Stability of prograde and retrograde planets within binary systems

Helena Morais

Universidade de Aveiro

M.H.M. Morais \& C.A. Giuppone (2012), Stability of prograde \& retrograde planets in circular binary systems, MNRAS 424, 52-64

CR3BP: massless planet within circular binary system

PROGRADE

RETROGRADE

Terms in disturbing function are

$$
e^{j_{3}} \cos \left(j_{1} \lambda+j_{2} \lambda^{\prime}+j_{3} \varpi\right)
$$

with

$$
j_{1}+j_{2}+j_{3}=0
$$

If orbital frequencies are commensurable $\frac{n^{\prime}}{n}=\frac{p}{q}$

$$
\begin{array}{ll}
\text { Then since } & \dot{\lambda}^{\prime}=n^{\prime} \\
& \dot{\lambda}= \pm n \\
& \dot{\varpi} \ll n
\end{array}
$$

The resonant (slow) terms in the disturbing function are

$$
e^{p \mp q} \cos \left(p \lambda \mp q \lambda^{\prime}-(p \mp q) \varpi\right)
$$

PROGRADE p / q resonance is of order $\mathrm{p}-\mathrm{q}$
RETROGRADE p / q resonance is of order $\mathrm{p}+\mathrm{q}$

PROGRADE Circular Restricted 3 Body Problem Simulations for $10^{\wedge} 4$ binary periods

$$
\mu=\frac{m_{2}}{m_{0}+m_{2}}
$$

c) Final configuration, prograde orbits

ZVC criterion is necessary but not sufficient condition for instability. Instability is due to MMRs...
a) Megno, prograde orbits

$$
\alpha \approx 0.4
$$

4/1 MMR

$\lambda-4 \lambda^{\prime}+3 \varpi$

Megno, prograde orbits (zoom)

$\alpha \approx 0.5$

3/1 MMR

$\lambda-3 \lambda^{\prime}+2 \varpi$

Megno, prograde orbits (zoom)

Megno, prograde orbits (zoom)

RETROGRADE Circular Restricted 3 Body Problem Simulations for $10^{\wedge} 4$ binary periods

$$
\mu=\frac{m_{2}}{m_{0}+m_{2}}
$$

c) Final configuration, regrotrade orbits

ZVC criterion is necessary but not sufficient condition for instabilty. Instability is due to MMRs...
a) Megno, retrograde orbits

$$
\alpha \approx 0.6
$$

2/-1 MMR
$\lambda+2 \lambda^{\prime}-3 \varpi$

5/-3 MMR

$3 \lambda+5 \lambda^{\prime}-8 \varpi$

3/-2 MMR

$2 \lambda+3 \lambda^{\prime}-5 \varpi$

Stability of prograde and retrograde planets within circular binary systems

- Retrograde planets are stable closer to the secondary than prograde planets.
- ZVC criterion is necessary but not sufficient condition for instability.
- Instability is due to MMRs overlap (chaos) or due to effect of a single MMR...
- Differences are due to topology of prograde versus retrograde MMRs: prograde p / q MMR is of order $p-q$ while retrograde p / q MMR is of order $p+q$

