A limit on eccentricity growth through planet-disc interactions

Alex Dunhill with Richard Alexander \& Phil Armitage
\%

Motivation

* Exoplanets observed with full range of eccentricities from 0 to ~ 1.
* Formation models agree on a circular disc as the origin of planets.

Scattering
(Jurić \& Tremaine, 2008)

* Parts of distribution well explained.

Tidal circularisation ${ }^{\text {M }}$ (Rasio et al. 1996)

Previous studies

* Bitsch \& Kley (2010) looked at low mass eccentric planets in 3D discs - found e decay.
* Papaloizou et al. (2001) and D’Angelo et al. (2006) both explored planet mass.
* Both found eccentricity growth.

* But in 2D, grid hydro, high surface density discs.

Method

* High resolution (10^{7} particle) 3D SPH simulations using Gadget-2.
* Directly calculates gravity for planet and star.
* Locally isothermal equation of state.
* High mass planet, varied surface density profiles.
* Explicit Navier-Stokes viscosity ($\alpha=10^{-2}$).

Simulation results

* Run 7 models.

* Eccentricity only grows for $\Sigma>10^{3}$.

Planet mass vs. surface density

* Combining results with previous studies yields:

$$
\begin{array}{ll}
\\
3
\end{array}
$$

Planet mass vs. surface density

* Combining results with previous studies yields:

Growth timescales

* Planets in gaps accrete:

* Growth timescale for giant planet in a $\sum \sim 10^{2-3} \mathrm{~g} / \mathrm{cm}^{2}$ disc (Lubow et al., 1999; D’ Angelo et al., 2002):

$$
\tau_{\text {accrete }} \lesssim 10^{4-5} t_{d y n}
$$

* Similar to timescale for eccentricity growth for a Jupiter (D'Angelo et al., 2006).

Growth timescales

* P

* Similar to timescale for eccentricity growth for a Jupiter (D'Angelo et al., 2006).

Growth timescales

* Similar to timescale for eccentricity growth for a Jupiter (D’Angelo et al., 2006).

Conclusions

* No e growth for canonical disc parameters.
* For high mass planets, need high surface density in disc to grow eccentricity.
* For low mass planets, $\tau_{\text {accrete }} \sim \tau_{e c c}$, so quickly move outside region of allowed eccentricity growth.

We conclude that this is not an efficient process for growing planetary eccentricities: Some other mechanism!

Dunhill, Alexander \& Armitage 2012 (submitted)

