Planet formation around M-type stars

Shoichi Oshino
National Astronomical Observatory of Japan (NAOJ)

Collaborators: Y. Hori, E. Kokubo (NAOJ), S. Ida (Tokyo Tech.)

Introduction

- There are over 3000 planets since 1995.
- The number of planets around M-type stars is about 50.
- IRD surveys are carrying out for detecting planets around M-type stars.

Introduction

- There are over 3000 planets since 1995.
- The number of planets around M-type stars is about 50 .
- IRD surveys are carrying out for detecting planets around M-type stars.
- Subaru/IRD
- MEarth (Nutzman \& Charbonneau 2008)
- GAIA (Lattanzi \& Sozzetti 2010)

Observation of planets around M-type stars

Observation of planets around M-type stars

Observation of planets around M-type stars

Planetary Occurrence of M-type stars

- HARPS (RV survey)
-102 bright M-type stars
$\rightarrow \mathbf{9 0 \%}$ planet < $20 \mathrm{M}_{\oplus}$

	Super-Earth	Gas giant
$1<\mathrm{P}<10$ day	$36_{-10}^{+25} \%$	$<1 \%$
$10<\mathrm{P}<100$ day	$35_{-11}^{+45} \%$	$2_{-1}^{+3} \%$

Planetary Occurrence of M-type stars

-HARPS (RV survey)
-102 bright M-type stars
$\rightarrow \mathbf{9 0 \%}$ planet $<\mathbf{2 0} \mathrm{M}_{\oplus}$

	Super-Earth	Gas giant
$1<P<10$ day	$36_{-10}^{+25} \%$	$<1 \%$
$10<P<100$ day	$35_{-11}^{+54} \%$	$2_{-1}^{+3} \%$
\qquad		

MEarth (transit survey) : 2000 mid-late M-type stars \rightarrow discovered GJ1214b

$$
\begin{aligned}
& 2-4 R_{\oplus} \text { (Super-Earth) : } 38_{-22}^{+36} \quad \% \\
& 4-8 R_{\oplus} \text { (Gas giant?) }:<8 \%
\end{aligned} \text { (P<10 day) }
$$

Population Synthesis of Planets around M-type stars

(Ida \& Lin, 2010)
Planetesimal ($10^{20} \mathrm{~g}$)
M dwarf
\downarrow planetesimal accretion

Planetary migration

+ resonant capture
\downarrow gas accretion

Giant impact

disk dissipation
planet-planet scattering

Population Synthesis of Planets around M-type stars

(Ida \& Lin, 2010)

M dwarf
\downarrow planetesimal accretion

Planetary migration
 + resonant capture

Giant impact
planet-planet scattering
disk dissipation

```
stellar mass
disk model (mass, \Sigma)
    Md \propto M\star
disk lifetimes
(0.1-10Myr) (e.g., Ercolano+11)
    photoevaporation/disk wind
                            (Hollenbach+04;Suzuki+10)
migration rate
```

Population Synthesis of Planets around M-type stars

(Kokubo \& Ida 2002)

Semimajar axis [AU]

Population Synthesis of Planets around M-type stars

5ดn日月 vr

-Population synthesis based on analytical
${ }_{\oplus} \oplus$ formulae.
-Kokubo \& Ida (2002) developed the scaling law of protoplanets.
-We also confirm this scaling law by using N-body simulation.

$$
\begin{aligned}
& M_{\text {iso }} \simeq 2 \pi a b \sum_{\text {solid }}= \\
& 0.16\left(\frac{\tilde{b}}{10}\right)^{3 / 2}\left(\frac{f_{\mathrm{icc}} \sum_{1}}{10}\right)^{3 / 2}\left(\frac{a}{1 \mathrm{AU}}\right)^{3 / 4}\left(\frac{M_{*}}{M_{\odot}}\right)^{3 / 2} M_{\oplus}
\end{aligned}
$$

Semimajar axis [AU]

- Monte Carlo simulations of planet formation around M-Type stars. (Laughlin+ 2004, Ida \& Lin 2005)
- Kennedy+ (2007) investigated the effect stellar evolution on planet formation (moving snow line).
- Alibert+ (2011) showed that week Type-I migration is consistent with observation for M-Type stars.
- Previous (and our) works show that formation of gas giants around M -Type stars is suppressed.
- The advantage of this work is to develop formation of multiple planets around M-type stars.

Population Synthesis of Planets around M-type stars

$M_{\mathrm{p}}-a_{\mathrm{p}}$ distr. is not incompatible with observations
(from the viewpoint of Kolmogorov-Smirnov test)

Semimajor axis (AU)

Population Synthesis of Planets around M-type stars

Semimajor axis (AU)

	Simulation	Obs.
super-Earth	$50 \%(<0.1 \mathrm{AU}: 33 \%$ ice-rich)	$35-40 \%$
	$27 \%(0.1-1 \mathrm{AU}: 25 \%$ ice-rich $)$	$<1 \%$
hot Jupiter	$4 \%---$ too high $(<0.1 \mathrm{AU})$	$(<0.1 \mathrm{AU})$
	34% (only SEs)	10% (SE-GG)
2%	(only GGs)	20%

Summary

- The number of giant planets around M-type stars is less than that of super-Earths because of lower amount of mass of protoplanetary disk.
- Formation of multiple planets around M-type stars ($\sim 50 \%$) may be lower than G-type stars ($\sim 70 \%$).
- Our result also shows that ice-rich planets are abundant in inner regions (<1 AU) around M-type stars.
- In the "near" future, IRD survey (e.g. multiplicity) allows us to verify and improve theoretical model of planet formation around M-type stars.

