The Formation and orbital Evolution of Planets

Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen

5. September, 2012

 The Solar System - Characteristics - Formation Extrasolar Planets - Planet-disk interaction - Dynamical evolution Gravitational instability Planet Formation in binaries Summary

(A. Crida)

Solar System

The Planets

Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptun (Pluto)

Solar System	Main properties
8 Planets:	Mercury to Neptune
5 Dwarf Planets:	Ceres, Pluto, Eris, Makemake, Haumea
Minor bodies:	TNO, asteroids, comets
Tiny bodies:	meteorites, dust

- coplanar, circular, uniform orbits (cf. Kepler candidates)
- Solid and gaseous planets (with Cores)
- prograde rotation (with exceptions)
- 99% of mass in Sun
- 99% of angular momentum in planets
- Age: about 4.5 billion years

Solar System

Formation: Overview

Historic View:

(Leukippos, 480-420 BC) "The worlds form in such a way, that the bodies sink into the empty space and connect to each other."

Modern View:

Collaps of an interstellar Molecular Cloud Slight rotation \Rightarrow Flattening Protosun in center / disk formation (based on Kant & Laplace, 1750s)

Planets form in protoplanetary disks \equiv Accretion Disks (99% Gas, 1% Dust)

Flat system, uniform rotation, circular orbits

Accretion disk

Disk-Structure

3D MHD Turbulence with Radiation Transport and chemical network in Accretion disks: Stratified Local Shearing Box, (Movie: 6 Orbits)

Outcome: (Talk: J.Simon, N. Turner

Poster: M. Flock, M. Hanasz)

- Saturation level
- Vertical structure
- Surface temperature
- Transport efficiency (α)
- Deadzones

W. Kley

Planet Formation

Gravitational-Instability (top-down)

(L. Mayer)

Self-gravitating disk Density-Fluctuations grow Spiral arms \Rightarrow planets Fast formation (10³ years) No cores (Good for distant planets)

Sequential Accretion (bottom-up)

(NASA, U2)

From small to large particles Slow formation (10^6 Years) Need: High sticking probability

(Comets, asteroids, solid planets, cores of planets) (Preferred for Solar System)

W. Kley

Planetesimals

Dust Growth

Laboratory-Experiments μ m-sized particles

Sticking through: Van der Waals forces Fractal Growth works up to cm-sizes

Numerical Simulations Here: Molecular dynamics

(Alexander Seizinger, Tübingen)

(J. Blum)

Planetesimals

(Jürgen Blum)

Particles have relative velocity with respect to the gas \Rightarrow frictional forces

Problem I: Fast radial drift towards star (for 1m Size: 1 AU / 100 Years) Problem II: Destructive Collisions Note: Disk is hotter near central star, best condensation beyond iceline

W. Kley

Check growth of planetesimals by collisions/accretion

SPH (Smoothed-Particle-Hydrodynamics) using 250,000-500,000 particles

Here: Elastic-plastic strength model, formation and evolution of cracks

2 Basalt Spheres:

Porous Objects:

(cp. small objects in Solar System)

(Schäfer, Geretshauser, Speith, Meru; Tübingen) (Geretshauser ea., 2010, 2011a,b) See talk by Roland Speith

to overcome growth barriers: Talks: J. Blum, F. Windmark

W. Kley

(C. Dullemond)

Dust \Rightarrow Planetesimals (μ m \Rightarrow 1-10km, through Collisions) Mass rich planets: Gravitation & Gas Accretion

W. Kley

Important: Gravitational Focussing

Two bodies grow through physical collisions

Mutual gravitational attraction increases the effective cross section

 \implies Strongly enhanced collision probability

Two modes: (Kokubo, 2001)

a) Ordered

mass ratio of two particles approaches unity

b) Runaway Large particles grow faster $\propto M^{4/3}$

c) Pebble accretion ?: $\propto M^2$ (Lambrechts & Johansen, 2012; Morbidelli & Nesvorny, 2012)

Planet Growth

 $M_{\rm p}$ = 1 $M_{\rm Jup}$, $a_{\rm p}$ = 5.2 AU, into disk around 1 $M_{\rm sol}$ star

Viscous hydrodynamical evolution 2D-Finite Volume Method

Spiral waves turn into shockwaves:

 \Rightarrow dissipation & ang.mom. deposition $\ \Rightarrow$ Gap

Gap formation limits growth to about 1 $M_{\rm Jup}$

Details (gap width & depth) depend on: Viscosity, pressure, planet mass

W. Kley

Planet Growth Evidence of Gap Opening

Moon (S/2005 S1) in Keeler Gap, Cassini (May 1, 2005) (Gap-Width ≈ 40 km, Planet-Diameter ≈ 7 km)

Here: Zero pressure, low viscosity \implies Very clean gap

W. Kley

- Planets form in protoplanetary disk (in one plane, circular orbits)
- Sequence of sticking collisions
- Inner planets: solid

Solar System

- Outer planets: gaseous with cores
- Maximum Mass \approx 1 $M_{\rm Jup}$ (gap formation)

What about the extrasolar planets ?

Exoplanets

Planetary Systems

Epicurus (ca. 341-270 BC) "There is an infinite number of worlds, some similar to ours some very different."

W. Kley

Exoplanets Mass and Distance

- Not possible to form hot Jupiters in situ
 - disk too hot for material to condense
 - not enough material
- Difficult to form massive planets
 - gap formation

But planets grow in disks:

 \Rightarrow Have a closer look at planet-disk interaction

see Annual Review article: Kley & Nelson, ARAA, 50 (2012)

Planet-Disk Lindblad Torques (Spiral arms)

Young planets are embedded in gaseous disk

Creation of spiral arms:

- stationary in planet frame
- Linear analysis,
 - 2D hydro-simulations

(Masset, 2001)

Inner Spiral

- pulls planet forward:
- positive torque
- **Outer Spiral**
 - pulls planet backward:
 - negative torque
- \longrightarrow Net Torque
- \implies Migration

Most important: Strength & Direction ?

Typically: Outer spiral wins \implies Inward Migration

Torque scales with: inv. Temp. (H/r)^{-2}, \ M_{\rm p}^2, \ M_{\rm d}

W. Kley

- RV-Obs.: ≈ 50 multi-planet extrasolar planetary systems ≈ 1/4 contain planets in a low-order mean-motion resonance (MMR) mostly in a 2:1 configuration (eg. GJ 876, HD 128311, HD 82943,) recently 3:2 (HD 45364) and 3:1 (HD 60532)
 In Solar System: 3:2 between Neptune and Pluto (plutinos)
- Resonant capture through convergent migration process dissipative forces due to disk-planet interaction
- Existence of resonant systems
 - \implies Clear evidence for planetary migration
- Hot Jupiters (Neptunes) & Kepler systems
 - \implies Clear evidence for planetary migration

München: 5. September, 2012

Migration too efficient!

Only strong reduction of Type I gives reasonable results (Ida & Lin; Mordasini, Alibert & Benz)

- \Rightarrow Need improvements:
 - stochastic migration
 - inviscid, self-grav. disks
 - radiative disks (corotation effects)

W. Kley

Corotation effects: Principle

3 Regions

 $\begin{array}{l} \textbf{Outer disk} \text{ (spiral)} \\ \textbf{Inner disk} \text{ (spiral)} \\ \implies \textbf{Lindblad torques} \end{array}$

Horseshoe (coorbital)
⇒ Corotation Torques (Horseshoe drag)
Scaling with:

- Vortensity gradient

- Entropy gradient

(Talk by: C. Baruteau)

(F. Masset)

Planet-Disk Pl

Physics matters

W. Kley

Planet-Disk Radial Torque density

3D-simulations, radiative diffusion, 20 M_{Earth} planet (Kley, Bitsch & Klahr 2009) $d\Gamma/dm$, with $\Gamma_{tot} = 2\pi \int (d\Gamma/dm) \Sigma dr$ Radiative: \Rightarrow additional positive contrib.

Exoplanets

at 200 Orbits Green Dot: Planet Green Line: **Roche-Lobe**

 $m_{\rm p}$ = 1 $M_{\rm Jup}$ $a_{\rm p} = 5.2 \text{ AE}$

Flow-Field \longrightarrow Mass growth up to a few $M_{\rm Jup}$ → prograde rotation

Exoplanets Summary Migration (Type I,II)

Planet-disk interaction: Torques on Planet Isothermal Migration is inward & rapid (lose planets)

```
But: \Gamma_{tot} = \Gamma_{L} + \Gamma_{HS,ent} + \Gamma_{HS,vort}
```

Outward in radiative disks

Mass limit due to gap opening

Driven by:

Vortensity gradient

maintained by: viscosity

Entropy gradient maintained by: rad. diffusion (or cooling)

- cooling time \approx libration time

Need viscosity

approximate torque formulae: Paardekooper ea; Masset&Casoli More details: Talks by C. Baruteau and B. Bitsch

Planet-Disk Eccentricity Distribution

Low mass Planets on eccentric Orbits

Torque on planet due to disk

$$\Gamma_{\rm disk} = \int_{\rm disk} \left(\vec{r}_{\rm P} \times \vec{F} \right) \Big|_{z} df$$

$$P_{\rm disk} = \int_{\rm disk} \dot{\vec{r}}_{\rm p} \cdot \vec{F} \, df$$

t2d-e10m : ρ (0.25, 5.2201E-01, 1.9388E+00) N= 3040; t= 10.00

W. Kley

Torque

Planet-Disk In 3D radiative disks

• *e*-damping for all planet masses.

Small e: exponential damping, large e: $\dot{e} \propto e^{-2}$

- Migration outward upto $e \approx 0.02 0.03$
- ⇒ Need multiple objects ! (and Scattering)

München: 5. September, 2012

P

Planets in 3D radiative disks

• *i*-damping for all planet masses.

Small *i*: exponential damping, large *i*: $\dot{i} \propto i^{-2}$

- Migration still outward upto $i\approx 4^o$
- ⇒ Need multiple objects ! (Scattering)

W. Kley

Resonant capture

2 massive Planets in disk

Two planets: joint, large gap Outer planet : Pushed inward Inner planet : Pushed outward Seperation reduction: Resonant capture

Planet-Disk Pumping through Resonances

Here: System-parameter of GJ 876 (2 planets in 2:1 resonance, 60:30 days)

W. Kley

Exoplanets

Producing Eccentricities & Inclinations

W. Kley

Grav. Instab.

Directly imaged planets

Principle

Consider local density perturbation in disk

Analytical

Stability-Criterion (Toomre)

$$Q \equiv \frac{c_s \kappa_0}{\pi G \Sigma_0} > 1$$

with

- $c_s =$ sound velocity $\kappa_0 =$ Epicyclic-Frequency (Ω_K)
- $\Sigma_0 =$ surface density
- Pressure & Rotation stabilize
- Density destabilizes

Numerical

Evolution of an isothermal Disk

- Finite-Difference Hydrodynamics
- Viscous Disk

(Tobias Müller, Tübingen)

Disk heats up upon compression, need fast cooling **Require:** coolingtime \approx orbital period \Rightarrow fast formation Only in large distances from star (larger 40-50 AU, no cores)

W. Kley

Grav. Instab. Numerical Resolution I

- lower stresses for higher resolution

München: 5. September, 2012

Ţ

Grav. Instab.

Grav. Instab.

Potential smoothing

2D Grid simulations (FARGO) (smoothing takes vertical height into account)

Realistic smoothing: $\epsilon \approx H \Rightarrow$ Less fragmentation

Grav. Instab. Open issues

- Numerics
- Cooling efficiency
- Irradiation from star
- Fate of fragments
 - tidal disruption
 - core formation
 - relation to FU Ori

Talk by: S. Nayakshin

Binaries Numerical Setup

2D viscous accretion disk

locally isothermal $r_{\min} = 0.5, r_{\max} = 8.0$ AU Grid: 256 \times 576

Density structure:

(Tobias Müller)

Strong dynamical interaction

 \Rightarrow Planet Formation more difficult (A. Nelson, 2001)

both: sequ. acc. & GI

- Disk heating
- Enhanced collision velocities

- Planets form in disks
 - flat systems
- Planet-disk interaction moves planets
 - Inward for isothermal disks
 - possibly outward/slowed in radiative disks
- Eccentricity & Inclination damped by disk
- Eccentric & inclined planets through scattering
- Distant planets through gravitational instability
- Planet formation in binaries more difficult

