Vertical transport of water ice Carsten Dominik

University of Amsterdam

Kees Dullemond Heidelberg University

The Herschel Space Telescope

TW Hya observation

Hogerheijde et al 2011

Dust, Gas, Radiation

The relevant processes

photo desorption

photo dissociation

gas phase formation route

freeze-out/reformation

Dominik et al 2005

A cut through the PDR

Dominik et al 2005

H₂O column density across the disk

Predicted H₂O column density ~3x10¹⁵cm⁻²

Dominik et al 2005

TW Hya model (Hogerheijde et al)

Predicted H₂O column density $\sim 3x10^{15}$ cm⁻²

Effects of vertical mixing

- Vapor-rich and vapor-poor gas is exchanged accross the tau=I surface
- Grains move through the tau=I surface. But not all grains!

Settling below T=I: strong mixing case

Size distribution at different heights

Ice layer on the grains: No diffusion

Ice layer on the grains: With diffusion

Total amount of ice

Total amount of vapor

Conclusions

- Transport effects are very important when computing the amount of molecules in freeze-out zones of a protoplanetary disk
- The ice becomes concentrated not in the midplane, but is slightly enhanced below the tau=I surface
- Still need to include chemical model to compute the fraction H₂O/(OH+O)

