Combined models of planet formation and evolution:

The planetary mass-radius relationship

K. M. Dittkrist, P. Molliere, S. Jin, H. Klahr, T. Henning
Y. Alibert, A. Fortier, W. Benz

Linking observations and planet formation

-Large number of observations from space mission (transits, spectra) and ground (radial velocity, transits, spectra, direct imaging). More to come (SPHERE, Gaia, ESPRESSO, CHEOPS, EChO..)

- Improve understanding of planet formation by comparing theory and observation.
-For a sufficiently large number of exoplanets: treat as a statistical ensemble.
-Planetary population synthesis: statistical comparison
-Difficulties: 1) different techniques constrain different aspects of the theory.

2) between formation and observation: Myrs-Gyrs of evolution.

From the $a-M . . .$.

From the $a-M$ to the $M-R$ diagram

Adding planet evolution

Formation: Based on core accretion paradigm, growth of seed embryo accreting gas and planetesimals in an evolving protoplanetary disk, undergoing orbital migration.

Evolution (after disk is gone): couple self consistently

-Solve ID (radial) structure equations for the thermal evolution of the H/He envelope on Gyrs (cooling \& contraction), including effects of stellar irradiation and radiogenic hating. Gray atmosphere.
Solve ID internal structure equations for the solid core, assuming a differentiated interior.

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H / He)
Orange: $Z \leq 1 \% \quad$ Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \% \quad$ Cyan: $40<Z \leq 60 \%$
Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$
Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $Z \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} \mathrm{a}>0.1 \mathrm{AU}$.
Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)

Orange: $Z \leq 1 \%$	Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \%$	Cyan: $40<Z \leq 60 \%$

Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$
Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $\mathrm{Z} \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} \mathrm{a}>0.1 \mathrm{AU}$.
Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)

Orange: $Z \leq 1 \%$	Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \%$	Cyan: $40<Z \leq 60 \%$

Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$
Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $\mathrm{Z} \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} \mathrm{a}>0.1 \mathrm{AU}$.
Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H / He)
Orange: $Z \leq 1 \% \quad$ Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \% \quad$ Cyan: $40<Z \leq 60 \%$
Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$
Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} . \mathrm{a}>0.1 \mathrm{AU}$.
Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)
Orange: $Z \leq 1 \% \quad$ Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \% \quad$ Cyan: $40<Z \leq 60 \%$
Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$
Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $Z \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} \mathrm{a}>0.1 \mathrm{AU}$.

Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)

Orange: $Z \leq 1 \%$	Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \%$	Cyan: $40<Z \leq 60 \%$

Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$

Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $\mathrm{Z} \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}_{\text {sun. }} \mathrm{a}>0.1 \mathrm{AU}$.

Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)
Orange: $Z \leq 1 \%$ Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \% \quad$ Cyan: $40<Z \leq 60 \%$
Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$

Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $Z \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}$ sun. $\mathrm{a}>0.1 \mathrm{AU}$.

Non-isothermal Type I. Cold accretion. 1 embryo/disk

Population synthesis: Formation of $M-R$

Fraction Z of solids (rest H/He)
Orange: $Z \leq 1 \%$ Blue: $20<Z \leq 40 \%$
Red: $1<Z \leq 5 \% \quad$ Cyan: $40<Z \leq 60 \%$
Green: $5<Z \leq 20 \%$ Magenta: $60<Z \leq 80 \%$

Brown: $95<Z \leq 99 \%$
Black: $Z>99 \%$

- Rapid collapse at $\sim 0.2 \mathrm{MJ}$ when $Z \approx 0.5$ (runaway gas accretion)
- After disk dispersal (T>|0 Myrs), slow contraction.

Nominal Model. $\mathrm{M}_{\text {star }}=1 \mathrm{M}$ sun. $\mathrm{a}>0.1 \mathrm{AU}$.

Non-isothermal Type I. Cold accretion. 1 embryo/disk

M-R diagram: comparison w. observations

M-R diagram: effect of grain opacity

Efficiency of accretion of H / He by cores: Controlled by opacity due to grains in the envelope during formation. Grains evolve. Low opacity \Rightarrow high $M_{\text {envelope }} \Rightarrow$ large R. High opacity \Rightarrow low Menvelope \Rightarrow small R.
Podolak+2003, Movshovitz+2010, Hori \& Ikoma 2010

M-R diagram: effect of grain opacity

Link between ill known quantity important for formation and observations. Kepler-18d and Kepler-11e point towards small opacities.

Imprint of grain opacity on planetary mass-radius relationship.

Comparison: KEPLER radius distribution

Bimodal planetary radius distribution

Mordasini+20l2

all a, finer bins

- Radius distribution is bimodal (cf. Schlaufmann+20IO, Wuchter20II)
- Peak at lowest radii. Most seeds don't grow much, and have large Z.
- Peak at $\sim \mid R y \Rightarrow$ Giant planets have all approx. the same radius independent of mass (degeneracy!)
- Prediction: Kepler should detect the second, local maximum at $\sim \mid R J$ (except)

Summary

1) Added self-consistently evolution to c.a. formation model, giving radius and luminosity besides a, M, e.
2) Calculated population wide M-R relationship.
3) Compared with observation, finding good agreement for the general shape. Many imprints of formation.
4) Calculated planetary radius distribution. Bimodal, w. strong increase to small R, and second maximum at $\sim 1 R J$.
5) Compared with Kepler R distribution. Similar general shape. We predict the ~ 1 RJ maximum to be found in future.
C. Mordasini, Y. Alibert, C. Georgy, K.-M. Dittkrist, H. Klahr, \& T. Henning A\&A accepted, arXiv 1206.3303
C. Mordasini, Y. Alibert, H. Klahr, \& T. Henning A\&A accepted, arXiv 1206.6103
