

High resolution spectroscopy of Ne II emission from young stellar objects

G.G. Sacco (INAF-Arcetri/RIT), E. Flaccomio (INAF-OAPA), I. Pascucci (Univ. Arizona), F. Lahuis (SRON), B. Ercolano (Univ. Munich), J.H. Kastner (RIT), G. Micela (INAF-OAPA), B. Stelzer (INAF-OAPA), M. Sterzik(ESO)

Planet formation and evolution 2012

Ne II emission at 12.81 μ m: a powerful tracer of the effects of high energy emission on disks

- Neon is ionized either by EUV (E>21.6 eV) produced in the accretion shock (e.g. Alexander et al. 2008) or by coronal X-rays (E>0.9 keV) (e.g. Glassgold et al. 2007, Ercolano & Owen 2010);
- Line collisionally excited traces the warm (T~5000 K) inner disk (Ercolano & Owen 2010);
- Ne II emission at 12.81 μm has been detected in several YSOs using the Spitzer/IRS spectrograph (Pascucci et al. 2007; Lahuis et al. 2007, Flaccomio et al. 2009, Gudel et al. 2010)

Planet formation and evolution 2012

Origin of the Ne II emission at 12.81 μ m in YSOs: different hypothesis

- X-ray (or EUV) irradiated inner (r < 30 AU) disk (e.g. Ercolano & Owen 2010, Pascucci & Sterzik 2009). Small line blueshift (v<10-15 km s⁻¹) and small line width (Δv ~20 km s⁻¹), correlation between disk inclination and line width;
- Shock-heated gas in protostellar jets (e.g. Hollenback & McKee 1989, Van-Boeckel et al. 2009). Extended emission, large blue-shift (v~100 km s⁻¹) and line width (Δv ~50-100 km s⁻¹), correlation between mass accretion rate and line luminosity.
- Magnetically accelerated X-wind irradiated by stellar X-ray emission (Shang et al. 2010). Large blue-shift (v~100 km s⁻¹) and line width (Δv ~50-100 km s⁻¹), correlation between mass accretion rate and line luminosity.

(Pascucci & Sterzik 2009)

Planet formation and evolution 2012

High resolution spectroscopy of Ne II emission from YSOs

Targets: 32 YSOs of different classes(9 class I, 13 class II, 10 transition/pre-transition disk), belonging to different Star forming regions;

Target distance: between 40 to 150 pc

Instrument: VLT/VISIR, spectral R=30,000, spatial resolution, 0.4 arcsec

Observations: ~7 nights in three observing periods

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope

ESO PR Photo 16a/04 (12 May 2004)

© European Southern Observatory

Planet formation and evolution 2012

High resolution spectroscopy of Ne II emission from YSOs

•12 detections (number of detections by high resolution spectrographs more than tripled)

•Emission within 20-40 AU from the central star (i.e. no spatially extended emission has been detected)

(Sacco et al. 2012, ApJ, 747, 142)

Munich 05/09/2012

Planet formation and evolution 2012

Ne II fluxes: VISIR vs. Spitzer

- Class I sources: Spitzer/IRS fluxes higher than VLT/VISIR fluxes;
- Transition/pre-Transition disk: Spitzer/IRS fluxes in agreement with VLT/VISIR fluxes; (Sacco et al. 2012, ApJ, 747, 142)

Planet formation and evolution 2012

Planet formation and evolution 2012

FWHM and Blue-shift vs. disk inclination

Planet formation and evolution 2012

Ne II Fluxes vs. X-ray luminosities and mass accretion rates

(Sacco et al. 2012, ApJ, 747, 142)

Planet formation and evolution 2012

Conclusions

We observed 32 YSOs, using the high resolution mid-infrared spectrograph VLT/VISIR, with the aim of studying the origin of the Ne II emission at 12.81 μ m. We obtain the following main results:

- we detected the emission in 12 YSOs;
- in Class I objects the emission is mainly due to shock in the extended circumstellar envelope, while in transition and pre-transition disk the emission is produced from the inner disk ;
- the emission is always blue-shifted, confirming that the inner disk is photoevaporating;
- we do not find a correlation between Ne II luminosity and X-ray emission, because of heterogeneity of the observed disks;