Ground-based Spectroscopy of Exoplanet Atmospheres

Lisa Nortmann
Stefan Dreizler
University Göttingen
DFG RTG 1351

Planet Formation and Evolution September 3.-7. 2012, Munich

Secondary Eclipse and Phase Resolved RVs

HD 189733b, Knutson et al. 2007

Tau Boo b, Brogi et al. 2012

Transmission spectroscopy

Required precision: 10^{-4}

Previous Observations

Space-based

\rightarrow HST/STIS: first successful detection

Ground-based

Issue: correct for telluric atmospheric effects
$\rightarrow 10 \mathrm{~m}$ class telescopes, many tries, partly successful, e.g. FORS2/VLT multi-object Spectrophotometry GJ 1214b, Bean et al. 2010

Our Observations

Target: WASP-17b
\rightarrow The planet with the lowest density ($\sim 0.1 \mathrm{~g} / \mathrm{cm} 3$)
Wavelength range: 740-1000 nm
$\rightarrow \mathrm{K}, \mathrm{H}_{2} \mathrm{O}$ and TiO absorption predicted by models

Our Observations

Instrument: FORS2 mounted at ESO VLT

used in MXU (Multi-Object Spectroscopy with mask)

Simultaneously observing WASP-17 + 6 reference stars

Spectrophotometry

Transit Light Curve of WASP-17b

Main Source of Systematic Noise

- Rotation Dependent Instrument Inhomogeneity -

Light Curve Detrending

$$
M(\lambda)=T\left(r_{p}(\lambda)\right)\left(a_{1}(\lambda) \cdot \Delta_{L A D C}\right)\left(a_{2}(\lambda) \cdot \theta_{P A}+a_{3}(\lambda) \cdot \theta_{P A}^{2}+a_{4}(\lambda) \cdot \theta_{P A}^{3}\right)
$$

LADC prism distance
$\Delta_{L A D C}$.

Parallactic angle

Wavelength dependent transit light curves

Transmission spectrum of WASP 17b

Transmission spectrum of WASP 17b

Transmission spectrum of WASP 17b

Conclusions

The potential of ground-based transmission spectroscopy is high. However most observations are affected by systematic noise The current instruments have not been designed for this purpose
\rightarrow No calibration for systematic noise up to the desired precision
\rightarrow We aim to develop such calibration.
\rightarrow This requires combination of several existing data sets
\rightarrow Might require additional calibration data to be taken.
We need to understand the nature and sources of these trends so they can be avoided in the design stage of future dedicated instruments or the necessary calibration information can be obtained in time.

