Constraining the initial entropy of directly-detected exoplanets

Gabriel-Dominique Marleau^{1,2} Andrew Cumming²

¹ MPIA (Heidelberg) ² McGill University (Canada)

Skemer et al. (2012)

Currie et al. (2011)

Overview

- Direct detection surveys
- Uncertainty in post-formation conditions

2 Inferring M and S_i from L and age

- Cooling models
- Applications

Overview

- Direct detection surveys
- Uncertainty in post-formation conditions

Inferring M and S_i from L and age

- Cooling models
- Applications

3 Conclusion

Motivation	
000	
Direct detection surveys	
Direct imaging	

- Bias towards young, massive, and hot planets
- Many surveys on now or soon: SPHERE, GPI, VLT, HiCIAO, JWST, etc.

ightarrow Dramatic increase in number and detection of core-accretion candidates

Dominik (2011), modif.

Neuhäuser & Schmidt (2012)

Motivation	
•00	
Direct detection surveys	
Direct imaging	

- Bias towards young, massive, and hot planets
- Many surveys on now or soon: SPHERE, GPI, VLT, HiCIAO, JWST, etc.
- $\rightarrow\,$ Dramatic increase in number and detection of core-accretion candidates

Dominik (2011), modif.

Neuhäuser & Schmidt (2012)

Hot start or cold start?

- Core accretion: closer-in, less massive, colder (lower S)
- Gravitational instability: tens of AU, heavier, hotter
- $\star\,$ Actually, uncertain initial conditions $\rightarrow\,$

Marley et al. (2007)

Motivation ⊃●O	
Uncertainty in post-formation conditions	

Hot start or cold start?

- Core accretion: closer-in, less massive, colder (lower S)
- Gravitational instability: tens of AU, heavier, hotter
- * Actually, uncertain initial conditions \rightarrow need to consider arbitrary S_i

Marley et al. (2007)

Motivation ○●○ Uncertainty in post-formation conditions

Hot start or cold start?

- Core accretion: closer-in, less massive, colder (lower S)
- Gravitational instability: tens of AU, heavier, hotter
- \star Actually, uncertain initial conditions \rightarrow need to consider arbitrary S_i

Spiegel & Burrows (2012)

- Hot-start models used for planning \rightarrow overpredict yields
- Masses assigned from hot starts \rightarrow wrong statistics
- Conversely: use detections to inform formation scenarios

- \bullet Hot-start models used for planning \rightarrow overpredict yields
- \bullet Masses assigned from hot starts \rightarrow wrong statistics
- Conversely: use detections to inform formation scenarios

Constraining the mass and initial entropy of directly-detected planets

- Make planet models with arbitrary entropy $\rightarrow L(M, S(t))$
- Given L and age, find which (M, S_i) correspond to this

- \bullet Hot-start models used for planning \rightarrow overpredict yields
- \bullet Masses assigned from hot starts \rightarrow wrong statistics
- Conversely: use detections to inform formation scenarios

Constraining the mass and initial entropy of directly-detected planets

- Make planet models with arbitrary entropy $\rightarrow L(M, S(t))$
- Given L and age, find which (M, S_i) correspond to this
- * Independent of formation model!

- \bullet Hot-start models used for planning \rightarrow overpredict yields
- \bullet Masses assigned from hot starts \rightarrow wrong statistics
- Conversely: use detections to inform formation scenarios

Constraining the mass and initial entropy of directly-detected planets

- Make planet models with arbitrary entropy $\rightarrow L(M, S(t))$
- Given L and age, find which (M, S_i) correspond to this
- * Independent of formation model!

Overview

Motivation

- Direct detection surveys
- Uncertainty in post-formation conditions

2 Inferring M and S_i from L and age

- Cooling models
- Applications

3 Conclusion

Cooling models

Thermal evolution of gas giant planets

- Standard opacities and composition
- Usual constant-S structure equations
- Given M and $S \rightarrow L_{bol}$ and t_{cool}
- (Found $L_{bol}(M, S)$) explanable)

Marleau & Cumming 2012 (in prep.)

Cooling models

Thermal evolution of gas giant planets

- Standard opacities and composition
- Usual constant-S structure equations
- Given M and $S \rightarrow L_{bol}$ and t_{cool}
- (Found L_{bol}(M, S)) explanable)

ightarrow Grid of models specified by M and S

Marleau & Cumming 2012 (in prep.)

Cooling models

Thermal evolution of gas giant planets

- Standard opacities and composition
- Usual constant-S structure equations
- Given M and $S \rightarrow L_{bol}$ and t_{cool}
- (Found L_{bol}(M, S)) explanable)
- \rightarrow Grid of models specified by M and S

Marleau & Cumming 2012 (in prep.)

Inferring *M* and S_i from *L* and age $0 \bullet 0 \circ 0$

Conclusion

Cooling models

Thermal evolution of gas giant planets (cont'd)

Cooling curves:

- ! Low S means long t_{cool}
- $t < t_{cool}$: \approx remember i.c.
- $t > t_{cool}$: \approx power law

Marleau & Cumming 2012 (in prep.)

Inferring *M* and S_i from *L* and age $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion

Cooling models

Thermal evolution of gas giant planets (cont'd)

Cooling curves:

- ! Low S means long t_{cool}
- $t < t_{cool}$: \approx remember i.c.
- $t > t_{cool}$: \approx power law

Marleau & Cumming 2012 (in prep.)

Inferring *M* and S_i from *L* and age $0 \bullet 0 \circ 0$

Conclusion

Cooling models

Thermal evolution of gas giant planets (cont'd)

Cooling curves:

- ! Low S means long t_{cool}
- $t < t_{cool}$: \approx remember i.c.
- $t > t_{cool}$: \approx power law

Marleau & Cumming 2012 (in prep.)

Inferring *M* and S_i from *L* and age $0 \bullet 0 \circ 0$

Conclusion

Cooling models

Thermal evolution of gas giant planets (cont'd)

Cooling curves:

- ! Low S means long t_{cool}
- $t < t_{cool}$: \approx remember i.c.
- $t > t_{cool}$: \approx power law

Marleau & Cumming 2012 (in prep.) Neuhäuser & Schmidt (2012)

200

Inferring *M* and S_i from *L* and age 00000

Applications

HR 8799 b

Marois et al., Zuckerman (2010)

Hot-start masses

000 Applications Inferring *M* and S_i from *L* and age $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion

HR 8799 b

Marois et al., Zuckerman (2010)

Hot-start masses

000

Inferring *M* and S_j from *L* and age $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Applications

HR 8799 b

Marois et al., Zuckerman (2010)

Hot-start masses

- $\bullet \ {\sf Multiple \ system} \to {\sf dynamical \ info}$
- \rightarrow Lower bound on S_i

000

Inferring *M* and S_j from *L* and age $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Applications

HR 8799 b

Marois et al., Zuckerman (2010)

- Hot-start masses
- Multiple system \rightarrow dynamical info
- \rightarrow Lower bound on S_i
 - CA too cold by $\Delta S = 0.5$ but ok

000

Inferring *M* and S_j from *L* and age $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Applications

HR 8799 b

Marois et al., Zuckerman (2010)

- Hot-start masses
- Multiple system \rightarrow dynamical info
- \rightarrow Lower bound on S_i
 - CA too cold by $\Delta S = 0.5$ but ok

Lagrange et al. (2011)

• Upper mass from $RV \rightarrow minimum S_i$

Marleau & Cumming 2012 (in prep.)

Lagrange et al. (2011)

• Upper mass from $RV \rightarrow minimum S_i$

• Traditional CA too cold by $\Delta S = 1.5$

Marleau & Cumming 2012 (in prep.)

Lagrange et al. (2011)

- Upper mass from $RV \rightarrow minimum S_i$
- Traditional CA too cold by $\Delta S = 1.5$

Marleau & Cumming 2012 (in prep.)

Lagrange et al. (2011)

- Upper mass from $RV \rightarrow minimum S_i$
- Traditional CA too cold by $\Delta S = 1.5$ (but more realistic shock \rightarrow ok?)
- Assume $dN/dM \rightarrow \text{posterior}$ on S_i

Marleau & Cumming 2012 (in prep.)

Lagrange et al. (2011)

- Upper mass from $RV \rightarrow minimum S_i$
- Traditional CA too cold by $\Delta S = 1.5$ (but more realistic shock \rightarrow ok?)
- Assume $dN/dM \rightarrow \text{posterior}$ on S_i

Marleau & Cumming 2012 (in prep.)

Applications

Complication: Deuterium burning

Add deuterium burning ($M \gtrsim 13 M_J$):

$$L_{\rm bol} = -\frac{dS}{dt} \int T \, dm + L_{\rm D}$$

- Cooling slowed down
- Gives late-time D flashes
- Can realistically be formed?

Marleau & Cumming 2012 (in prep.)

Applications

Complication: Deuterium burning

Add deuterium burning ($M \gtrsim 13 M_J$):

$$L_{\rm bol} = -\frac{dS}{dt} \int T \, dm + L_{\rm D}$$

- Cooling slowed down
- Gives late-time D flashes
- Can realistically be formed?
- → Observational consequences
- Detectable by D in spectrum?

Marleau & Cumming 2012 (in prep.)

Applications

Complication: Deuterium burning

Add deuterium burning ($M \gtrsim 13 M_J$):

$$L_{\rm bol} = -\frac{dS}{dt} \int T \, dm + L_{\rm D}$$

- Cooling slowed down
- Gives late-time D flashes
- Can realistically be formed?
- \rightarrow Observational consequences
 - Detectable by D in spectrum?

Marleau & Cumming 2012 (in prep.)

Overview

Motivation

- Direct detection surveys
- Uncertainty in post-formation conditions

2) Inferring M and S_i from L and age

- Cooling models
- Applications

3 Conclusion

• Proper interpretation of direct detections \rightarrow M possibly \gg M $_{\rm hot\ start}$

Key point

- Other M information \rightarrow constrain hot-/coldness of start
- ightarrow Statistically compare with formation models (population synthesis)

• Proper interpretation of direct detections \rightarrow M possibly \gg M $_{\rm hot\ start}$

Key point

- Other M information \rightarrow constrain hot-/coldness of start
- $\rightarrow\,$ Statistically compare with formation models (population synthesis)
 - Application to HR 8799 system and β Pic: their $S_i > 9.5$
- ightarrow Need to tweak core accretion to explain eta Pic

• Proper interpretation of direct detections \rightarrow M possibly \gg M $_{\rm hot\ start}$

Key point

- Other M information \rightarrow constrain hot-/coldness of start
- \rightarrow Statistically compare with formation models (population synthesis)
 - Application to HR 8799 system and β Pic: their $S_i > 9.5$
- $\rightarrow\,$ Need to tweak core accretion to explain $\beta\,$ Pic
 - Exciting future as close-in planets start being detected

• Proper interpretation of direct detections \rightarrow M possibly \gg M $_{\rm hot\ start}$

Key point

- Other M information \rightarrow constrain hot-/coldness of start
- \rightarrow Statistically compare with formation models (population synthesis)
 - Application to HR 8799 system and β Pic: their $S_i > 9.5$
- ightarrow Need to tweak core accretion to explain eta Pic
 - Exciting future as close-in planets start being detected

• Proper interpretation of direct detections \rightarrow M possibly \gg M $_{\rm hot\ start}$

Key point

Given L at t, can calculate curve of allowed $M-S_i$

- Other M information \rightarrow constrain hot-/coldness of start
- $\rightarrow\,$ Statistically compare with formation models (population synthesis)
 - Application to HR 8799 system and β Pic: their $S_i > 9.5$
- $\rightarrow\,$ Need to tweak core accretion to explain $\beta\,$ Pic
 - Exciting future as close-in planets start being detected

Marleau & Cumming (2012) soon on arXiv!

\star Thank you for your attention! \star

• Proper interpretation of direct detections \rightarrow *M* possibly \gg *M*_{hot start}

Key point

Given L at t, can calculate curve of allowed $M-S_i$

- Other M information \rightarrow constrain hot-/coldness of start
- \rightarrow Statistically compare with formation models (population synthesis)
 - Application to HR 8799 system and β Pic: their $S_i > 9.5$
- $\rightarrow\,$ Need to tweak core accretion to explain $\beta\,$ Pic
 - Exciting future as close-in planets start being detected

Marleau & Cumming (2012) soon on arXiv!