Recent developments in planet migration theory
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About 800 exoplanets to date... and a fascinating diversity
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— Can we understand the statistical properties of the exoplanets?
— How to explain the hot, warm and cold Jupiters?
— Why is our Solar System different? ....



Formation and evolution of planetary systems

Key ingredients and main issues
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planet formation

. where? timescale?

. how to form km-sized
planetesimals?

. critical mass to form
a gas giant planet?
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Confronting theory and observations

Need to slow down the migration of forming protoplanets

OBSERVATIONS
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Confronting theory and observations

Need to slow down the migration of forming protoplanets

OBSERVATIONS POPULATION SYNTHESIS
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Migration of protoplanets

(typically a few Earth masses)

Recent reviews: Kley & Nelson (2012), Baruteau & Masset (2012)

Torque exerted by the disc on a planet:

1. Differential Lindblad torque
(angular momentum carried away by
spiral density waves)

— drives migration inwards
Ward 1997, Tanaka et al. 2002

2. Corotation torque

__ (exchange of angular momentum with the
\ 7 4 planet's horseshoe region) — driven by

\/ " advection-diffusion of potential vorticity

e e, T 7 within this region

— drives migration inwards or_oufwards

Disc density perturbed by a 10 Earth-mass planet

Ward 1991, Masset 2001

Opt. thin / radiatively efficient disc parts: |corotation torque| < |Lindblad torque|



Slowing down protoplanetary migration

O Additional corotation torque in opt. thick disc parts
(dugfio advection-diffusion of gas entropy within the horseshoe region)

— may slow down, stall, or even reverse migration

Baruteau & Masset (2008), Paardekooper &
Papaloizou (2008), Kley & Crida (2008) ...




Slowing down protoplanetary migration

O Additional corotation torque in opt. thick disc parts
(dugfio advection-diffusion of gas entropy within the horseshoe region)

— may slow down, stall, or even reverse migration

Baruteau & Masset (2008), Paardekooper &
Papaloizou (2008), Kley & Crida (2008) ...

O Semi-analytic estimates of the migration speed for
models of planet population synthesis <> observations

Masset & Casoli (2010), Paardekooper, Baruteau & Kley (2011)
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A key question about the corotation torque

The corotation torque requires
viscous and thermal diffusion
acting over the horseshoe region

Its radial extent is a small fraction
of the disc's pressure scale-height
(typical size of turbulent eddies)

— how does the corotation torque
behave in turbulent disc models?




Protoplanetary migration in turbulent discs

Hydro. turbulence induced by

Laminar viscous disc stochastic forcing (2D)

— Time-averaged Lindblad and corotation torques agree well
with predictions of 'equivalent’ viscous disc models

Baruteau & Lin (2010)
Pierens, Baruteau & Hersant, accepted — poster #66 by A. Pierens



Protoplanetary migration in turbulent discs

MHD turbulence driven by the
Magneto-Rotational Instability

(3D unstratified isothermal disc model, with
non-ideal MHD, and mean toroidal B field)

Uribe, Klahr, Flock & Henning (2011)
Baruteau, Fromang, Nelson & Masset (2011)

— Lindblad torque basically unchanged

— Still existence of horseshoe dynamics
with MHD turbulence

— Additional corotation torque in the
presence of a mean toroidal magnetic field




Protoplanetary migration in turbulent discs

Laminar disc model with a weak toroidal B field
(2D isothermal, viscosity, resistivity)

Guilet, Baruteau & Papaloizou (subm.)

— Additional corotation torque confirmed

— Sign depends on the local density and
temperature gradients. Usually positive:
new way to slow down or reverse
migration!

— Amplitude does not depend on any
disc gradients. Sensitive to the local
viscosity, resistivity, and magnetic field




Take-away messages

0 The corotation torque appears to be an efficient
and robust mechanism to slow down / reverse the
migration of low-eccentricity protoplanets:

— additional 'entropy-related’ corotation torque in
optically thick inner disc parts

— new MHD corotation torque
But still a lot to be done!

o It may help reduce the discrepancies between
observations and theoretical models

o Although planet migration is important (and
inevitable), it is certainly not the whole story: star-
planet & planet-planet interactions are also needed!
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