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Linking observations and planet formation

•Difficulties: 1) different techniques constrain different aspects of the theory.
                    2) between formation and observation: Myrs-Gyrs of evolution. 

•Large number of observations from space mission (transits, spectra) and 
ground (radial velocity, transits, spectra, direct imaging). More to come 
(SPHERE, Gaia, ESPRESSO, CHEOPS, EChO..)

•For a sufficiently large number of exoplanets: treat as a statistical ensemble. 

•Planetary population synthesis: statistical comparison

•Improve understanding of planet formation by comparing theory and 
observation.

Kepler: Transits

VLT SPHERE: direct imaging
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From the a-M....

•Many fundamental 
constraints from the a-M 
diagram.
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From the a-M to the M-R diagram

•M-R diagram: diversity, too!

•Bulk composition

•Constraints for formation 
beyond the a-M:

-migration (icy planets close-in?)
-efficiency of H/He accretion & loss
-runaway when? opacity?

•Understandable with 
theoretical models? 



Formation: Based on core accretion paradigm, growth of seed embryo accreting 
gas and planetesimals in an evolving protoplanetary disk, undergoing orbital migration.
 
Evolution (after disk is gone): couple self consistently 
✦Solve 1D (radial) structure equations for the thermal evolution of the H/He envelope on Gyrs 
(cooling & contraction), including effects of stellar irradiation and radiogenic hating. Gray atmosphere.
✦Solve 1D internal structure equations for the solid core, assuming a differentiated interior.

100 % Rocky
(2/3 silicate, 1/3 iron) 

100 % Ice 
50 % Ice, 50% rocky 

thin: Seager+2007
thick: Mordasini+2012b

Radius solid planets
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Fig. 10. Luminosity as a function of time for planets with a mass of 1, 2, 5 and 10 MX, as labelled

in the plot. The left panel shows the case of “cold start” boundary conditions where all accretional

energy is radiated away at the shock, while the right panels shows “hot start (accreting)” models

where no radiative losses occur. The dotted lines show for comparison the results of Burrows et al.

(1997), while the dashed lines show Bara�e et al. (2003). Both these models use the classical “hot

start” scenario. The “cold start” 1 MX simulation is the same as shown in Fig. 3.

comparison, we plot in the figures also the L(t) found by Burrows et al. (1997) and Bara�e et al.

(2003). Both these models are classical “hot start” simulations. We associate the “t = 0” moment of

these models with the moment when in our simulations, the planets have reached their final mass.

For the “cold start” simulations, this moment corresponds to the sharp drop of L particularly well

visible for the 10 and 5 MX cases, when Lacc vanishes.

8.1.1. “Hot start”: comparison with Burrows et al. (1997) and Baraffe et al. (2003)

Focussing first on the right panel with the “hot start (accreting)” models, we see a good agreement

between our model and the two other ones. The di�erences between our (simpler, grey atmosphere)

model and the two more complex model is of the same order as the di�erences mutually between

Burrows et al. (1997) and Bara�e et al. (2003). This is in agreement with Bodenheimer et al. 2000)

who also find very good agreement of their grey atmosphere models and Burrows et al. (1997). It is

however clear that the precise shape of L(t) (there is for example a small bump in our cooling curves

when log L/L⇥ ⇤ �6.25) depends directly on the opacities, so that we expect that our predictions

are somewhat less accurate during the long-term evolution.

It is remarkable to see that the assumption of no radiative losses at the shock, but still a gradual

building up of the planet (as in our simulations) leads to very similar results as the classical “hot

start” scenario where one starts with a fully formed planet. The physical reason for the similarity is

that in both cases, no entropy sink exists. It means that gravitational instability, and core accretion

with a radiatively completely ine⇥cient shock lead to very similar planetary luminosities at young

ages.

This result certainly underlines the importance of a detailed description of the shock structure,

as already pointed out by Marley et al. (2007), because we see that the shock structure has an

hot accretion

dotted: Burrows+1997
dashed: Baraffe+2003 
solid: Mordasini+2012a

Luminosity of giants 

Adding planet evolution
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Fig. 5. Evolutionary sequence of the pressure-temperature pro-
files near the surface of the planet. The first profile (on the right)
corresponds to t=1 Myr, while the last one (on the left) is at t=4.6
Gyrs. The thick black lines show radiative zones. The blue dot-
ted line is the profile measured by the Galileo space probe (from
Lodders & Fegley 1998).

7. Radii

We now generalize the results from the last chapter concerning
the radius and study the radii of giant planets of di↵erent masses
and of di↵erent compositions. The goal is to validate our model
by comparison with existing work (e.g. Fortney et al. 2007 or
Bara↵e et al. 2008).

We do this by performing the same combined formation and
evolution calculations as shown for Jupiter, with the only di↵er-
ence that we vary the initial planetesimal surface density (which
will eventually lead to di↵erent core masses) and the moment
when we terminate the gas accretion, so that we get di↵erent
total masses. Otherwise, the calculations are identical, which
means for example that our calculations apply for planets at a
distance of 5.2 AU from a solar like star.

Such calculations are shown in Fig. 6. The plot shows for
planets of final masses of 0.15, 1, 2, 5 and 10 MX the total and
core mass as a function of time. The lines for the 1 Jupiter mass
planet are the same as in sect. 6. The gas accretion rate in run-
away is 0.01 M�/yr in all cases. Therefore, more massive planets
reach their final mass later. It is interesting to note that all plan-
ets have a final core mass of about 33 M�, except for the lowest
mass planet (total mass 0.14MX = 44.5M�) which has a core of
about 18 Earth masses. The lower core mass in this case is due
to the fact that for this planet, gas and solid accretion are (ex-
ternally) ramped down before it reaches the gas runaway phase.
The nearly identical core mass of all other planets is in contrast
not externally imposed. It is rather a natural consequence of the
decrease of the capture radius at the moment when the planet
collapses (which happens always at the same mass, independent
of the final mass) and the ejection of planetesimals which be-
comes important as the planet grows in mass (sect. 6.2.1).

Figure 7 shows the internal pressure-temperature structure
of these planets (plus also of a 20 MX planet) at an age of 4 to
5 Gyrs. The left end of the lines corresponds to the surface of
the planet, while the right end corresponds to the envelope-core

Fig. 6. Total mass (solid lines) and core mass (dotted lines) as
a function of time for planets with final masses of 0.14, 1, 2, 5
and 10 MX. For the lowest mass planet we shut down accretion
before it passes into the runaway gas accretion regime. Note that
the four more massive planets have a nearly identical core mass,
which is not externally imposed, but a natural consequence of the
decrease of the capture radius and the increase of planetesimal
ejection.

interface. The 0.14 MX planet has near the surface a significant
radiative zone. Otherwise the planets are nearly fully convective,
and characterized by a single adiabat. Near a pressure of about 1
Mbar we see a change in slope which comes from the molecular
to metallic transition of hydrogen, also visible in a similar figure
in Guillot & Gautier (2009).

7.1. Mass-radius relation

The mass-radius relation of (giant) planets has been studied for
a long time (e.g. Zapolsky & Salpeter 1969). The interest in the
relation lies in its connection to the composition of the planet and
the state of matter in its interior. For recent reviews, see Chabrier
et al. (2009) or Fortney et al. (2010).

The general result qualitatively already found by Zapolsky
& Salpeter (1969) is that the M-R relationship in the giant planet
regime is characterized by a local maximum in R. This behavior
can be understand with polytropic models with a polytropic in-
dex that increases with mass. This change is in turn due to the in-
creasing importance of degeneracy pressure of electrons relative
to the classical coulomb contribution of ions with planet mass
(e.g. Chabrier et al. 2009). Another general result is that the ra-
dius of giant planets decreases with core mass and increases with
increasing proximity to the star (e.g. Fortney et al. 2007; Bara↵e
et al. 2008).

In figure 8 we show the mass-radius relation for planets with
masses between 0.14 and 20 MX. This are the same models as
in Fig. 6 and 7. Except for the lowest mass planet with a core
of about 18 M�, the core mass is approximately 33 M�. The
radii are shown at 0.1, 1, 4.6 and 10 Gyrs. The planets were
calculated using the cold start assumption, which however plays
only a role at t = 0.1 Gyrs and for planets more massive than

t= 1 Myr

t= 4.6 Gyr

radiative
zone

Convective zone

τ=2/3 surfaceGalileo probe
measurement

Jupiter atmo. p-T sequence

Mordasini+2012a cf. Burrows+1997



Mordasini+2012, Molliere & Mordasini A&A in rev.

Population synthesis: Formation of M-R

•Rapid collapse at ~0.2 MJ 

when Z≈ 0.5 (runaway gas 
accretion)
•After disk dispersal (T>10 
Myrs), slow contraction.

Fraction Z of solids (rest H/He)
Orange: Z ≤ 1%
Red: 1 < Z ≤ 5% 
Green: 5 < Z ≤ 20%  
Yellow: 80 < Z ≤ 95% 
Brown: 95 < Z ≤ 99% 
Black: Z > 99%

Blue: 20 < Z ≤ 40% 
Cyan: 40 < Z ≤ 60% 
Magenta: 60 < Z ≤ 80%

Nominal Model. Mstar=1 Msun. a>0.1AU.
Non-isothermal Type I. Cold accretion. 1 embryo/disk
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R≈RH=a(M/3M✷)1/3

Collapse

Degeneracy

D-fusion
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Non-isothermal Type I. Cold accretion. 1 embryo/disk
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M-R diagram: comparison w. observations
All synthetic planets and all planets 
with known M-R outside 0.1 AU.

Mordasini+2012b

•S-shape with forbidden zones
-low M ➱ high Z ➱ small R
-high M ➱ low Z ➱ large R

•Imprint from core accretion & EOS
 

•Diversity in R at one M

•Comparison with observations fine 
except for KOI-423b. To be tested 
with future observation.

•Expect divergence in future at 
small masses (only H/He)!

Orange: Z ≤ 1%
Red: 1 < Z ≤ 5% 
Green: 5 < Z ≤ 20%  

Yellow: 80 < Z ≤ 95% 
Brown: 95 < Z ≤ 99% 
Black: Z > 99%

Blue: 20 < Z ≤ 40% 
Cyan: 40 < Z ≤ 60% 
Magenta: 60 < Z ≤ 80%

T=5 Gyrs



M-R diagram: effect of grain opacity

Efficiency of accretion of H/He by cores: 
Controlled by opacity due to grains in the 
envelope during formation. Grains evolve.
Low opacity ➱ high Menvelope ➱ large R.
High opacity ➱ low Menvelope ➱ small R.
Podolak+2003, Movshovitz+2010, Hori & Ikoma 2010



M-R diagram: effect of grain opacity
Zero grain opacity Full interstellar grain opacity

Mordasini et al in rev.

Imprint of grain opacity on planetary mass-radius relationship.

Link between ill known quantity important for formation and observations. Kepler-18d and 
Kepler-11e point towards small opacities.



Planet Occurrence from Kepler 11

Lissauer et al. (2011b) noted that the multi-planet sys-
tems observed by Kepler have relatively low mutual incli-
nations (typically a few degrees) suggesting a significant
correlation of inclinations. Converting our measurements
of the mean number of planets per star to the fraction of
stars having at least one planet requires an understand-
ing of the underlying multiplicity and inclination distri-
butions. Such an analysis is attempted by Lissauer et al.
(2011b), but is beyond the scope of this paper.
It is worth identifying additional sources of error and

simplifying assumptions in our methods. The largest
source of error stems directly from 35% rms uncertainty
in R! from the KIC, which propagates directly to 35%
uncertainty in Rp. We assumed a central transit over
the full stellar diameter in equation (2). For randomly
distributed transiting orientations, the average duration
is reduced to π/4 times the duration of a central transit.
Thus, this correction reduces our SNR in equation (1) by
a factor of

√

π/4, i.e. a true signal-to-noise ratio thresh-
old of 8.8 instead of 10.0. This is still a very conservative
detection threshold. Additionally, our method does not
account for the small fraction of transits that are graz-
ing and have reduced significance. We assumed perfect√
t scaling for σCDPP values computed for 3 hr intervals.

This may underestimate σCDPP for a 6 hr interval (ap-
proximately the duration of a P = 50 day transit) by
∼10%. These are minor corrections and affect the nu-
merator and denominator of equation (2) nearly equally.

3.1. Occurrence as a Function of Planet Radius

Planet occurrence varies by three orders of magnitude
in the radius-period plane (Figure 4). To isolate the de-
pendence on these parameters, we first considered planet
occurrence as a function of planet radius, marginalizing
over all planets with P < 50 days. We computed oc-
currence using equation (2) for cells with the ranges of
radii in Figure 4 but for all periods less than 50 days.
This is equivalent to summing the occurrence values in
Figure 4 along rows of cells to obtain the occurrence for
all planets in a radius interval with P < 50 days. The
resulting distribution of planet radii (Figure 5) increases
substantially with decreasing Rp.
We modeled this distribution of planet occurrence with

planet radius as a power law of the form

df(R)

d logR
= kRR

α. (4)

Here df(R)/d logR is the mean number of planets hav-
ing P < 50 days per star in a log10 radius interval cen-
tered on R (in R⊕), kR is a normalization constant, and
α is the power law exponent. To estimate these param-
eters, we used measurements from the 2–22.7 R⊕ bins
because of incompleteness at smaller radii and a lack of
planets at larger radii. We fit equation (4) using a max-
imum likelihood method (Johnson et al. 2010). Each ra-
dius interval contains an estimate of the planet fraction,
Fi = df(Ri)/d logR, based on a number of planet de-
tections made from among an effective number of target
stars, such that the probability of Fi is given by the bi-
nomial distribution

p(Fi|npl, nnd) = F
npl

i (1 − Fi)
nnd (5)

where npl is the number of planets detected in a spec-
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Fig. 5.— Planet occurrence as a function of planet radius for
planets with P < 50 days (black filled circles and histogram). The
top and bottom panels show the same planet occurrence measure-
ments on logarithmic and linear scales. Only GK stars consistent
with the selection criteria in Table 1 were used to compute occur-
rence. These measurements are the sum of occurrence values along
rows in Figure 4. Estimates of planet occurrence are incomplete
in the hatched region (Rp < 2 R⊕). Error bars indicate statistical
uncertainties and do not include systematic effects, which are par-
ticularly important for Rp < 2 R⊕. No planets with radii of 22.6–
32 R⊕ were detected (see top row of cells in Figure 4). A power law
fit to occurrence measurements for Rp = 2–22.6 R⊕ (red filled cir-
cles and dashed line) demonstrates that close-in planet occurrence
increases substantially with decreasing planet radius.

ified radius interval (marginalized over period, nnd ≡
npl/fcell − npl is the effective number of non-detections
per radius interval, and fcell is the estimate of planet oc-
currence over the marginalized radius interval obtained
from equation (2). The planet fraction varies as a func-
tion of the mean planet radius Rp,i in each bin, and the
best-fitting parameters can be obtained by maximizing
the probability of all bins using the model in equation
(4):

L =
nbin
∏

i=1

p(F (Rp,i)). (6)

In practice the likelihood becomes vanishingly small away
from the best-fitting parameters, so we evaluate the log-
arithm of the likelihood

lnL=
nbin
∑

i=1

ln p(F (Rp,i)) (7)

Comparison: KEPLER radius distribution
Incompleteness Howard et al. 2011

•Tentative agreement for R> 2 RE

•Many low radii, Hot Jupiter 0.5-1%
•Sensitive to type I migration model

Not H/He atmospheres ?

•Divergence for R<2 RE:
•Low mass H/He planets have large radii.
•Dividing line mini-Neptunes vs. super-Earth? Corrected for observational bias

Synthetic, P<50 d
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Table 3. Derived fraction of heavy elements in planets with a >
0.1 AU. The value for the synthetic planet lying closest in the
M � R plane is given and the domain covered by the error bars.
An age of 5 Gyrs is assumed. The planets are approximatively
listed in increasing mass.

Name closest Z Z domain
Kepler-11f ⇠0.95 0.90-0.97
Kepler-11d 0.88 0.84-0.94
Kepler-20d ⇠0.96 >0.89
Kepler-11e ⇠0.78 0.76-0.79
Kepler-10c ⇠0.99 >0.95
Kepler-11c 0.98 >0.85
Uranus 0.88 -
Neptune 0.90 -
Kepler-18d ⇠0.50 0.43-0.52
Kepler-35b ⇠0.37 0.28-0.37
Kepler-9c 0.25 0.24-0.30
Kepler-34b 0.35 0.32-0.39
Kepler-9b 0.30 0.16-0.36
Saturn 0.27 -
Kepler-16b ⇠0.41 0.40-0.44
CoRoT-9b ⇠0.11 0.09-0.11
Jupiter 0.10 -
CoRoT-10b 0.17 0.08-0.18
HD17156b ⇠0.08 0.04-0.11
HD80606b 0.09 0.07-0.10
KOI-423 - (<0.05)

Fig. 13. Predicted radius distribution for planets with primordial
H2/He atmospheres and a radius R > 2R�. Synthetic planets at
all semimajor axes have been included. The age of the popula-
tion is 5 Gyrs.

The distribution has a very characteristic, bimodal shape: A
global maximum at the smallest radii, and a second lower local
maximum at a radius of about one Jovian radius. The increase to-
wards small radii is simply due to the increase of the underlying
mass distribution towards small masses, and that with decreasing

Table 4. Radius distribution for planets with a primordial H2/He
atmosphere and R > 2R�. The first two columns are the radius
bins, while the remaining three columns are the fraction of plan-
ets in the bin at ages of 1, 5, and 10 Gyrs.

R/R� R/RX 1 Gyr 5 Gyrs 10 Gyrs
2.11 0.19 0.134 0.219 0.202
2.31 0.21 0.157 0.137 0.134
2.54 0.23 0.134 0.113 0.135
2.78 0.25 0.101 0.105 0.088
3.05 0.27 0.082 0.077 0.060
3.34 0.30 0.078 0.055 0.053
3.66 0.33 0.059 0.047 0.052
4.02 0.36 0.050 0.037 0.039
4.41 0.39 0.037 0.026 0.027
4.83 0.43 0.023 0.019 0.022
5.30 0.47 0.017 0.016 0.019
5.81 0.52 0.014 0.017 0.020
6.37 0.57 0.014 0.013 0.013
6.98 0.62 0.009 0.009 0.010
7.66 0.68 0.008 0.007 0.008
8.39 0.75 0.007 0.009 0.011
9.20 0.82 0.008 0.009 0.012
10.09 0.90 0.009 0.018 0.022
11.07 0.99 0.022 0.041 0.056
12.13 1.08 0.039 0.024 0.017
13.30 1.19 0.000 0.000 0.000

mass, the fraction of heavy elements increases (Sect. ???). This
means that low-mass planets also have small radii. Note that it
is well possible that the increase towards small radii may even
stronger in reality than predicted by the model. This is due to
the fact that we only include (relatively large) primordial H2/He
envelopes and an initial embryo mass of 0.6 M�.

The second maximum at about a Jovian radius has a funda-
mental reason, too. It is due to the fact that in the giant planet
domain (M & 100M�), planets all have approximately the same
radius, independent of their mass. This is due to the funda-
mental property of matter to become degenerate for such mas-
sive objects, rendering the matter increasingly compressible (e.g.
Chabrier et al. ????). This makes that more massive planets do
not have larger radii, in contrast to the terrestrial or Neptunian
mass domain. This property of the EOS makes that a large num-
ber of planets covering a large range of masses all fall into the
same radius bin (radii between 0.9 and 1.1 RX), causing the max-
imum in the distribution. The local minimum of the distribution
occurs at a radius of 7 to 8 R�. As can been deduced from Fig.
???, this corresponds to masses between ⇠ 20 to ⇠ 200M�, with
a typical mass of ⇠ 70M�. This corresponds to the mass domain
of the “planetary desert” where several planet formation mod-
els (e.g. Ida & Lin ????, Mordasini et al ????) predict a lower
abundance of planets. This additional e↵ect makes the second
maximum even more prominent.

The figure shows the radius distribution at the specific age of
5 Gyrs. In reality, stars of a given sample will have a distribution
of ages. The evolution of the radii at late time (t & 1 Gyr) is,
however, very slow. We have verified that the distribution of the
radii in an age range between 1 to 10 Gyr indeed only changes
very slightly. As expected, there is still a slow contraction occur-
ring, which makes for instance that at an age of 1 Gyr instead of
5 Gyrs, the local maximum in the giant planet domain is shifted
by one bin to the left (i.e. by about 0.1 RX). But the general shape
remains very similar, as can also been seen from Table ????.

•Radius distribution is bimodal 
(cf. Schlaufmann+2010,  Wuchter2011)

•Peak at lowest radii. Most seeds 
don’t grow much, and have large Z.

•Peak at ~ 1 RJ ➱ Giant planets 
have all approx. the same radius 
independent of mass (degeneracy!)

•Prediction: Kepler should detect 
the second, local maximum at ~1 RJ 
(except .... )

Bimodal planetary radius distribution
Mordasini+2012
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Summary
1) Added self-consistently evolution to c.a. formation model, giving 
radius and luminosity besides a, M, e. 

2) Calculated population wide M-R relationship.

3) Compared with observation, finding good agreement for the 
general shape. Many imprints of formation. 

4) Calculated planetary radius distribution. Bimodal, w. strong 
increase to small R, and second maximum at ~1 RJ.

5) Compared with Kepler R distribution. Similar general shape. We 
predict the ~1 RJ  maximum to be found in future.
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