correlation method
(Tonry & Davis 1979) implemented in the RVSAO package (Kurtz & Mink 1998). Spectra
of late type stars and elliptical galaxies with known radial velocities were used as templates.
The redshift determination was verified by visual inspection of identified absorption and
emission features.

'IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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Figure 4.1: Comparison of redshift measurements for objects observed by us and with
redshifts listed in PEL. The large panel shows the full sample, the inset is a blow up of the
cluster region. See the text for details.

Fig. 4.1 shows a comparison of our redshift measurements and the redshifts listed by
PEL. The obvious outlier in the large panel is from the sample of Sandage et al. (1976).
Although the inset shows a broad agreement between our results and the values of PEL,
only 3 out of 22 redshifts coincide within the 1o error. Also, Student’s t-test confirms the
hypothesis of different sample means with same variance at higher than the 99% level for
all their and our cluster members.

We ruled out the possibility that this discrepancy could have been caused by taking
all calibration frames before the science exposures were taken. This could have introduced
a shift of the zero point if the masks were not moved back to their original position for
the science exposures. We confirmed that this is not the case by determining the radial
velocity of the subtracted sky spectrum in the wavelength calibrated frames. We found
that, if a zero point shift occurred, it must be smaller than 30 km s~!. Clearly, this is not
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enough to explain the differences with PEL which are up to 500 km s~!.

4.2.3 Equivalent Widths

We measured equivalent widths for the [O 11]A3727, [O 111]A5007 emission lines, and HZ and
Ha emission and absorption lines. [O 11] and Ha are important indicators of star formation
rates (Kennicutt 1998).

To accurately determine the equivalent widths and in particular estimate their signifi-
cance level we follow the definition of equivalent widths given by Czoske et al. (2001):

Ning
Wa=>_ %AA — Nim AN,

=1

(4.1)

where f; is the flux in pixel i, Nj; is the number of pixels in the integration ranges, f. is
the continuum level estimated as the weighted mean of continuum regions on either side of
the line, and A is the dispersion in A/ pixel. Note that with this definition emission lines
have positive equivalent widths. The integration ranges for the features and the continuum
were fixed by the values given in table 4.1, their meaning is illustrated in Fig. 4.2.

Table 4.1: Rest—frame wavelength ranges for equivalent widths measurement. All wave-
lengths are given in A. The last column gives the continuum range that was used for
estimating the signal-tonoise ratio.

Feature Acent line blue cont. red cont. SNR

[O 1] 3727 3713 - 3741 3653 - 3713 3741 - 3801 3560 - 3680
[O 111] 5007 4997 - 5017 4872 - 4932 5050 - 5120 4450 - 4750
Hp 4861 4830 - 4890 4800 - 4830 4890 - 4920 4050 - 4250
Ha 6563 6556 - 6570 6400 - 6470 - 6300 - 6450

The significance of an equivalent width measurement is given by (Czoske et al. 2001)

w=(3)
O-W/\_ N

S/N = f./o. being the signal-to—noise ratio, where f. is the mean continuum in the N,
pixels in the SNR wavelength range given in table 4.1, and o, is the rms dispersion in that
region.

All wavelengths are given in the restframe of the object. All spectra were normalized
to a continuum fit before equivalent widths were measured. The catalog lists all [O11] and
[O 111] emission features and all HS and Ha emission and absorption features that were
detected with a significance > 20.

(W + NiggAN)?

(W + NipsAX) AN + N ,

(4.2)




4.2. Data and Data Reduction 45

intensity

- -

SNR - > -t -
blue cont. line red cont.

wavelength

Figure 4.2: Illustration of the signal-to-—noise, line, and continuum regions of Table 4.1.

4.2.4 Photometry

Wide-field imaging of the cluster pair was performed over two nights in December 1999
with the Wide Field Imager (WFI) on the ESO/MPG 2.2m on La Silla. The WFI is
a mosaic CCD camera consisting of 8 CCD detectors with 2048 x 4096 pixels each in a
4 x 2 arranged in a 4 x 2 array. Eleven 900 second exposures in R-band and three 900
second exposures in V' band were taken using a dithering pattern which filled the gaps
between the CCDs in the mosaic in the coadded image. The reduction was carried out
using a combination of self-written routines and routines which are part of the IMCAT
software package written by Nick Kaiser (http://www.ifa.hawaii.edu/~kaiser/imcat).
The images were flattened with medianed night-sky flatfields from all the R or V band
long exposure images taken over the two nights. The images were aligned using a process
which assumes each CCD in the mosaic can be translated to a common detector-plane
coordinate system using a linear transformation of coordinates (a shift in both axes and
rotation allowed) and that the detector-plane coordinates can then be transformed into
sky coordinates using a two dimensional polynomial, in this case a bi-cubic polynomial.
The linear transform from each CCD to the detector-plane is assumed to be constant for
all the images whereas the transform from detector-plane to sky coordinates is determined
separately for each image to allow for both the pointing offsets in the dithering pattern
and any changes in the distortion pattern between images. By comparing the positions
of stars among the individual images and to the positions in the USNO catalog? (Monet

2The USNO catalog is a catalog of astrometric standards containing positions of 526,230,881 objects.
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et al. 1998), both systems of equations for coordinate transformations were solved using x?
minimization of the final stellar positions. The rms dispersion of the centroids of the stars
used in the fitting were 07016 among the input images and 0”54 between the input images
and the USNO coordinates, with the average offset vector being consistent with zero in
all regions of the image. Further details of this technique along with justifications for the
linear translation between CCD and detector plane can be found in Clowe & Schneider
(2001). The mapping of each input CCD was performed using a triangular method with
linear interpolation which preserves surface brightness if the mapping changes the area of
a pixel. The resulting images were then averaged using a 3o clipping algorithm to remove
cosmic rays and moving objects. The final R-band image can be found in Figure 4.8.

Objects were detected in the R-band image using SExtractor (Bertin & Arnouts 1996),
and the V-band magnitudes for the objects were measured using SExtractor in two-image
mode. The two-image mode of SExtractor performs parallel measurements on two images.
Objects are detected in one image and their properties are determined separately in both
images. The FWHM of bright but unsaturated stars in the coadded images are (/87 for
R and 1705 in V. Zeropoints were measured from Landolt standard fields (Landolt 1992),
but the V-band data is known to have been taken in non-photometric conditions. From
isolating the red cluster galaxy sequence in a color-magnitude plot (Fig. 4.3), corrected for
the Ap = 0.086 mag dust extinction (Schlegel et al. 1998) using the conversion factors from
Cardelli et al. (1989), and comparing to predicted colors of cluster elliptical galaxies in a
passive evolution model (Fukugita et al. 1995), a correction of —0.23 mag has been applied
to the V' magnitudes to correct for the additional atmospheric extinction. This correction
also causes the stellar V' — R colors to have the theoretically expected values (Gunn &
Stryker 1983). All magnitudes are isophotal magnitudes with the limiting isophote at
27.96 mag. We determine the completeness limit of the photometric catalog to be at
R = 24 mag from the point where the number counts of objects stop following a power
law.

The full catalog containing positions, R magnitudes and V — R color, equivalent widths
for the lines in table 4.1, and heliocentric redshifts is available in appendix A.

SExtrator also provides an algorithm to separate galaxies from stars. Each object is
assigned a CLASS_STAR value, which is 1 for stars, 0 for galaxies, and lies in between for
ambiguous objects.

4.3 Spatial Distribution and Kinematics

After removing some obvious background and foreground galaxies (z > 0.3 or z < 0.1),
the mean and dispersion values of the tentative cluster members were calculated. Galaxies
that were more than 30 away from the mean were removed. This process was repeated
until no more galaxies were deleted from the sample. We found 81 galaxies belonging to
Abell 222 and 72 galaxies belonging to Abell 223 or the possible bridge connecting both
clusters.

The mean redshift of the individual clusters are z = 0.2126 4+ 0.0005 and z = 0.2079 +
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Figure 4.3: Color-magnitude plot with the already corrected V' magnitudes. The red
cluster sequence is centered around V — R = 0.8.

0.0005, for A 222 and A 223, respectively. The measured velocity dispersions have to be
transformed to the restframe of the cluster according to the transformation law

o

4.3
1+z’ (43)

Ocor —
(Harrison 1974). The rest—frame velocity dispersions for the individual clusters are oo, =
1014729 km s and 0oy = 1032792 km s~ 1, for A 222 and A 223, respectively. The redshift
and velocity dispersion for A 223 do not change significantly if the 3 galaxies we found in
the intercluster region in our sample are removed. Figs. 4.4 to 4.7 show the corresponding
radial velocity distributions of the individual samples.

These values for the velocity dispersion are somewhat higher than those derived from
X-ray luminosities. David et al. (1999) report bolometric luminosities of Lx = 7.65 X
10* erg s7! and Lx = 6.94 x 10** erg s=! from ROSAT PSPC observations for A 222 and
A 223, respectively, for Hy = 50 km s~! Mpc~!. Using the Lx—o relationships of Wu et al.
(1999) we get ox = 845 — 887 km s™! for A 222 and ox = 828 — 871 km s~! for A 223.

Together with the data of PEL we now have radial velocities for 6 galaxies in the
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Figure 4.4: Radial velocity distribution Figure 4.5: Radial velocity distribution
of all galaxies in the sample. The main of all cluster galaxies. The continuous
peak corresponds to the two Abell clus- line is a Gaussian with mean and dis-
ters. persion value z = 0.2104 £ 0.0004 and

o = 142472 km s ', corresponding to
Ocor = 1177785 km s,

possible bridge connecting both clusters. With our new values for the radial velocity of
A 223 the observation made by PEL that most of the bridge galaxies are in the low—
velocity tail does not hold anymore. In fact they all appear to be close to the maximum
or at higher redshift of the velocity histogram shown in figure 4.7. Because A 222 is the
cluster at higher redshift, this is the expected behavior should these galaxies indeed belong
to a bridge connecting both clusters

Although the difference in radial velocity determination between PEL and our data is
significant, the decision about cluster membership of individual galaxies is unambiguous.
Figure 4.8 displays a projected galaxy number density map generated with the adaptive
kernel density estimate method described by Pisani (1996) for a color selected sample of
693 objects with R < 21 and 0.7 <V — R < 0.9 and SExtractor CLASS_STAR < 0.1 from
the WFI images. Overplotted are the positions of all spectroscopically identified cluster
members. Fig. 4.8 clearly exhibits two density peaks in A 223. Both peaks are separated by
4'8 and are centered at (a=01:37:53.5, §=—12:49:21.2) and (=01:38:01.8, 6=—12:45:07.0).
These peaks are also visible in the density distribution of the 181 spectroscopically identified
cluster galaxies. Also visible is an overdensity of color selected objects in the intercluster
region, hinting at a connection between both clusters.
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Figure 4.6: Same as Fig. 4.5 for A 222. Figure 4.7: Same as Fig. 4.5 for A 223.

The dashes denote the 3 galaxies in the
bridge for which we measured radial ve-
locities.

We applied the Dressler & Shectman (1988, DS) test for kinematic substructure in
the projected galaxy distribution. The DS test aims at finding radial velocities and/or
velocity dispersions that in a limited spatial region deviate significantly from the mean
radial velocity and/or velocity dispersion of the whole cluster sample. The local values of
the mean redshift and velocity dispersion are calculated for each of the N galaxies and its
n — 1 nearest neighbors and compared to the global values. The statistics used to quantify
the presence of substructure is

N

A= )4

=1

= Z {O.QL [(ZgIOb - 21001')2 + (Uglob - Uloci)z] } X (4.4)

i=1 glob

where Zgo, and ogon, are the mean redshift and velocity dispersion of the whole sample,
respectively, and Zj,; and oo, are the local values of the mean redshift and velocity dis-
persion of the ith galaxy and its n — 1 nearest neighbors, respectively. For a Gaussian
velocity distribution and only random local fluctuations A ~ N. To decide whether a
computed A indeed is due to kinematic substructure without making assumptions about
the parent population, the A statistics is calibrated by randomly shuffling the radial ve-
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Figure 4.8: Deep R band image of A 222 and A 223. The galaxy density contours are
generated from a color selected sample of 693 objects. See text for details. The small
circles mark all spectroscopically identified cluster galaxies.
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locities while keeping the observed galaxy positions fixed. The significance of the observed
Aops 1 assessed by the fraction of simulations whose Ag, is smaller than Agys.

We find that, while the DS test is clearly able to separate both clusters at better than
the 99.9% confidence level, it does not find any substructure in the individual clusters for
values of 8 < n < 16.

Also the DIP statistic (Hartigan & Hartigan 1985), which we calculated with the FOR-
TRAN routine provided by Hartigan (1985), is not able to reject the null hypothesis of
an unimodal distribution for any of the cluster samples. We tested for deviations from
a normal Gaussian distribution by computing the skewness and kurtosis of both cluster
samples. We found that we cannot reject a Gaussian parent population for both cluster
samples at the 1o level.

The wedge velocity diagrams in Fig. 4.9 clearly show the Abell system at z ~ 0.21. A
small group of five galaxies can be seen behind A 223 at z = 0.242. We derive a velocity
dispersion of ¢ = 330 km s~!, confirming that it is not only close in the projected spatial
distribution but also in redshift space.

4.4 Mass—to—light Ratio

To determine the luminosity of the clusters we applied the same cut on CLASS_STAR and
color as above in a circle with 1.4 h7) Mpc radius around the bright cD galaxy of A 222
and the center of the line connecting both density peaks in A 223.

The Schechter (1976) luminosity function,

n(L)dL = n*(L/L*)* exp(—L/L*)d(L/L") (4.5)

where L* is the characteristic luminosity, « is the faint—end slope, and n* is a normalization
constant, gives the number of galaxies in the interval L to L + dL. Written in terms of
absolute magnitude eq. (4.5) becomes

N(M)dM = kn*exp{[—k(a+1)(M — M*)]
— exp[—k(M — M*)]} dM, (4.6)
where M* is the absolute magnitude corresponding to L* and k& = In10/2.5 (Kashikawa

et al. 1995). For the Abell system My = mp —5log (Md—rl)c> —24.91, d, being the luminosity

distance.

The fit of the luminosity function with parameters M*, «, and n* to the magnitude
distribution of the selected objects is performed by binning the selected objects in bins of
dM = 0.5 mag and minimizing the quantity

N(M;) — Ny (M;))?
=3 VO - NP W

0;

with N(M;) and N;(M;) being the observed and fitted number of galaxies in the ith
magnitude bin. The variance of galaxies in each magnitude bin was assumed to be that of
a Poissonian distribution.
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Figure 4.9: Declination (top) and right ascension (bottom) wedge redshift diagram. Clus-
ter members a plotted as solid circles while background and foreground galaxies are dis-
played with open symbols. The rectangle highlights a small background group of galaxies.
The opening angle is from —13°2'24" to —12°16'24" for the declination wedge and from
01:37:04.8 to 01:38:48.0 for the right ascension wedge.
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The best—fit Schechter function for A 222 has M* = —22.14+0.2, « = —1.04+0.12, and
n* = 31 4+ 11. The x? value for these parameters is 12.7 with 7 degrees of freedom. The
best—fit parameters for A 223 are M* = —23.1 +£ 0.2, = —1.20 £ 0.06, and n* = 15+ 5
with a minimum x? value of 7.0, also for 7 degrees of freedom. From Figs. 4.10 and 4.11 we
see, that the Schechter function is a good representation of the faint end, while it slightly
underpredicts the number of bright galaxies.
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Figure 4.10: Differential R—band lumi- Figure 4.11: Same as Fig. 4.10 for
nosity function for A 222. The points A 223.

represent the objects selected by the
criteria detailed in the text, while the
dotted line is the best—fit Schechter
function.

The total R—-band luminosity of the red cluster sequence is determined by extrapo-
lating the luminosity function. The observed fraction of the total luminosity is given by
['(a+ 2, Lim/L*) /T (a + 2), where I'(-,-) is the incomplete Gamma function, Ly, is the
completeness limit, which in this case is given by the selection parameters, and L* is the
luminosity corresponding to the fitted M* (Tustin et al. 2001). It follows from the cho-
sen magnitude cut and the size of the bins, that in our case the limiting magnitude is
Mp = —19.0. This implies that we observe 91.4% and 81.7% of the total light in A 222
and A 223, respectively. The total R—band luminosity of the red cluster sequence then is
Lr=(3.1£0.3) x 10'2 h7y’ L, for A 222 and Ly = (4.4 £0.4) x 10'2 h3g L, for A 223,
where the errors reflect the uncertainty in the parameters of the luminosity function.

We compute mass—to-light ratios assuming an isothermal sphere model for both clusters
with the velocity dispersion determined in section 4.3. The mass of an isothermal sphere
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inside a radius r is given by

M(<r)y=—>%r. (4.8)

G
We get the following mass—to-light ratios for the red—cluster sequence inside a 1.4 h,; Mpc
radius:

A222: (M/L)r = (343+60) hyg Mg /Lg ,

By selecting only the red cluster sequence we miss a significant part of the cluster lumi-
nosity. Folkes et al. (1999) found a ratio between the luminosity of their “type 1”7 galaxies
(E/S0) and the total luminosity of 0.59 + 0.07 in the fields of the 2dF survey. Using this
correction factor we arrive at the final result:

A222: (M/L)gr = (202+43) hyg Mp/Le ,
A223: (M/L)p = (149+33) hyg Mg/Lg -

These values reported here slightly overestimate the true mass—to-light ratio because the
use of isophotal magnitudes cuts off part of the galaxy luminosity and the intracluster
light.

If we use the velocity dispersion derived from X-ray measurement instead of the spec-
troscopically determined velocity dispersion we arrive at mass—to—light ratios that are lower
by ~ 20% but still agree within the 1o error with the values quoted above.

Dressler (1978) gave a range of 140 — 420 hyy Mo /L in a study of 12 rich clusters.
Typical values for virial mass-to-light ratios are somewhat lower at values of (M/L) ~
210 h7g Mo /L (Carlberg et al. 1996). Values of (M /L) ratios derived from X-ray masses
tend to be somewhat lower than those from virial masses. Hradecky et al. (2000) find a
median value of (M/L)y ~ 140 hzo Mg /L) in a study of eight nearby clusters and groups.

We cannot exclude the possibility that the values we report here are biased towards
higher values by using an isothermal sphere model. Both cluster geometries clearly deviate

from circular symmetric profiles. More robust mass estimates may thus lead to lower
(M/L) ratios.



Chapter 5

Gravitational Lensing Study of
Abell 222 and Abell 223

In this chapter I present preliminary results from the weak lensing analysis of the WFI data
described in section 4.2.4. Again I assume a Qy = 0.7, Q = 0.3, Hy = 70 hyo km s~! Mpc~!
cosmology. The mean redshift of the FBG is assumed to be Zpgg = 1.

5.1 Catalog Production

The catalogs for the weak lensing analysis were produced from the images described in
section 4.2.4. As in chapter 4, objects were detected using SExtractor (Bertin & Arnouts
1996); for the weak lensing analysis the deep R—band image was used. A list of candidate
objects was made consisting of objects which had at least 3 contiguous pixels with fluxes
above the signal-to—noise of the sky. The SExtractor catalog was used as input for Nick
Kaiser’s IMCAT software. Objects in the catalog were convolved with Gaussians of increasing
FWHM to determine the smoothing radius r, at which objects had a maximal signal-to—
noise against the sky. New positions of the centers of all objects were computed as the
point where the first-order brightness moments with a Gaussian weight function with
radius rg vanished. At this position also a new smoothing radius and signal-to—noise were
determined. This was repeated until the new object position did not move by more than
a 1/20th of pixel from the previous one, or the object was deleted from the catalog if its
position deviated by more than 1 pixel from the original SExtractor value or its signal-to—
noise fell below 5.

The second—order brightness moments (;;, eq. (2.38), were calculated with a Gaussian
weight function of radius r; and converted to ellipticities according to eq. (2.39). In addi-
tion to @);;, the flux and and the fourth—order brightness moments were measured on all
surviving objects to compute the shear and smear polarizability tensors of Kaiser et al.
(1995, hereafter KSB, corrections in Hoekstra et al. 1998), which define how the object
reacts to an applied shear or convolution with a small anisotropic kernel. The corrections
of KSB were applied as described in Clowe & Schneider (2001) to obtain the reduced shear

95
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g. A radius 7, containing 50% of the flux of an object was also computed.

Objects with an ellipticity larger than 1, R < 21, r, > 1"2, r, < 0734, or SExtractor
CLASS_STAR > 0.8 were removed from the catalog, as well as all objects that had neigh-
bors closer than 2”; or were not detected in the V' band image. Stars were identified and
removed in a plot of r, versus isophotal R magnitude.
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0 2000 4000 6000 8000
Figure 5.1: Object distribution in the final catalog. The scale of the axes is in pixels.

Stellar reflection rings are a prominent “feature” of the WFI and occur around every
saturated star with blooming in the core. All objects lying in reflection rings were cut out
by hand. Finally, the catalog was verified by visual inspection. The resulting catalog has
20.3 galaxies/arcmin®. The distribution of objects on the field is shown in Fig. 5.1. The
regions without objects on the left and the bottom are due to an offset between the V' and
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R band images.

After production of the catalog it turned out that using a Gaussian filter to convolve
the objects, instead of the Mexican-hat filter used in Clowe & Schneider (2001), lead to 7,
values that are too large. As a consequence the computation of the ellipticities and shear
and smear tensors weighs regions away from the object center too much. These regions
contain more noise and thus also the reduced shear has more noise than necessary.

5.2 Mass Reconstruction of the Abell 222/223 System

Figure 5.2 shows a reconstruction obtained from the catalog described in the previous
section with an additional cut, that selected only objects with CLASS_STAR < 0.1. The
number density of this catalog is 15.5/arcmin?. The reconstruction was done on a 207 x 200
points grid with the algorithm of SAS described in section 2.3.1. The smoothing scale was
set to 2!5. The mass—sheet degeneracy was fixed by setting the average x of the left edge
and bottom of the field to zero to avoid regions which have true mass concentrations
extending beyond the edges of the field. This is especially important for the upper edge of
the field where Abell 223 is cut off by the field boundary.

Both clusters, as well as a possible filamentary connection between them, are well vis-
ible in the reconstruction. Although the galaxy number density contours and the mass
reconstruction show a filamentary connection between the clusters, they are not in good
agreement in the intercluster region. The overdensity of color—selected objects approxi-
mately coincides with the region in which we obtained spectroscopy, while the filament in
the mass reconstruction lies more to the east. This does not necessarily mean that the
light does not follow the dark matter distribution, if we assume that the observed fila-
mentary structures between both clusters indeed constitute a filament. We have to keep
in mind that the color selection was done to select the E/S0O galaxies that constitute the
red—cluster sequence. There is no a priori argument why a red—cluster sequence should be
present outside the clusters in a possible filament. In fact, we expect early-type galaxies
to be concentrated towards the cluster centers. The discrepancy in the filament shape may
thus be due to the selection of an unsuitable tracer population in the color cut. On the
other hand, there is no obvious argument why E/SO galaxies in a filament should have
different photometric properties than those in the clusters at the same redshift.

It is interesting to note that a reconstruction method designed to avoid edge effects,
shows clear mass concentrations in three of the four corners of the field. In fact, the surface
mass density in the corners in the SAS reconstruction is higher than that obtained from
a KS93 reconstruction of the same field. While this may seem surprising at first, one has
to keep in mind that SAS and KS93 have completely different properties at the edges,
although in this case they show similar behavior. KS93 on the one hand invents shear
data outside the observed field. The consequence is a systematic overestimation of the
surface mass density at the edges, and especially in the corners. The noise level in the
corners is low, due to the invented error—free data. SAS on the other hand does not use
non—existent data from outside the observed field. The consequence is that no systematic
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Figure 5.2: Above is a 34’5 x 33!2 deep R-band image of A 222/223 overlayed with the
contours of a weak lensing mass reconstruction (solid lines) and the red—cluster sequence
galaxy number density of Fig. 4.8 (dashed lines). The surface mass density contours rise
in steps of 0.01 (~ 3.2 x 10" hgy M Mpc 2, assuming Zrpe = 1) above the mean of the
left and bottom edge of the field.
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deviation in the corners is present, but the noise increases as the number of FBG in the
corners decrease. Thus we can suspect that the reconstructed surface mass density in the
corners is due to a few very deviant objects and not significant. This assumption will
receive more support in the discussion of the aperture mass statistics on this field in the
following section. Also, one should notice that the mass density in the upper left corner is
dominated by A 223 and that due to a reflection ring the number density of objects in the
upper right corner is too low to yield reasonable results.

The small mass peak to the ESE of A 222 corresponds to an overdensity of color selected
objects with 0.8 < V' — R < 1.0 and R < 21. Assuming a redshift of z ~ 0.3 for this galaxy
concentration and using the shear between 50 and 1250 pixels (53 — 1335 h3y kpc) distance
from the center of the mass peak, the best fit SIS model has a velocity dispersion of
o = 446183, km s~ and a significance of 2.30.

The clusters themselves cannot be well fit with an SIS. This is probably due to their
deviation from a circular geometry and their small projected separation, as well as the
influence of the observed filamentary structure, which makes it difficult to find a reasonable
outer limit for the fit.

I give lower bounds for the masses of the Abell clusters computed from the tangential
component of the shear with respect to the cluster center using Kaiser’s ( statistics (Kaiser
1995, see section 2.4).

For Abell 222 the mean & in a circle of 1.4 h;) Mpc centered on the brightest cluster
galaxy (BCG) minus the mean & in a ring between 1690 A, kpc and 1850 k4 kpc centered
on the BCG is & = 0.03+£0.01. This corresponds to a lower bound of (5.7+2.0) x 10'* M,
for the mass of A 222 in that radius. Using the total luminosity within the same radius
determined in section 4.4, we get a mass-to-light ratio of (M/L)r ~ 110 h7g M /L.

The same for A 223 in a circle centered between the density peaks of the galaxy cluster
yields & = 0.02 + 0.01, corresponding to a lower mass limit of (4.1 +2.0) x 10'* M and a
mass—to-light ratio of (M/L)g ~ 56 h7o Mg /Lq. Clearly, the values for the mass-to-light
ratios are too low and can only serve as lower limits for the actual values.

5.3 Aperture Mass Maps of the Abell 222/223 Clus-
ters

To asses the significance of various structures seen in the reconstruction of the previous
section, I calculated the M,, statistics for different filter scales. Eq. (2.77) with [ = 1
was used as weighting function, the filter scale was increased from 0!8 to 96 in steps of
0!8. The signal-to-noise ratio was computed from 1000 randomizations of the catalog
objects. Figures 5.3 to 5.6 show four M,,-maps overlayed with the contours of the signal-
to—noise ratio on the same field as in Fig. 5.2, for which interesting structures have maximal
signal-to-noise. The differences in the various M,,-maps are also a nice illustration of the
bandpass nature of the aperture mass statistics.
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.
Figure 5.3: Grayscale image of the M, Figure 5.4: Same as Fig. 5.3 with a 4’8
statistics in a 3!2 filter radius over- filter radius.

layed with signal-to-noise contours ris-
ing from 2.0 in steps of 0.5.

Figure 5.5: Same as Fig. 5.3 with a 88 Figure 5.6: Same as Fig. 5.3 in a 9/6
filter radius. filter radius.
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Although mostly dominated by noise, Fig. 5.3 displays the M,,~map for which the
filament region has the highest signal-to—noise. The signal-to—noise is 3.0 in the center of
the peak on the filament candidate.

Fig. 5.4, generated with a filter scale of 4'8, has the highest signal-to—noise ratio for
the small mass clump to the SE of A 222. Its signal-to—noise ratio is 4.2.

On larger scales the big clusters in the field become dominant. A 222 has a signal-
to—noise in the aperture mass statistics that reaches a maximum of 5.3 for a filter radius
of 8!8, while the extended cluster A 223 without a clear central peak attains its maximal
signal-to—noise in the largest computed filter scale of 9!6 with a value of 4.2.

Similar to the reconstruction in Fig. 5.2, the M,, statistics show higher values in the
corners of the field on larger scales. However, the randomizations show that these, with
a possible exception in the upper right corner, are not significant. This supports the
hypothesis that the rising x values in the corner are due to a few deviant galaxies.

The additional cut on CLASS_STAR made in the previous section has two consequences:

1. The reconstructed x and the M,, statistics have higher values.
2. The noise also increases.

This is due to the removal of many circular or almost circular objects. These objects
decreased the shear signal but also did not contribute to variation of the shear if their
orientation was randomized. Also, the signal-to-noise is proportional to the inverse of
the number density. It is also likely that we introduced a small bias to higher masses by
deleting (almost) circular objects that were not stars.

5.4 Quadrupole Statistics in the Abell 222/223 Sys-
tem

The only method of quantifying a filament tested in chapter 3 that gave some reasons for
optimism regarding its applicability to real data was the quadrupole moment statistics.
Even if fitting ellipses to clusters had been successful in the simulations, the noisy region
around A 223 would make any such fit on this field impossible. Thus, I try to apply the
quadrupole statistics to the Abell system.

Figure 5.7 shows a map of the quadrupole moment |Q®| and its signal-to—noise con-
tours from 1000 randomizations of the orientation of the catalog objects. The quadrupole
moment was calculated inside an aperture with 3!2 radius, i.e. the radius for which the
filament region in the M,, statistics attained its highest signal to noise. Similar to the M,,
statistics the |Q® |-map is dominated by noise on this scale. The small peak in the fila-
ment region with a significance of ~ 2.7¢ is in the center of an aperture that already begins
to overlap the southern tip of A 223. Right between the clusters, where the simulation
exhibited the strongest quadrupole signal, no significant quadrupole moment is found.
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Figure 5.7: |Q®| map with a filter radius of 32 of the Abell system. Overlayed are the
signal-to—noise contours (solid lines) from 1000 randomizations rising in steps of 0.5 from
2.0 and the mass reconstruction (dashed lines).
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5.5 Strong Lensing Features in Abell 222

Already in 1991 Smail et al. (1991, hereafter SEF) found two candidate arclets in the center
of A 222. We also see two possible arclets in the center of A 222 displayed in Fig. 5.8.
Arclet 1 is the same as found by SEF and labeled A222-1. Unfortunately, SEF’s second
candidate is not marked on the plate in their paper, and as SEF give only distances from
the cluster center and no position angle we do not know whether their second candidate
corresponds to ours. A comparison of the arclet candidate properties between SEF and our
candidates is given in table 5.1. The distance measurements for A 222-1 and arclet 1 are

Table 5.1: Arclet candidate properties from SEF and our data. The column entries are
distance from the center of the cD galaxy, axis ratio, and position angle measured clockwise
from the north direction in Fig. 5.8.

ArcID  d/arcsec A pos. angle

SEF

A 222-1 12.2 4.7 -
A 222-2 14.1 2.6 -
this work

arclet 1 12.7 2.8 42°
arclet 2 10.8 3.0 140°

in good agreement but the values for the axis ratio show a clear deviation. The difference
may be due to the comparably poor image quality in the work of SEF and blending with
the nearby object to the South—West of arclet 1. However, it must also be mentioned that
the determination of the axial ratio is relatively uncertain and I estimate its error from
repeated measurements to be of the order ~ 0.6.

Given the discrepancy between the distance measurements for A 222-2 and arclet 2 it
is unlikely that these are the same objects.

Unfortunately, the V' band image is not deep enough to show the candidate arclets, so
that no color information is available.
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Figure 5.8: Arclet candidates around the cD galaxy in A 222. North is up and East is to
the left. The scale is 10" long.




Chapter 6

Discussion and Outlook

In this work I investigated how to quantify the presence of a filamentary structure between
close pairs of galaxy clusters. I used the results of n-body simulations in an attempt
to develop a statistics that allows one to assess the significance of a possible filament
detection. This turned out to be a much more challenging task than anticipated. First, it
was very difficult for Emilio Romano—-Diaz to produce simulations that had strong enough
filaments. The two results of simulations displayed in chapter 3 are the ones with the
strongest filaments out of a total of eight simulations whose results Emilio gave me. 1
do not know how many other simulations he just threw away. Second, it was amazing
to see how numerical methods failed to reproduce what is obvious upon visual inspection
of the simulated data. Even for mass distributions that were known beforehand, it was
not possible to fit elliptical profiles to the clusters. Parameters like the orientation of the
major cluster axis, which are almost immediately obvious to the observer, could not even
approximately be yielded from any fitting procedure (sections 3.3.1 to 3.3.3). The attempt
to find an objective criterion to separate cluster and filament region failed even in the case
of the simulation with the strongest filament (section 3.4.1).

Consequently, the possibility to apply any of the methods of chapter 3 to the available
observations of A 222/223 was very limited. The |Q®|-map on the Abell field does not
show a significant quadrupole moment centered on the possible filament seen in the weak
lensing reconstruction. In fact, the quadrupole moment is in some regions of the filament
candidate as low as in the center of A 222. There are a couple of arguments speaking for
and against a filament extending between Abell 222 and Abell 223.

Arguments hinting at a mass bridge between the clusters are: The filament is seen not
only in the mass reconstruction but also in the M,,-maps on many filter scales. The M,,
statistics gives only a low significance level for the filament, but that is to be expected.
A circular aperture is clearly not ideal to detect something as non—circular as a filament.
Depending on the filter scale, either parts of the filament or parts of the more massive
clusters lie in the negative portion of the weighting function. Also in favor of a bridge
between both clusters is the fact that we observe a connection in color—selected objects.

However, as noted in the previous chapter, the bridge in the light distribution and the
bridge in the mass reconstruction are not aligned. While possible arguments to explain this
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were already discussed in section 5.2, this raises some doubt. Although one does not expect
a high significance of the M, statistics on a filament for reasons detailed in the previous
paragraph, the maximum significance of the filament candidate does not exceed that of
noise peaks at the same filter scale. The strongest argument against a filament between
A 222 and A 223 is probably the absence of a quadrupole moment on the filament.

Much of the discussion in chapter 3 was devoted to answering the question “What is
a filament?”. Assuming that the mass bridge between the Abell clusters is not a noise
artifact, should we call this a filament? The possible filament extends to the North from
the Eastern tip of A 222, whose major axis is oriented along the East—West direction.
This is not a symmetric situation like in Fig. 3.14, so that we probably can exclude the
possibility of overlapping clusters. Unless further observations show that A 223 extends as
far to the North as the candidate filament extends to the South from the center of A 223,
this structure — if real — should be called a filament.

Spectroscopic observations were carried out to identify galaxies between the clusters
at the cluster redshift. Unfortunately, the spectra were observed along a line connecting
the centers of both clusters. As a consequence spectroscopic data is only available at
the western edge of the color—selected filament candidate. Indeed, we found a couple of
galaxies at the cluster redshift in that region. No data is available in the central part of the
color—selected bridge or in the filament candidate from the weak lensing reconstruction.

Currently there is not enough data available to make a definite decision whether a
filament extends between both clusters or not. Certainly the A 222/223 system is an in-
teresting candidate for detecting such a filamentary structure and deserves a more detailed
analysis.

New WFI data centered on A 223 was observed in the past observing period but has
not yet been made available to us. This data should increase the signal-to—noise not only
in A 223 but also in other regions, including the intercluster region, on the field. Also,
convolving the objects with the usual Mexican—-hat filter instead of a Gaussian should give
significantly better signal-to—noise, so that hopefully we will be able to decide whether a
filament connects A 222 and A 223 in the not too distant future.

Although the weak lensing data is noisy, both clusters are significantly detected in the
reconstruction. Mass determinations of the clusters have been difficult due to the noise in
the data and the geometry of the clusters, so that I only gave lower limits for the cluster
masses in chapter 5. In addition, a mass peak SE of A 222 was discovered at the 4.2¢0
significance level with the M, statistics.

Finally, a few differences between the results of the simulations used in this thesis and
the observed filament candidates must be pointed out. The simulation always had a straight
filament between the clusters. This is not necessarily the case as other simulations (Bond
et al. 1996), the “banana” shape of the Abell system, and the possible filament detected by
Gray et al. (2002) show. However, this is the simplest geometry and any method developed
to identify filaments should at least work in the case of a straight filament. More important
is the difference in density contrast (Kcuster — Kfilament )/ Kfilament D€tWeen the simulations and
observed filament candidates measured in the center of the clusters and the filament. While
the filament candidates of Kaiser et al. (1998), Gray et al. (2002), and this work all suggest
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a density contrast of 1 — 2, the density contrast in the reconstructions of the simulated
data never fell below 5, if the same smoothing scale as for the observational data in chapter
5 was used. It remains to be investigated whether the simulations systematically predict
filaments of too low surface mass density, or whether the observers reporting these possible
filaments just have been lucky to find such massive filaments. I expect that the method of
separating clusters and filaments of section 3.4.1 gives much better results, if the density
contrast is indeed as low as observations suggest it.
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Chapter 6. Discussion and QOutlook




Appendix A

Spectroscopic Catalog of Abell 222
and Abell 223

This appendix lists the full spectroscopic catalog of Abell 222 and Abell 223 as described
in chapter 4. The column entries are:

Object No.

right ascension (hour:minute:second)

declination (degree:minute:second)

R band magnitude

5. V — R color

6-9. observed equivalent widths of [O11], [O111], HS, and Ha as defined in eq. (4.1)

10 & 11 heliocentric redshift and error

12. R-value of Tonry & Davis (1979)

13. Notes, p: Proust et al. (2000), n: Newberry et al. (1988), s: Sandage et al. (1976),
em, radial velocity derived from emission line template, 1: measured on [O11], HS, He, 2:
0.05126 £ 0.00013 from [O 1], [O 1m1], HA, 3: 0.21759 + 0.00017 from Ha He, 4: 0.21605 +
0.00026 from [O 11], [O 1], HB, Hey, [N 11], 5: 0.21788+0.00009 from Hey, [N11], 6: 0.20777+
0.00020 from [O 11], [O 111], HB, Hev, 7: 0.2069440.00038 from [O 11], [O 111}, HS, 8: 0.13738+
0.00027 from [O11], [O 111], HB, Hay, 9: 0.2073940.00057 from [O 11], HB, Hey, 10: 0.20459+
0.00009 from [O 1], [N11], 11: 0.2128140.00015 from [O11], [O 111], HB, He, 12: 0.24231+
0.00041 from [O 1], [O 1], HS, He, 13: 0.24178 + 0.00025 from [O 11], [O 1], HS, Ha.

e
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Appendix A. Spectroscopic Catalog of Abell 222 and Abell 223
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And it shall be,

when thou hast made an end of reading this book,
that thou shalt bind a stone to it,

and cast it into the midst of Fuphrates.

Jer. 51, 63






