Planetesimal formation by sweep-up coagulation

Fredrik Windmark¹, Carsten Güttler^{2,3}, Kees Dullemond¹

¹ Center for Astronomy, Heidelberg University
² Department of Earth and Planetary Sciences, Kobe University
³ Institute for Geophysics and extraterrestrial physics, TU Braunschweig

In collaboration with: Tilman Birnstiel Chris Ormel Jürgen Blum Thomas Henning

Outline

• Introduction

- The collisional growth barriers
- A new collision model
- Dust coagulation by sweep-up
 - Planetesimal formation by sweep-up
 - Velocity distributions and the formation of the first seeds
- Conclusions

The collisional growth barriers

The bouncing barrier Güttler et al. (2010), Zsom et al. (2010), Windmark et al. (2012a)

The fragmentation barrier e.g. Brauer et al. (2008)

A quick recap

A quick recap

Local simulations at 3 AU

Windmark et al. (2012a)

Local simulations at 3 AU

Windmark et al. (2012a)

Growth timescales for sweep-up

assuming $\varepsilon = 0.1$

Adding a velocity distribution

Dust evolution simulations are usually based on the **mean** relative velocity...

... but the addition of a collision velocity dispersion will smear out the barriers....

Windmark et al. (2012b)

Windmark et al. (2012b)

Conclusions

Even though the collision barriers prevents growth of the general dust population, a few **lucky particles** can **circumvent** the barriers.

Velocity distributions **smear out** the collision barriers, and naturally produce the first planetesimal seeds.

