Planet formation around M-type stars

Shoichi Oshino

National Astronomical Observatory of Japan (NAOJ)

Collaborators : Y. Hori, E. Kokubo (NAOJ), S. Ida (Tokyo Tech.)

Introduction

- There are over 3000 planets since 1995.
- The number of planets around M-type stars is about 50.
- IRD surveys are carrying out for detecting planets around M-type stars.

Introduction

- There are over 3000 planets since 1995.
- The number of planets around M-type stars is about 50.
- IRD surveys are carrying out for detecting planets around M-type stars.
 - Subaru/IRD
 - MEarth (Nutzman & Charbonneau 2008)
 - GAIA (Lattanzi & Sozzetti 2010)

Observation of planets around M-type stars

Observation of planets around M-type stars

Observation of planets around M-type stars

Planetary Occurrence of M-type stars

✦HARPS (RV survey)

•102 bright M-type stars \rightarrow 90% planet < 20 M $_{\oplus}$

	Super-Earth	Gas giant
1 <p<10day< td=""><td>36 ⁺²⁵₋₁₀%</td><td><1%</td></p<10day<>	36 ⁺²⁵ ₋₁₀ %	<1%
10 <p<100day< td=""><td>35 ⁺⁴⁵₋₁₁%</td><td>2 ⁺³/₋₁%</td></p<100day<>	35 ⁺⁴⁵ ₋₁₁ %	2 ⁺³ / ₋₁ %

Planetary Occurrence of M-type stars

■ MEarth (transit survey) : 2000 mid-late M-type stars → discovered GJ1214b

2-4
$$R_{\oplus}$$
 (Super-Earth) : 38 $^{+36}_{-22}$ %
4-8 R_{\oplus} (Gas giant?) : < 8% (P<10 day)

Population Synthesis of Planets around M-type stars

Semimajar axis [AU]

- Monte Carlo simulations of planet formation around M-Type stars. (Laughlin+ 2004, Ida & Lin 2005)
- Kennedy+ (2007) investigated the effect stellar evolution on planet formation (moving snow line).
- Alibert+ (2011) showed that week Type-I migration is consistent with observation for M-Type stars.
- Previous (and our) works show that formation of gas giants around M-Type stars is suppressed.
- The advantage of this work is to develop formation of multiple planets around M-type stars.

 $M_{\rm p}$ - $a_{\rm p}$ distr. is not incompatible with observations

(from the viewpoint of Kolmogorov-Smirnov test)

Population Synthesis of Planets around M-type stars

multiplicity 34% (only SEs) 10% (SE-GG) 2% (only GGs) 20%

Summary

- The number of giant planets around M-type stars is less than that of super-Earths because of lower amount of mass of protoplanetary disk.
- Formation of multiple planets around M-type stars (~50%) may be lower than G-type stars (~70%).
- Our result also shows that ice-rich planets are abundant in inner regions (<1 AU) around M-type stars.
- In the "near" future, IRD survey (e.g. multiplicity) allows us to verify and improve theoretical model of planet formation around M-type stars.