FORMATION OF SATELLITES from a tidal disk

Aurélien CRIDA

& Sébastien CHARNOZ

JUPITER

SATURN

URANUS

NEPTUNE

ALL GIANT PLANETS

INTRODUCTION

Observatoire

Université Nice sophia antipolis

= M_{satellite} / M_{planet}

Université Nice sophia antipolis

Spreading of a tidal disk

1D model.

Université Nice sophia antipolis

Observatoire

Inside the Roche radius r_R , there is a « tidal disk », that spreads with a mass flow **F** (assumed constant).

Notations

Be $\mathbf{T}_{\mathbf{R}}$ the orbital period at $\mathbf{r}_{\mathbf{R}}$, and

 $\tau_{disk} = M_{disk} / FT_{R}$, the normalized life-time of the disk.

The disk spreads with a viscous time $t_v = r_R^2/v$.

Using Daisaka et al. (2001)'s prescription for v, we find $\tau_{disk} = t_v / T_R = 0.0425 D^{-2}$ where $D=M_{disk}/M_p$, and F = 23 D³ M_p / T_R.

Continuous regime

Say 1 satellite forms. Its mass is :

$$M = F t$$

(1)

It feels a torque from the tidal disk : $\Gamma = \frac{8}{27} \left(\frac{M}{M_p}\right)^2 \Sigma r^4 \Omega^2 \Delta^{-3}$

where $\Delta = (r - r_R)/r_R$ (Lin & Papaloizou 1979).

→ Migration rate :

where $q = M / M_p$.

$$\frac{d\Delta}{dt} = \frac{32}{27} q D T_R^{-1} \Delta^{-3}$$
(2)

Solution of (1) & (2) :

Observatoire

Université Nice sophia antipolis
$$q = \left(\frac{\sqrt{3}}{2}\right)^3 \tau_{disk}^{-1/2} \Delta^2 \tag{3}$$

We call this the continuous regime .

Continuous regime

This holds as long as the satellite captures immediately what comes through $r_{\rm R}$.

That is, as long as $(r-r_R) < 2 r_{Hill}$, or $\Delta < 2 (q/3)^{1/3}$.

Input into Eq.(3), this gives a condition of validity for the continuous regime :

$$\Delta < \Delta_c = \sqrt{\frac{3}{\tau_{disk}}} = -8.4 \text{ D}$$

$$q < q_c = \frac{3^{5/2}}{2^3} \tau_{disk}^{-3/2} = -222 \text{ D}^3$$

Duration of the continuous regime: 10 T_{R} .

Observatoire

Université Nice sophia antipolis

Discrete regime

When the satellite is beyond Δ_c (or q_c), the material flowing through r_R forms a new satellite at r_R .

This new satellite is immediately accreted by the first one.

And so on...

The first satellite still grows as M=Ft, but by steps : *discrete regime*.

Discrete regime

This holds as long as $\Delta < \Delta_c + 2(q/3)^{1/3}$.

It gives the condition :

$$\Delta < \Delta_d = 3.1 \Delta_c$$
 = ~26 D
 $q < q_d = 9.9 q_c$ = ~2200 D³

The duration of the discrete regime is ~100 $T_{_{\rm R}}$.

Discrete regime

This holds as long as $\Delta < \Delta_c + 2(q/3)^{1/3}$.

It gives the condition :

$$\Delta < \Delta_d = 3.1 \Delta_c = \sim 26 \text{ D}$$

$$q < q_d = 9.9 q_c$$
 = ~2200 D³

The duration of the discrete regime is ~100 $T_{\rm R}$. <u>Applications :</u>

1) Earth's Moon forming disk : $q_d = \sim$ mass of the Moon ! 2) Charon never left the continuous regime. 3) Saturn's rings : $q_d = \sim 10^{-18}$.

Pyramidal regime

Satellites of mass q_d are produced at Δ_d every q_d / F .

Then, many satellites of constant mass migrate outwards, at decreasing rates. They approach each other.

If their distance decreases below 2 mutual Hill radii, they merge.

This leads to the formation of satellites of masses $2q_d$, every $2q_d/F$. They migrate away and merge further...

And so on, hierachicaly...

We call this *the pyramidal regime*.

Université Nice sophia antipolis

Pyramidal regime

- Using Eq.(2), we show that in the pyramidal regime, while the mass is doubled, Δ is multiplied by 2^{5/9}.

Thus, q $lpha \, \Delta^{
m 9/5}$.

Université Nice sophia antipolis

In addition, the number density of satellites should be proportionnal to $1/\Delta$, explaining the pile-up.

- Beyond the 2:1 Lindblad resonance with r_R (Δ =0.58), Eq.(2) doesn't apply. Migration is driven by planetary tides:

$$\frac{dr}{dt} = \frac{3k_{2p}M\sqrt{G}R_{p}^{5}}{Q_{p}\sqrt{M_{p}}r^{11/2}}$$
(4)
Jsing Eq.(4), we find $q \alpha r^{3.9}$.

Pyramidal regime

The result spectacularly matches the distribution of the Saturnian, Uranian, and Neptunian systems !

Université Nice sophia antipolis

Summary

1) <u>Continuous regime:</u>

1 moon grows q $\alpha \Delta^2$ until Δ_c or q_c.

2) Discrete regime: 2 moons, growth by steps until Δ_d or q_d .

3) <u>Pyramidal regime:</u> Many moons in the system. q α $\Delta^{9/5}$ or r^{3.8} .

Observatoire

Université Nice sophia antipolis

Summary

- Take M_{disk} = 1.5 x the mass of the present satellite system.
- Giant planets must be dominated by the pyramidal regime,
- while we expect the Earth and Pluto to have 1 large satellite.

Université Nice sophia antipolis

Conclusion & Discussion

The spreading of a tidal disk beyond the Roche radius

- explains the mass-distance distribution of the regular satellites of the giant planets
 (observational signature of this process)
- unifies terrestrial and giant planets in the same paradigm.
- most Solar System regular satellites formed this way.
- * Jupiter doesn't fit in this picture : probably formed in a circum-planetary disk (Canup & Ward 2002, 2006 ; Mosqueira & Estrada 2003a,b)
- Titan fits very well in this picture, though its « tidal age » is too large... Coincidence ?

Thanks !

Aurélien CRIDA

& Sébastien CHARNOZ

