A limit on eccentricity growth through planet-disc interactions

with Richard Alexander & Phil Armitage

Motivation

* Exoplanets observed with full range of eccentricities from 0 to ~1.

- * Formation models agree on a circular disc as the origin of planets.
 Scattering
- * Parts of distribution well explained.

Scattering (Jurić & Tremaine, 2008)

Previous studies

- # Bitsch & Kley (2010) looked at low mass eccentric planets in 3D discs - found e decay.
- * Papaloizou et al. (2001) and D'Angelo et al. (2006) both explored planet mass.
- * Both found eccentricity growth.

Method

High resolution (10⁷ particle) 3D SPH simulations using GADGET-2.

* Directly calculates gravity for planet and star.

* Locally isothermal equation of state.

* High mass planet, varied surface density profiles.

* Explicit Navier-Stokes viscosity ($\alpha = 10^{-2}$).

Planet mass vs. surface density

* Combining results with previous studies yields:

Planet mass vs. surface density

* Combining results with previous studies yields:

• Our simulations

△ Papaloizou et al (2001)

 \square D'Angelo et al (2006)

Growth timescales

* Planets in gaps accrete:

* Growth timescale for giant planet in a Σ ~10²⁻³ g/cm² disc (Lubow et al., 1999; D' Angelo et al., 2002):

 $au_{accrete} \lesssim 10^{4-5} t_{dyn}$

Similar to timescale for eccentricity growth for a Jupiter (D'Angelo et al., 2006).

Growth timescales

Growth timescales

Conclusions

* No e growth for canonical disc parameters.

* For high mass planets, need high surface density in disc to grow eccentricity.

* For low mass planets, $\tau_{accrete} \sim \tau_{ecc}$, so quickly move outside region of allowed eccentricity growth.

We conclude that this is <u>not</u> an efficient process for growing planetary eccentricities: Some other mechanism!

Dunhill, Alexander & Armitage 2012 (submitted)