

The relation between the physical properties and the collisional outcome of meteoritic matrix

Nagisa Machii¹, Akiko Nakamura², Carsten Güttler^{1,2}, Dirk Beger¹, Jürgen Blum¹

¹Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, ²Department of Earth and Planetary sciences, Kobe University

03.09.2012 /Planet Formation and Evolution 2012

Introduction

Analyses of chondrites •Chondrules - high temp. •Matrix - low temp.

It is difficult to form in the same environment.

Observation of asteroids
Heliocentric distribution of chondrite parent bodies
Abundance of chondrule decrease inversely with distance

Chondrules were distributed inhomogeneously in the solar nebula.

Introduction

Condition of solar system

Chondrule formation: 2-3 Ma after CAI (Kurahashi et al. 2008)
Size of dust aggregates: a few cm at 10000 year after CAI (Windmark et al. 2012)

•Relative velocity between mm-sized dust and cm-sized dust: 0.01-5 m/s (Weidling et al. 2009)

To investigate the collisional condition between chondrule and matrix, we measured physical properties of large dust agglomerate and their collisional outcomes

Experiment I: Measurement for physical property of agglomerates

Sample: polydisperse silica particles, d = 0.8 \pm 0.3 μ m, ρ = 2200 kg/m³

compression tests loading rate: 0.01 mm/s container size: Ø5, 10, 15, 20 mm

Result I-2 sound velocity

Experiment 2. Collisional experiment: matrix analog vs chondrule analog

Target: polydisperse silica particles, d = 0.8 ± 0.3 μ m, ρ = 2200 kg/m³ Projectile: glass bead, d = 1, 3, and 4.7 mm, ρ = 2500 kg/m³

velocity (m/s)	projectile (mm)	target (cm)	target porosity (%)	accelerator
0.2 - 2	I, 4.7	3 x 3	90, 75, 50	drop tube
2 - 5	3	3 x 7.5	75, 50	spring gun
30 - 300	3	3 x 7.5	75, 50	light-gas gun

spring gun

Result 2-1: Image sequence of the collisional outcomes

intrusion

sticking

v_{imp} = 2.5 m/s, Target: 75 % porosity

bouncing

velocity

high

Result 2-2:

%nearly sticking

For the experiment with drop tube: the displacement of the projectile could not be confirmed more than 120 ms after collision.

For the experiment with spring gun: the projectile fell down after collison-sticking due to gravity. / the intrusion depth is smaller than the projectile diameter.

Model: Conversion of impact velocity into impact pressure

pressure (Pa)

Result3: The relation between collisional outcomes and the target strength

