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Abstract. The treatment of NLTE multilevel radiative transfer
in the presence of sub- and supersonic velocity fields of unified
model atmospheres is discussed. The solution of the line transfer
in the comoving frame is obtained via Accelerated A-Iteration
where we apply the new Approximate A-Operator developed
by Puls (1991). This method yields excellent convergence also
in cases of very complex model atoms, where many strong,
intermediate and weak lines have to be treated simultaneously
and where other operators failed to achieve convergence.

This algorithm is used to investigate the contamination of
photospheric hydrogen and helium absorption lines by emis-
sion of the stellar wind. It is found that in the case of early
O-supergiants close to the Eddington-limit wind contamination
is significant and leads to systematic errors in the determination
of stellar parameters, if purely hydrostatic, plane parallel NLTE
models are used for the spectral analysis.

Additionally, a specific behavior of the mean line intensity,
namely a local minimum around the sonic point, is discussed
by means of a second order Sobolev Approximation accounting
for curvature terms in the velocity field.

Key words: stars: atmospheres — line formation — stars: early
type — stars: emission lines — stars: mass loss

1. Introduction

The most luminous stars in galaxies are very massive super-
giants of spectral type O, B, A. With the forthcoming new gen-
eration of very large ground-based telescopes and the corrected
Hubble Space Telescope it will be possible to study the spectra
of such objects quantitatively in galaxies far beyond the Lo-
cal Group. In this way, chemical abundances and, even more
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important, distances of galaxies can be determined by new in-
dependent methods (Kudritzki et al. 1992).

Unfortunately, the task of quantitative spectroscopy of very
massive, hot supergiants is not an easy one. Severe departures
from LTE and hydrodynamic effects inferred by the radiation
driven winds of these objects affect the determination of stellar
parameters and abundances. Consequently, a considerable effort
is needed to model the atmospheres of such stars (for a recent
review, see Kudritzki & Hummer 1990).

One possible way for the quantitative spectroscopy of blue,
luminous supergiants is the concept of “Unified model atmo-
spheres” introduced by Gabler et al. (1989, Paper I). This new
type of NLTE model atmospheres includes the spherical exten-
sion of supergiant atmospheres and their stellar winds in combi-
nation with a smooth transition into the subsonic photospheres.
In two recent papers (Gabler et al. 1991 (Paper II), Gabler et al.
1992 (Paper III)) it was demonstrated that unified models pro-
vide a much better description of the EUV radiation field of hot
stars than the classical plane parallel, hydrostatic NLTE models.
In this paper we deal with the line transfer for the calculation of
synthetic spectra.

The concept of unified model atmospheres, as introduced in
Paper I, combines three subsequent steps. First, density struc-
ture and velocity field are calculated from the hydrodynamic
equations of radiation driven winds in the entire sub- and super-
sonic atmosphere. Second, NLTE opacities and emissivities of
hydrogen and helium are used in the energy equation of radia-
tive equilibrium to calculate the temperature stratification in the
entire atmosphere. In this step, only the most important bound-
free and free-free transitions are included and the line transfer
is treated in the Sobolev approximation. Therefore, a third step
is needed for the calculation of synthetic spectra, in which very
detailed and complex model atoms are taken into account and
an accurate solution of the multiline NLTE radiative transfer
problem is required.

This paper concentrates on the third step and investigates
several different methods for the calculation of synthetic line
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spectra emitted by the sub- and supersonic regions of unified
model atmospheres. In Sect. 2 we describe the general require-
ments for the line transfer in unified models and the numeri-
cal difficulties that have been encountered in the past. We an-
alyze these difficulties and discuss several numerical methods
to achieve convergence for the iterative line transfer problem.
The best algorithm is selected to converge exact solutions of
the radiation field in the entire sub- and supersonic atmosphere.
In Sect. 3 we use this exact solution to describe the properties
of the mean line intensity around the sonic point — the most
critical region for line radiation transfer — and compare it with
commonly used approximative methods. In Sect. 4 we apply
our exact method to investigate the problem of the contamina-
tion of photospheric absorption line profiles by emission of the
surrounding stellar wind and discuss the consequence of this
effect for the determination of stellar parameters.

2. Improving the convergence of line formation

As described in Paper I, spectral lines of mass losing luminous
stars are formed in both atmospheric regions, the subsonic pho-
tosphere and the supersonic stellar wind. Therefore, a formal-
ism is needed that describes the line radiation transfer in both
regions with the same accuracy. After the paper by Mihalas et
al. (1975) it has become clear that the best treatment (in case of
a monotonic velocity field) is to transform the problem into the
comoving frame (CMF) of the wind, to solve the complete rate
and transfer equations in this frame and then to transform back
into the observer’s frame. An alternative, very common method
to solve the line transfer in expanding atmospheres is the so
called Sobolev Approximation (Sobolev 1957). This approach
saves an enormous amount of computer time, but, as we will
show in Sect. 3, it is not sufficient for most of our problems.

In our approach, the multi line NLTE problem is treated it-
eratively by applying the method of the Accelerated Lambda
Iteration (ALI) by Werner & Husfeld (1985) which uses a per-
turbation approach (Cannon 1973) to avoid the extremly slow
convergence of the Lambda Iteration. In the ordinary Lambda
Iteration the mean line intensity is the quantity which couples
line transfer and rate equations and is defined as an integral over
frequency v

7=/% J,dv = A[SL] ¢))

with J, the mean intensity and ¢, the normalized profile
function!. Note that we define A to operate on the line source
function only and include the continuum source function in an
(approximately) constant offset (cf. Eq. (5). The ALI method
replaces J in the n-th iteration by

T = A ST+ (ALSPT = AF - 57, )

The upper indices denote the iteration cycle and A* is the so
called Approximate Lambda Operator (ALO) which has to be

! Here and in following we assume complete redistribution
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local in this formulation. Hence, the approximate solution for
J" and ST can be found directly and just the “perturbation”
term (A[Sz_l] —A* SZ_I) has to be iterated.

For this purpose Eq. (2) is inserted into the radiative rates,
which are redefined subsequently?. Together with the defini-
tion of a local ALO A* the usual form to redefine the rates are
effective radiative rates which remove the contribution of the
local radiation field at optically thick frequencies from the rate
equations. The effective rates in the n-th iteration are then given
by

—etf * n—
R = Byj;J = Bij(A— AH[SF
RS = Aj(1— A+ BT 3)

Aji(1 = A"+ Bji(A — AMH[ST™1

where the local contribution of the line source function, i.e.
A* S, has been eliminated by inserting Sz, = n;A;;/(n;B;; —
n;B;;) into the original rates.

With view on Eq. (2) one sees immediately that the solution
J = A[Sy]is found once the iteration has achieved convergence,
i.e. 57 —S7~! — 0. The solution is independent from the value
of A*. However, the critical point of the ALI is to achieve con-
vergence at all, i.e. to find the appropriate ALO A*. In paper I,
the “core fraction operator” introduced by Hamann (1985) was
used as ALO for the CMF transfer with satisfactory numer-
ical success. But as the complexity of the model atoms was
increased (in particular, by introducing a detailed He1 model
atom) so that very strong, intermediate and a large number of
weak lines had to be treated simultaneously, severe convergence
problems were encountered in the region around the sonic point.
We were therefore forced to investigate this problem and to pro-
vide anew solution. This procedure is described in the following
subsections.

The examples given in this and the following section
are calculated for a unified model with the parameters Tyg=
42000 K, log g= 3.5, R, /Ry = 18, Ng./Ng = 0.1 and M=
9.9 -10°M¢, /yr. However, the statements given in this section
are tested for mass-loss rates from 1 to 30 - 1075 M, /yr.

2.1. A criterion for convergence

The reason for success and failure of an ALO was examined by
Puls & Herrero (1988). They proved the suggestion by Olson
et al. (1986), that the best choice for a local ALO A* is the
diagonal of the A-matrix,

A" = diag(A), “4)
where é’ represents the linear part of the complete A operator,
i.e. the part which acts on the line source function only. The

In principle, we may define any new radiative rates R;; and R},
(used alternatively to the common quantities R;;, R;;), as long as the
corresponding net rates are identical, i.e. n;R;; — n;Rj; = niRij —

J
’anji-
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discretized form of the complete line transfer equation is an
affine ND x ND matrix equation (ND: number of depth points),

Z=§+é/'§1; (5)

where the offset @ is due to the inner boundary condition and
the opacity and emissivity of overlapping continua and A’ repre-
sents the actual transfer of the line source function. The vectors
Jand S 1, contain the mean line intensity and the line source
function, respectively, at each depth point.

Puls & Herrero showed that the use of the ALO A* =
diag(A") will always lead to convergence of the line transfer
problem. However, in case of the CMF line transfer the determi-
nation of the exact diagonal requires the solution of the transport
equations to be peformed ND times which is much too time-
consuming and thus an approximation is necessary. For similar
reasons, Puls & Herrero estimated the limits in which the exact
diagonal can be approximated without producing divergence.
They considered the pure line transfer (fixed continuum opaci-
ties) and approximated the rate equations, S;, = F[J], by
SLimV;+&-J;  (i=1..ND). ©6)
Then the limits in which a local ALO A* yields convergence
are

1-—¢&
0< Al <AL+ 2;‘
In the case that radiative rates dominate, &; is close to unity so
that the range where A/, can be overestimated is very small.
If Aj; is underestimated, convergence is guaranteed, but the
smaller the Aj;, the slower the rate of convergence, ending up
in ordinary A-iteration for A}; = 0.
It should be mentioned that Eq. (6) which was used by Puls
& Herrero (1988) to estimate the limits given in relation (7) is
not valid in general. For the full multiline NLTE problem with
changing continuum opacities, as is the case in realistic models,
the line source function Sz, depends nonlinearly on the radi-
ation field J. However, when the occupation numbers of the
lower levels have stabilized, the linearity given in Eq. (6) holds
approximately. Therefore we will compare and discuss differ-
ent ALOs with respect to relation (7). Generally, a divergent
behaviour can be expected for a region where

1. the ALO overestimates diag(A') and
2. the rates are dominated by radiative line transitions.

(i = 1..ND). )

2.2. Convergence problems with the Core Fraction Operator

The Core Fraction Operator was developed by Hamann (1985)
and successfully applied for line transfer problems in WR-stars
(for a recent review, see Hamann et al. 1991). However, for the
unified models of O stars we encountered the difficulties de-
scribed above since radiative rates dominate from the subsonic
region on outwards.

Hamann’s operator removes the physical reason for the fail-
ure of the A-iteration, namely the photons which are trapped
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in the optically thick line core. In order to accomplish this, he
introduces a parameter 7y (of order unity) which separates the
optically thick core from the optically thin wings. Thus, a pho-
ton is said to belong to the line core if the optical depth 7, in
any direction exceedes the value of ~.

Further, core saturation is assumed (Rybicki 1971), thus
setting A}, = 1 for the core frequencies and A} = 0 for the
wings. Frequency integration leads to the core fraction f. at
every depth point:

Vblue
A== / oy ®)

Vred

where Vpje and v,..q are the borders between line core and
wings (depending on v(r) and r) and calculated in a Sobolev-
type solution as a function of +.

With the expansion of the atomic model from 5/5/10 hydro-
genic NLTE levels for the ions H 1/He 1/He 11 to 10/28/10 levels,
and a realistic He I-structure, the core fraction operator failed to
achieve convergence. The cause for this failure is demonstrated
in Fig. 1, 2 and 3. While it is possible to choose an adequate
value of v so that A* fulfills relation (7) for all strong and in-
termediate lines (Fig. 1 and 2), this is no longer possible for
very weak lines (Fig. 3) and the crude overestimate of the exact
diagonal in an area where radiative rates dominate leads to diver-
gence. A drastic increase of ¥ would remove this divergence but
then the well known problems of the A-iteration would occur.

The same behaviour can be observed in some figures pub-
lished by Hamann (1985, see his Sect. 4: Fig. 3, 4 and 6) where
the convergence rates are shown for an intermediate, a strong
and a very strong line (ko = 10,103 and 10° ) and different
values of ~. The strongest line converges slowly, but for any
given value of v, since f.(7y) underestimates diag(Agyg) in all
cases (compare Fig. 1). The intermediate line converges faster,
because f. is a better approximation to the exact diagonal, but
diverges suddenly when ~y falls below a critical value and f,
consequently overestimates diag(A¢yy) (compare Fig. 2).

There are several reasons for the mismatch between f. and
diag(A¢yp). First the discontinuous distinction between line
core (A} = 1) and line wing (A} = 0) leads to a steeper gra-
dient of f. compared to diag(A¢yg). Further, the Sobolev Ap-
proximation used to calculate the integration boundaries, Vpjye
and v,.q4, breaks down around the sonic point. And finally, the
continuum opacity is not taken into account, therefore f. is not
decreasing in the inner photosphere as the exact diagonal of
Afyr does.

The problems with the core fraction operator f. described
above require the construction of an alternative ALO which
satisfies the relation (7). Several possibilities are discussed in
the following subsections.

2.3. Construction of an ALO for the CMF transport using the
Sobolev Approximation

In this subsection we try to approximate diag(Agyg) by the
“diagonal” of the numerically very cheap Sobolev line transfer.
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Fig. 1. Case of a strong line (Lyman «): Core fraction f. (dashed lines)
vs. depth point index for v = 2,4 and 10. For comparison, the exact
diagonal of the CMF transport operator is shown (solid). The thermal
point of H (see Sect. 3) is at depth point 22, the depth point index
decreases with the radius
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Fig. 2. Line of intermediate strength (H+): Core fraction f. (dashed
lines) and exact CMF diagonal (solid). Rest as Fig. 1
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Fig. 3. Case of a weak line (He 1 4471): Core fraction f. (dashed lines)
and exact CMF diagonal (solid); The thermal point of helium is here
at depth point 23. Rest as Fig. 1
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The usual Sobolev Approximation (SOB) yields for the mean
line intensity

Jsos = Bele + (1 — B)SE )

(B and (. are the usual local escape probabilities given in
Eq. (25) and I, is the incident continuum intensity calculated
from the emergent continuum flux at the line frequency; see for
instance Paper I or Puls 1991). By comparison with Eq. (5), we
may define the “diagonal” of the Sobolev line transfer as
diag(Asop) =1 — 3. 10)
From Fig. 4, 5 and 6 we find that (1 — ) overestimates
diag(Agyp) in all cases of line strengths and therefore cannot
be used as an ALO for CMF line transfer 3.

Almost the same behaviour is found using the improved
Sobolev Approximation with continuum (SAC) developed by
Hummer & Rybicki (1985). Following the notation of Puls &
Hummer (1988), the mean line intensity in this case is given by
Jsac = Belc +USc +(1 — B —U)St. 1D
B.I. takes into account the actual intensity irradiating the res-
onance zone, S¢ is the continuum source function and U gives
the contribution of the local continuum inside the resonance
zone. Hence, the “diagonal” of the Sobolev line transfer with
continuum, i.e. the local contribution of Sy, to Jsac, is
diag(Aspc) =1 -6 ~T . (12)
Although the run of (1 — 3 —TU) is now corrected concerning the
contribution of the continuum opacity, the diagonal of the CMF
transfer, diag(Agyp), is still overestimated around the sonic
point (Figs. 4 to 6, cf. also Puls 1991, Figs. 1 and 2). Therefore,
also this operator is useless as an ALO for the CMF transport.

The difference between the diagonals of Agyy and Agyg
or Agac is not only caused by the breakdown of the Sobolev
Approximation around the sonic point. In addition, (1 — 3) and
(1 — B — U) contain the contributions of the local line source
function integrated over the whole resonance zone, whereas
diag(Aqyp) is the contribution of only one depth point which
decreases as the number of depth points is increased.

2.4. The CMF-Diagonal Operator

The best local ALO for CMF transport in unified atmospheres
we found is the approximated diagonal constructed by Puls
(1991), which we will call CMF-Diagonal Operator. The ad-
vantage of this operator is that — in all considered cases — it never
overestimates the exact diagonal (see Figs. 4 to 6, dashed lines
with crosses). Moreover, it is a very good approximation to the

3 The use of A* = 1 — f to accelerate the line formation iteration

within the Sobolev Approximation leads to good convergence rates and
is in combination with the effective form of the rate equation (see Sect.
2.5) identical to the well known g3, (. iteration developed by Klein &
Castor (1978) (cf. Puls 1991).
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Fig. 4. Case of a strong line (Lyman «, as Fig. 1): The “diago-
nal” of the Sobolev transfer, (1 — ), (dashed), of the SAC transfer,
(1 — 8 — U), (dashed dotted) and the approximated CMF-Diagonal
Operator (dashed with crosses) compared to the exact CMF diagonal
(solid)
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050 ... s e e,
0 10 20 30 40
depth points

Fig. 5. Line of intermediate strength (Hv): (1 — 3) dashed, (1 — 8 —TU)
dashed dotted and approximated CMF-Diagonal Operator (dashed with
crosses) compared to the exact CMF diagonal (solid)
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0.0

-05L. ! . ! L
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Fig. 6. Case of a weak line (He1 4471): (1 — 3) dashed, (1 — 8 — U)
dashed dotted and approximated CMF-Diagonal Operator (dashed with
crosses) compared to the exact CMF diagonal (solid)
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exact diagonal and can be calculated with a reasonable amount
of computer time. This ALO leads to an extreme fast conver-
gence for the line iteration problem, even when more than 600
line transitions are included (see Fig. 7).

The calculation of the CMF-Diagonal Operator has to be
done in parallel with the CMF transport. We will give a some-
what different description of this calculation compared to Puls
(1991) in order to clarify which terms are neglected when the
exact diagonal is approximated. The transport equations for the
Feautrier itensities u,, and v,, in the CMF are

ou, 1 ,dv »v| 1 Ov,
R (R E otk R T
ov, vy [ ,dv 2v| 1 Ou,
G gl e s an

(cf. Mihalas 1978, pp 499). After discretization (ND depth
points labelld with indices 7, [ and NF' frequency points labelled
with index k) and reformulation these equations yield

I+1
E (Tedi ki = Upi uh—10 = VA Uy + VBri Vg_1 141
i=i—1

+ (1 = pr)Sci + priSm (15)

Upi—y = Gy (ukr = uki-0) + Hyy_y vy (16)
The indices (I + %) correspond to quantities defined on depth
point interstices. ;k is a tridiagonal matrix which additionally
has diagonal dominance, a fact which simplifies the solution al-
gorithm. The definition of all matrix elements and coefficients
of Egs. (15) and (16) as well as the solution algorithm and the
boundary conditions are given and discussed in Mihalas (1978,
pp 505). In monotonically expanding atmospheres the line radi-
ation field is only influenced by continuum radiation of higher
frequencies (if no line overlap present), thus the system of equa-
tions (15) and (16) can be solved from the blue side, with de-
creasing frequencies for increasing index k£ and with the blue
wing boundary conditions u; = us and v; = v (the index C
denotes continuum intensities).

If the continuum opacities are kept fixed, the CMF trans-
port equation has the quasi affine form given in Eq. (5) (in-
sert Eq. (16) for (k-1) into (15) and integrate the resulting wu,,
weighted with ¢,, over frequency v and angle cosine ). The
influence of the continuum, i.e. S¢ and the boundary conditions
for w; and vy, passes linearly through the system of equations
(15) and (16) for k = 1...NF and is responsible for the displace-
ment vector ®. However, as the factors py; can change slightly
during the line iteration, ® is only approximately constant.

Keeping in mind that we want to find the diagonal of the
linear contribution to A, i.e. diag(A’) (see Eq. (5)), we define a
corresponding primed Feautrier intensity ul, by

1 poo
AN[SL] =:7’=:/0/0 ul, p, dvdp (17)
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max(l dn/n 1)

25

iteration

Fig. 7. Convergence of line transfer for the CMF-Diagonal Operator:
The maximum absolute values of the relative corrections for the occu-
pation numbers are shown
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0.01

Fig. 8. Case of a strong line (Lyman «): The mean line intensity J in
cgs vs. continuum optical depth 7. is shown for three cases, namely
CMF (solid), SAC (dashed dotted) and SOB (dashed)
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Fig. 9. Line of intermediate strength (Hy): J in cgs vs. 7. for CMF
(solid), SAC _(dashed dotted) and SOB (dashed). The local maximum
of Jsog and Jsac is due to the maximum of dv/dr (Fig. 11)
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and v, analogously where 1 is the cosine of the angle between
the ray and the radius vector. The so-defined ), and v;,, repre-
sent the linear contribution to A and are calculated as uy; and
vg; from Eqgs. (15) and (16) but with the boundary conditions
vy, =v{; =0and S¢,; = 0.

Provided that the coefficients py; remain constant during
the line iteration, it is possible to write u},; and v}, in terms of
the line source function Sy, ;:

ugl=:ngl‘SLj and v;li% =:ngczi%'SLj(18)
J J

(the indices j,[ account for depth points, the index & for fre-
quency points). The coefficients f3, are the fractional contribu-
tions of Sy,; to u;,; which are responsible for the linear part of
the line radiation transport. The diagonal elements of A’ can be
constructed from these coefficients, taking into consideration
the frequency- and angle-integration. The angle-integration is
replaced by an integration over the impact parameter p (since
pz-geometry is used), thus we find

A=Ay =) wip > wkprfiy (19)
Jjp k

where w;;, and wy, are integration weights for impact parameter
p and comoving frame frequency v.

The exact CMF diagonal can be found once the diagonal co-
efficients f}, have been determined. Since the influence of Sy,
passes linearly through Egs. (15) and (16), one can calculate the
coefficients f7, in the same way as u},;, however, replacing St
by the Kronecker symbol 65, uj,_,; by f,z_“. andv, .., by

2

gi_l .41 together with boundary conditions as for the calcula-
2
tion of the primed Feautrier variables:

J

> (T [Uki fi_1i = VAgi gi_”_%
%

kl

+ VBkigi_lﬁ% + 6yt sz}
Gory = Coy Uil = flaD v Hioy 9y (20)
gi“% = sz+%(fz€z+1 - lel)+Hkl+% gi_”_,_% .

The boundary conditions are

fi,=0  and =0 (j,l=1..ND).

9 141

According to (20) the calculation of the exact diagonal re-
quires the inversion of the ND x ND matrix T, which is equiv-
alent to the complete determination of A’. Thus, we would lose
the advantage of the iteration-scheme compared with the direct
solution of Egs. (15), (16). Since 2;1 is a full matrix, the full
summation in Eq. (20) would also have to be carried out and all
off-diagonal coefficients f._,, (i = 1...ND) would have to be
calculated to obtain the exact coefficients f} ;.

Fortunately, T', and therefore also g;l are almost diagonal,

so it is possible to approximate Egs. (20). Since |(T}, 1)ul >
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I(Tk_l)li| (1 # 1), the off-diagonals f}ci (i # 1) can be ne-
glected and one can approximate contributions to the diagonal
of A by

fho ~ @7 Ul fhon = VAw gy

+

VBii g%, it Pkl]
(21)

Q

! 1 1
Iki-1 sz—% fkl+Hkl—% Je—11-1

Q

gfc“_% _le+% fllcl+Hkl+% 92_1“% .
The diagonal elements (1), ), of the inverse of a tridiagonal
matrix can be calculated quickly with a procedure developed
by Rybicki & Hummer (1990) and the other matrix elements
are given anyway. Summation according to Eq. (19) gives the
CMF-Diagonal Operator.

Two comments should be given here:

1. In contrast to the Sobolev “diagonal”, the CMF diagonal
containes only the contribution of one depth point and there-
fore approaches zero with increasing number of depth points
which can reduce the success of the Accelerated Lambda It-
eration. The other way around, however, the convergence
rate can be enhanced significantly with a lower number of
grid points (cf. Olson et al. 1986).

2. Before the CMF-Diagonal Operator had been developed,
we applied the method of full rates with acceleration term
(Pauldrach & Herrero 1987; Gabler et al. 1989) to overcome
the convergence problems as described above. This tech-
nique avoids the appearence of negative (effective) rates,
the cause of a divergent behavior; however, it results in an
oscillating convergence pattern due to the fact that the ac-
celeration term has to be approximated by the value of the
previous iteration. In contrast, the use of our CMF-Diagonal
Operator no longer causes any problems connected with the
direct use of the effective rates, simply because the differ-
ences (A[S7~'] — A* - S7~") cannot become negative.

3. Line formation through the thermal point

As we will show later, most of the optical H and He profils of
O stars are strongly affected by the region around the thermal
point, i.e. the point where the velocity field reaches vierm, the
thermal velocity of the ion. Unfortunately the radiation transport
in this region is difficult to handle, since important quantities
such as the velocity gradient are changing rapidly. Hence, the
commonly used Sobolev Approximation becomes inapplicabel
as it is based on a constant velocity gradient dv/dr throughout
the whole resonance zone. Nevertheless, an accurate radiation
transfer at the thermal point is crucial for line formation in O
stars since the radiative rates dominate from the subsonic part
on.

In this section we discuss the differences between the (nu-
merically very cheap) pure Sobolev transport (SOB), the im-
proved Sobolev Approach with Continuum (SAC) and the (very
time consuming) CMF transfer and show the consequences on
the calculated profiles. The SOB and SAC transport equations
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Fig. 10. Case of a weak line (He1 4471): J in cgs vs. 7. for CMF
(soEd), SAC (dashed dotted) and SOB (dashed). The local minimum
of Jewmr is explained in the text
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Fig. 11. Velocity field in km/s (solid) and velocity gradient in cgs
multiplied by 107 (dashed dotted) for the same model as in Figs. 1to 13
versus the continuum optical depth at He 1 4471. “vtherm” indicates the
point where the wind reaches the thermal velocity of He, the numbers
“1” and “2” indicate zones with a rapidly changing velocity gradient

are given by Egs. (9) and (11), a reference for the solution of
the CMF transfer can be found in Sect. 2.4. The solution in
the CMF can be regarded as exact in monotonically expanding
atmospheres.

In order to demonstrate the effects on the radiation field,
we calculate the mean line intensity J (which couples radiation
transfer and rate equations) as a result of SOB, SAC and CMF
line transfer, using the occupation numbers from a converged
CMF model. For a strong line all three methods have nearly iden-
tical results (Fig. 8). For intermediate and weak lines (Figs. 9
and 10), the CMF solution shows a local minimum just at the
thermal point, which is not present in the SAC calculations. This
local minimum is more pronounced for weaker lines. The SOB
results differ in a larger region around the thermal point (see
Figs. 9, 10 and 12) mainly because the angular distribution of
the continuum intensity is not considered which is treated more
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accurately in the SAC case (see Hummer & Rybicki 1984; Puls
& Hummer 1987).

The general argument for the failure of the Sobolev trans-
fer is that the concept of a local resonance zone with constant
opacity, emissivity and velocity gradient is not valid in the sub-
thermal region. In consequence one would expect also the SAC
transfer to fail in the complete region with v < Vgpern. How-
ever, deep enough in the atmosphere the escape probabilities
are small (6 ~ (. ~ 0) and the photons are contributed by
local conditions. Consequently we have J =~ S, independent
of the approximation used. This explains why Jsac deviates
from Jcme only in a distinct area around the sonic point. The
same argument can be used to explain why stronger lines are
less affected: The lines are still optically thick at the sonic point
(8 = 0) hence the mean line intensity is identical to the line
source function, i.e. Jsac ~ Jemr =~ Sr.

The local minimum of Jemp around the thermal point is
an effect of the rapid change in the velocity gradient (Fig. 11),
i.e. of the curved velocity field, which leads to an asymmetric
situation for outward and inward directed photons in a sense that
photons propagating from inside towards the thermal point are
absorbed more effectively than photons coming from outside (a
more detailed explanation is given in the Appendix).

The above discussion concerning the accuracy in J by the
different methods is especially important from the point of view
that the quantities determining the occupation numbers are in
principle the net radiative rates:

Zji=1-1J/Sr. (22)
As J and Sy, have similar values, the difference of 7/ Sy, from
unity is much more uncertain than .J itself (Fig. 12). This dif-
ference leads to erroneous occupation numbers as long as the
radiative rates dominate, which is the case for O and Of stars in
the line forming regions.

The effect of this difference in .J on the line source function
St in two independently converged CMF and SAC models is
shown in Fig. 13. Peforming the formal integral in the observers
frame yield emergent flux profiles which differ by up to 15% in
aequivalent width for a weak line (Fig. 14).

Additionally, the errors made in Jgac for weak and inter-
mediate lines also influence the lower and the upper occupation
numbers of strong lines. In consequence the calculated profiles
of strong observeable lines like Ho and He 11 4686 are also af-
fected when SAC transfer is used (Figs. 15 and 16), even though
Jsac being almost correct for those lines. Since similar effects
were found for all our O and Of-star models, we conclude that
the line formation (for optical H and He lines) has to be calcu-
lated in the comoving frame.*

* A mixed treatment, SAC for strong lines and CMF for the remaining

lines, is in principle possible. This can save some amount of computa-
tional time when metal lines are included. For H and He line formation,
however, the number of strong lines which can be treated with SAC
transfer is negligible, so that a general CMF transfer was performed.
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Fig. 12. Net radiative rates Z;; for He1 4471 in case of CMF transfer
(solid), SAC (dashed dotted) and SOB (dashed); same line and model
as Fig. 10
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Fig. 13. Line source function Sz, in cgs for He1 4471 for two models
converged separately by using CMF (solid) and SAC (dashed dotted)
transport
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shifted absorption component is due to the blend with the He 11 4/6 line
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4. Wind contamination of H and He profiles

The calculations in Paper I have already shown that “photo-
spheric” absorption lines such as Hvy are affected by the emission
of the surrounding stellar wind. It was concluded that this could
have consequences for the determination of stellar parameters
from the analysis of photospheric lines using the standard plane
parallel hydrostatic models. A further investigation of this point
was, however, hampered by the convergence problems with the
old “core fraction” CMF line transfer. With our new technique,
the accurate calculation of wind contaminated line profiles is
straight forward.

As a first step, we have therefore studied the case of two
early type supergiants, Melnick 42 and ¢ Puppis. We intend to
demonstrate that the wind contamination effect of Hy is sig-
nificant and will require a complete reanalysis of these objects
by means of unified models. For this purpose, we use the stel-
lar parameters obtained from the standard analysis with plane
parallel hydrostatic models and calculate sequences of unified
models, where the radiative line force multiplier parameters &, o
(see Paper I) are varied so that the same terminal velocities (as
observed) but different mass loss rates are obtained (for details
see also Gabler et al. 1990). In this way the gradual increase
of the wind contamination as function of mass loss rate can be
studied.

We start with the galactic O4f-star ( Puppis. According to
Kudritzki et al. (1983), Bohannan et al. (1986), Voels et al.
(1989) it has an effective temperature of about 42 000 K, a grav-
ity of log g= 3.5, an enhanced helium abundance Ng./Ny of
0.16 to 0.20 and a stellar radius R, = 18Rg. From the radio
flux and the Ho emission the mass loss rate is estimated to be
in the range of 3 to 5 -107%M, /yr (see for instance Kudritzki
et al. 1992). :

In Fig. 17 we show the observed Hry line profile (published
in Bohannan et al. 1990) compared with a sequence of unified
models with different mass loss rates. The effect of wind con-
tamination can be clearly seen as it fills up the absorption profile
with increasing mass loss. Only the model with the unrealisti-
cally low mass loss rate fits the observation since the parameters
T and log g were gained assuming M= 0. To fit the observed
profile with M=3t05-10~%M, /yr would require an enhance-
ment of the gravity by 0.10 to 0.15 dex.

The second example is the O3f/WN-star Melnick 42 in the
LMC. This object was a target in the HST science verification
phase and was therefore studied by Heap et al. (1991). From
the “hydrostatic” analysis of the optical “photospheric” lines
they found Ti.i= 42500 K, log g= 3.5, R/ R = 28 and a nor-
mal helium abundance. From the analysis of the UV-lines they
determined a metal abundance of roughly 1/4 solar, a terminal
velocity of 3000 km/s and M= 4 -10~5 M, /yr. However, they
noted that the value for M was highly uncertain.

Because of this uncertainty, we first used the sequence of
unified models to (roughly) determine the mass loss rate from
the strong Ho and He 11 4686 emission of this object. This is
done in Figs. 18 and 19. We conclude that the mass loss rate
should be in the range of 10 to 20 -10~° M, /yr, much higher
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Fig. 18. Observed and calculated Ha-profile of Melnick 42: The cal-
culated profiles are rotationally broadend with v - sin¢ = 240 km/s.
The adopted stellar parameters are Ty = 42500 K, logg = 3.5,
R/Rg = 28 and Ny./Ng = 0.1, the adopted mass loss rates are
1.0, 3.3, 10, 20, and 30 -10~° Mg, /yr. Observation by Voels using the
ESO 3.6 m telescope and the CASPEC spectrograph. Note the central
emission of the surrounding H 11 region in the line center and several
other emission peaks caused by cosmic events during the long expo-
sures
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than found by Heap et al. Then we calculated Hy and He 11 4542
line profiles to study the effects of wind contamination (Figs. 20
and 21). It is obvious that for the values of M obtained from
Ha and He 11 4686 the contamination effect is severe. In conse-
quence, the stellar parameters obtained by means of hydrostatic
NLTE calculations for the optical hydrogen and helium lines
must be regarded as extremly uncertain.

We conclude that for OB-supergiants with strong mass loss
a complete reanalysis by means of unified models for the de-
termination of stellar parameters will be needed. This work has
now been started and results will be forthcoming soon.

Future improvements are necessary concerning the treat-
ment of line blocking. Test calculations showed that this effect
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can influence the ionization structure and consequently the value
of M concluded from the emission lines.
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Appendix: a 2™ order Sobolev approximation

In general, a 2" order Sobolev theory has to account for the
gradients of the line source function and the opacity and the
curvature of the velocity field (cf. Egs. 9, 23 and 25). In this
Appendix we concentrate on the implications of the curved ve-
locity field which is primarily responsible for the break down
of the first order Sobolev Approximation at the thermal point
(compare Sect. 3).
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The first order Sobolev Approximation (Egs. 9 and 11) is
usually applied to rapidly expanding atmospheres and uses the
concept of a local resonance zone, where a photon with given
observer’s frame frequency vop can interact with line absorp-
tion/emission of the moving medium (Sobolev 1957; for a more
recent description see Rybicki & Hummer 1978). Quantities like
the velocity gradient dv/dr, the line source function Sy, and the
line opacity x” are assumed to be constant over the whole res-
onance zone of a line. The optical thickness of this interaction
zone is then

(% )}

-1
L C 2 v 2 v
- —~ +( - =
X (r)y0 [u dr+( 7 )T]

Ts(7, 1)

N [8(’”“’) 23)
140

where (in p-z geometry) the pair (r, ) is related to (p, 2o) by

rP=p’+22 and p==+/1—(p/2) (24)

xL is the line opacity coefficient, c the speed of light, v the line
frequency and (8(uv) /02|, (zo)) the partial derivative of the

projected velocity for fixed p at point 2y (see Fig. 22a).
The escape probability for photons at radius r is then given
by

1 f1-e
/8(7‘)=§/_1

7s(7, 1)

—7s(T, 1)
du. (25)

The corresponding core escape probability (. is calculated in
the same way but with the lower integration boundary replaced
by pe = 4/1 — (R4«/7)?, the cosine of the angle subtended by
the stellar core with radius R..

In contrast to the common assumption of constant dv/dr,
the velocity gradient varies rapidly around the thermal point (see
Sect. 3 and Fig. 11), which causes the Sobolev Approximation
to become inapplicable. The effect of this velocity curvature on
the line force is discussed in Owocki (1991) and Owocki & Zank
(1991) in terms of a “Radiative Viscosity”. In order to under-
stand the influence of a non-constant 9(pv)/ 0z on the mean line
intensity J, we expand the projected velocity to second order
around zg
(u v) & (uv)

1
(pv)(2) =~ 3 5 (0) 1*(26)

(o)l

(pv)(20) +

with [ = (z — 2zg). The 2™ order term proportional to [? leads to
a variable (optical) thickness of the resonance zone as function
of the observer’s frame frequency vop (compare Figs. 22a and
22b). The frequency dependent optical depth from the “inner”
boundary of the resonance zone 2, to the considerd point zg
is given by

p [’/OF - — (/w)(z)] dz (u>0).

20
T+(vor) = / XL
Zmin(VOR) (27)
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The corresponding optical depth 7— for 4 < Ois calculated anal-
ogously from zj to the outer boundary zmax(vor). The bound-
aries zp, and 2.y are functions of the frequency and defined by
a vanishing profile function ¢, in Eq. (27), i.e. when the CMF
frequency vemr (see below) is shifted about 3 to 4 Doppler
widths out of the line center 1. (The sum 7, + 7_ is the total
optical thickness of the interaction zone and corresponds to 7s
defined in Eq. (23); Note that 7,.(v > 1p) = T-(v < 1) = 0).
For simplicity and to demonstrate the effects of the variable
A(uv)/dz only, we assume x to be constant over the interac-
tion zone as in first order Sobolev Approximation. Further, a
Doppler profile (with a constant thermal velocity vgermWithin
the resonance zone) is assumed for ¢ and the observer’s frame
frequency vor is replaced by the CMF-frequency
Vewe % vor — —(10)(z0). 28)
If the expansion given in Eq. (26) is inserted into Eq. (27), one
can calculate the optical depth from 2y to the inner boundary of
the resonance zone as

L 0
74(r, By Vomr) = X — / e Day for ©w>0
Vo Utherm ﬁ lmin (29)

with i := zmin — 20 (the integration variable [ is here nega-
tive). The corresponding optical depth 7_ from 2 to the outer
boundary for inward directed photons (1 < 0) is calculated
analogously to (29) but as integral of exp[—z2 (I)] from [ = 0
t0 Imax := Zmax — 20. The dimensionless frequency variables ..
and z_ in Eq. (29) are

al) = — YMEZ 0 cx |- 2) 2
'Utherm 140 dr

1[ 5d% 1- dv v )
_E[MW-HM r (dr r)]'l}
for the both cases, 1 < 0 and p > 0. All quantities x*, p, 7,
v, dv/dr, d>v/dr? and the thermal velocity vnem are taken at
radius r which corresponds to the point z, indicated in Fig. 22b.

The difference between 7, and 7_ is due to the different
sign of p in Egs. (29) and (30). For the resonance frequency
vemE = Vo we see immediately that the 27 order term in Eq. (30)
causes 7, and 7_ to be different. Neglecting this term we would
obtain 7, = 7_ = 75/2 at vemr = Y.

In order to develope a transport equation we use the same
simplifications which were made for the first order Sobolev Ap-
proximation: It is assumed that the non local contribution to J,
ie. B.I. in Eq. (9), is not modified by continous absorption
and further that the local contribution is dominated by the line
source function Sy, which is also assumed to be constant over
the whole resonance zone. The specific intensity I is then the
sum of these two contributions

(30)

- T4
I('f',/l, VCMF) 9(/1' - /JJC) ‘ Ic . e_T+ +/ SL . C_TdT
0

~ O — pe) Ie- e_7~—+ +5L [1 — e_%f] 31
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where 6 is the step function. Integration of I(r, u,vcmr) -
p(vemr) over CMF frequency vomr and angle cosine p yields
the mean line intensity defined in Eq. (1)

Jsop = Bel. + (1 — B, — B_)S*. (32)

with the “2" order escape probabilities”

- 1 1 o0 ~

Bi(r) = 5// ovemr) - €T+ I VOB dyeye dp . (33)
0 Jo

B_ and ,56 are defined analogously but as y integral over [—1, 0]
and [u,, 1], respectively. For p < 0 the optical depth 7, in
Eq. (33) has to be replaced by 7_ which was defined in analogy
to Eq. (29).

A 2" order Sobolev Approximation with continuum can be
developed in the same way. This yields a transport equation in
analogy to Eq. (11) but with the escape probabilities exchanged
by second order quantities. In the following we will compare
our numerically derived second order result Jsac with the first
order Jgac and the exact solution J oy since all three quantities
are corrected for the interaction with the continuum. (Note that
the interaction term U is only expanded to the first order which,
however, has only a small inpact on the result since the terms
containing U are two decades smaller than the other contribu-
tions in Eq. (11)). For simplicity, we will use Eq. (32) to discuss
the difference between first and second order approximation.

The strongest influence of the curvature term is found at the
thermal point (Fig. 23) where Jsac shows a well developed local
minimum which is not present for the first order result Jsac.
The local minimum of the exact solution Jomr is at the same
location but less pronounced. The reason for this local minimum
of Jsac at the thermal point is the large positive curvature of the
velocity field, i.e. d>v/dr? > 0, which causes 7, (vp) > 7_ (%)
(compare Fig. 11). This situation is sketched in Fig. 22b. In
addition to the positive curvature of v(r), the inner part of the
resonance zone reaches the hydrostatic limit with v < Umerm
and the “resonance zone” becomes semi-infinite (i.e. zy;, is no
longer defined) for most frequencies. Therefore, the photons
propagating from inside to z are shadowed (7+ — oo) and
the escape probablities 3. and E+ are reduced drastically. On
the other hand, the influence of d?v/dr? decreases 7_ (compare
Fig. 22a and 22b) and hence E_ isincreased. In consequence the
contribution of the non local radiation, i.e. ECIC in Eq. (32), is
blocked, while roughly half of the local photons corresponding
to the B_Sy, term can still escape if the line is not too strong.
This reduces jSAc at the thermal point compared to both its
value deep in the photosphere where Jsac ~ Sy, and its value
just above the thermal point where js AC R ECIC for weak and
intermediate lines.

5 The expression “2™ order escape probability” was introduced by

Hummer & Rybicky (1982) who expanded the source function to de-
velop an approximate radiative transfer for planar and static atmo-
spheres. In contrast we use the expression “2™ order” with respect to
the velocity curvature only.
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Fig. 22. a and b. Inner (outer) boundary 2;,, (2max) of the interaction
zone for positive (negative) p as function of |vor — 1o|. a Case of
constant dv/dr (common assumption in the Sobolev Theory). Note:
T. + T— = 7s. b Case of curved velocity field. Note the asymmetry
caused by curvature effects
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Fig. 23. Mean line intensity J in cgs vs. continuum optical depth 7.
for a weak line (He1 4471): first order SAC (dashed), second order
SAC concerning the velocity curvature (dashed dotted) and the exact
solution in the CMF (solid). The radiation transfer is based on the same
occupation numbers for all three cases

This local minimum is not present in the first order mean
line intensity Jsac because the asymmetric character of the
line absorption process at the thermal point is not considered
(B = B- = (3/2). Finally, the exact solution Jemr shows a
less pronounced minimum than jSAC since the gradients of x
and Sy, have not been accounted for.

The inclusion of dy,/dr by expanding the line opacity in
Eq. (29) is straight forward, however the effect on J is marginal,
independent of whether the velocity curvature is considered or
not.

More effort is necessary to investigate the influence of the
dSy,/dr term since then the integral [Sz - e™ 7 d7 cannot be
solved using the common analytical method (see Eq. 31). Gra-
dients in the source function were extensively discussed by Cas-
tor (1974) in the context of the line force, i.e. with respect to
the first moment of the radiation field. In the present context,
however, we are concerned with the zeroth moment of the ra-
diation field J where the influence of a gradient in Sy, cancels
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out if a symmetric resonance zone is assumed (Fig. 22, case a)
because of the funtional dependence dSy,/dz = p-dSL/dr. In-
cluding the velocity curvature, however, the situation becomes
asymmetric and the gradient of Sy, can have a major impact
on J. This is especially the case at the thermal point where the
resonance zone is semi-infinite and therefore the increase of
S, towards the inner photosphere fills up the local minimum
in Jsac to some amout (Fig. 23: compare Jsac (dashed dotted)
with the exact result Joymr (solid)).

Finally, as the run of S, is non monotonic (see Fig. 13, solid
curve), also the inclusion of higher orders would be necessary,
so that in consequence a numerical solution is impractical.

Hence, we give the following conclusions for the situation
at the thermal point: As it is important to consider the variation
of all the quantities dv/dr, Sz, and xL, the only correct (and
practical) line transfer is the solution in the comoving frame.
The most important effect on the radiation field is caused by the
curvature of the velocity field and the semi-infinite character of
the resonance zone for 4 > 0 leading to a local minimum in J.
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