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Universitäts-Sternwarte München

&

Dr. Rhea-Silvia Remus
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Abstract

We implemented a meshless finite mass (MFM) scheme to resolve fluid dynamics
in the cosmological N -body code OpenGadget3. In doing so, we offer an alternative
method of simulating hydrodynamics in astrophysical environments, contrasted to
the historic approach of smoothed particle hydrodynamics (SPH). The new scheme
directly calculates inter-particle fluxes while still maintaining an overall Lagrangian
nature. We discuss the theory behind both solvers and carry out various test cases
to study their performances. We find that for simulations with exclusively hydrody-
namical interactions, MFM produces less over-smoothing while executing in roughly
half the time of SPH. This comes with the drawback of noisier solutions. Coupling
our implementation to gravity, we see good agreement between SPH and MFM for
simple tests but find numerical and physical instabilities for more demanding cases.
We believe these to be resolvable without requiring a complete rewrite of the solver
and expect MFM to become a viable competitor to SPH in the future.





Zusammenfassung

In den kosmologischen N -Körper-Code OpenGadget3 wurde ein Meshless-Finite-
Mass-Algorithmus (MFM) eingebaut, um Fluiddynamiken zu simulieren. Wir bie-
ten somit eine alternative Methode zum historischen Ansatz Smoothed Particle
Hydrodynamics (SPH) an, Hydrodynamik in astrophysikalischen Systemen nume-
risch aufzulösen. Unser neues Schema berechnet direkte Flüsse zwischen Teilchen,
während der grundsätzliche Lagrange-Ansatz gewahrt wird. Wir stellen die Theorie
hinter beiden Algorithmen vor und studieren ihre Performance anhand zahlreicher
Tests. Für Simulationen rein hydrodynamischer Natur zeigt sich, dass MFM phy-
sikalische Größen weniger ausschmiert als SPH und zugleich nur halb so viel Zeit
für die Auswertung benötigt. Dies birgt den Nachteil von erhöhtem Rauschen der
Lösungen. Bei Einbindung von Gravitation in die Simulationen vermerken wir ei-
ne gute Übereinstimmung beider Ansätze für einfache Tests. Komplexere Proble-
me hingegen offenbaren numerische und physikalische Instabilitäten unserer MFM-
Implementierung. Wir nehmen an, dass diese behebbar sind, ohne den Algorithmus
von Grund auf neu zu schreiben und erwarten, dass sich MFM in Zukunft als veri-
table Konkurrenz zu SPH etabliert.
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1 Motivation

In astronomy, more so than in other sciences, our abilities to observe the very objects
we set out to study are quite limited. With a few exceptions (such as neutrinos, see e.g.
Nobel Prize laureates of 1995, 2002, and 2015; or the newly found gravitational waves,
Nobel Prize of 2017), we are limited to the detection of light. But the farther out the
objects of our interest lie, the dimmer the light and the less information we are able to
deduce. It seems a daunting task to study the most distant regions in our Observable
Universe using only a handful of photons. With the soaring development of computers
over the past several decades it is thus only natural that astronomical simulations have
become a popular means to study our cosmos and the objects therein in much more detail
than we would be able to using observations alone.

This approach, however, brings about some inherent difficulties as well. Discretizing
the continuous laws of nature must be done with the highest of caution and while com-
putational power is now available more abundantly than ever before, it is still finite and,
on large scales, expensive. When setting up simulations, our two main goals therefore
always ought to be that they run as precisely and as effectively as possible.

This Master’s thesis is focussed on a distinct example that highlights how these two
goals can be pursued. In an established astrophysical code, a meshless finite mass (MFM)
scheme, an alternative method to solve the hydrodynamical equations for gas interactions,
was implemented, aiming at making the existing code both execute faster and produce
more reliable results at the same time.

First, we will start by introducing the fundamentals of a numerical treatment of
fluid dynamics in Sec. 2. Here, we will also introduce the theory of smoothed particle
hydrodynamics (SPH), the predecessor to our MFM implementation to which we will
draw ample comparisons later. In Sec. 3, the theory behind meshless schemes in general
and MFM in particular shall be discussed. We will then introduce the code that we were
working with, GADGET, in Sec. 4 before Sec. 5 focuses on the implementation of an MFM
scheme therein. We will highlight different aspects of said implementation using a variety
of well-understood test cases and evaluate its performance. We will continue by discussing
our results in Sec. 6 and lastly, Sec. 7 will feature a conclusive summary as well as an
outlook for future endeavours.
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2 Introduction to Computational Fluid Dynamics

The general goal of computational fluid dynamics (CFD) is quite easily stated: to ac-
curately reproduce a realistic evolution of a fluid (i.e. a liquid or gas) using numerical
methods. To achieve this goal, many methods have been introduced since the advent of
computers as a scientific tool, each of which with its own merits, difficulties, and pitfalls.
This section shall present the equations governing the nature of fluid dynamics and the
two most common approaches of implementing CFD in astrophysics1.

2.1 The Equations of Fluid Dynamics

Following Landau and Lifshitz (2013), we start our theoretical examination by considering
a fluid on macroscopic scales. Its state is completely determined by its velocity field
~v(x, y, z, t) and any two thermodynamic quantities such as its density and pressure fields,
ρ(x, y, z, t) and p(x, y, z, t), respectively, together with an equation of state relating these
to other thermodynamic variables. Note that all of the above quantities posses an explicit
time dependence. Our task now is to establish how this evolution with time can be
quantified.

In the following, we will assume our fluid to be ideal, i.e. that thermal conductivity
and viscosity can be neglected. The first of the two assumptions also imposes another
constraint, namely that all motions must happen adiabatically:

ds

dt
= 0 (2.1)

with the entropy per unit mass s.

Continuity equation We consider an arbitrary (not necessarily infinitesimal) volume
element of the fluid and denote it by V ∗. Naturally, the total mass contained within it
is equal to

∫

ρ dV , evaluated over all of V ∗. The mass flow into V ∗ can now trivially be
identified with − ∂

∂t

∫

ρ dV . We put this result aside and now consider the mass flow out
of V ∗ through a surface element d ~A. Choosing the direction of d ~A to be along the normal
pointing outwards, the mass flow can be expressed as ρ~v d ~A with positive (negative) values
indicating a net outflow (inflow). Integrating over the whole surface of the volume, we

find the total mass flow to be equal to
∮

ρ~v d ~A. We can now equate this with our first
result (keeping the signs in mind) to obtain

−
∂

∂t

∫

ρ dV =

∮

ρ~v d ~A . (2.2)

Using Gauss’s theorem to rewrite the surface integral to a volume integral, bringing both
terms to one side, and then using Leibniz’s rule to interchange the integral and differential
operators, we find

∫

∂ρ

∂t
+∇(ρ~v) dV = 0 . (2.3)

We can now use the universality of Eq. (2.3) to conclude that the integrand must vanish
in all cases and thus find the equation of continuity:

∂ρ

∂t
+∇(ρ~v) =

∂ρ

∂t
+ ρ∇~v + ~v∇ρ = 0 . (2.4)

1The applications of CFD in astrophysical contexts cover a wide range of scales, from resolving the
gas contents of galaxies and clusters (as is the case in GADGET) to the simulation of stellar interiors.
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Euler’s equation Once again, the start of our argumentation shall be a finite volume
element V ∗. The total force acting on V ∗ is −

∮

p d ~A or, expressed as a volume integral,
−
∫

∇p dV . The integrand of the second expression can be understood as the force acting
on any infinitesimal volume element which we can equate with Newton’s second law as

−∇p = ρ
d~v

dt
. (2.5)

Note that the time differentiation in Eq. (2.5) is a total one that expands as

d~v

dt
=
∂~v

∂t
+ (~v∇)~v . (2.6)

Combining Eqs. (2.5) and (2.6), we find Euler’s equation as

∂~v

∂t
+ (~v∇)~v = −

1

ρ
∇p . (2.7)

Energy equation One of our core assumptions was to regard thermal conductivity as
negligible. We can now make use of this to write the first law of thermodynamics in a
simplified form:

dU = −p dV (2.8)

with the internal energy U . We can find another expression for dV when considering the
relative change of a volume element V with time. This is given as

1

V

dV

dt
= ∇~v . (2.9)

Combining Eqs. (2.8) and (2.9) as well as substituting U for the specific internal energy
u = U/(ρV ) we obtain an equation quantifying the energy evolution of our fluid:

ρ
du

dt
= −p∇~v . (2.10)

With Eqs. (2.4), (2.7), and (2.10), we now have enough information to accurately
describe the evolution of our fluid indefinitely. The only other constraint we have to
impose is an equation of state. A natural choice is the one for an ideal gas:

p = (γ − 1)ρu (2.11)

with the adiabatic index γ.

To solve these equations consistently using numerical methods, one first has to choose
a discretization scheme. After all, a fully analytical treatment will not be possible in any
case; discretization is the only way that programs will yield plausible results in finite time.
The two most popular approaches discretize either mass (so-called Lagrangian methods)
or volume (Eulerian methods). Both of them shall be introduced in the two following
sections.

To end this general discussion, a word of caution ought to be stated. The general
assumptions we made (no thermal conduction, no viscosity) are reasonable in quiet envi-
ronments, especially when keeping in mind that each discretization element will represent
a multitude of astrophysical objects bundled together. In more violent regions (e.g. in
shock environments), however, these assumptions quickly become erroneous. To ensure
that results stay as accurate as possible nonetheless, one must either solve the more
general Navier-Stokes equations (that shall not be discussed further here) or introduce
correction functions.
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2.2 Lagrangian Methods: Smoothed Particle Hydrodynamics

In Lagrangian hydrodynamical codes, the fluid is represented as an ensemble of particles.
This assumption alone makes Lagrangian codes very suitable to be combined with so-
called N -body codes who use a similar ansatz to simulate gravity. It should be noted
that in the majority of applications, the term particle does not in fact denote a singular
physical particle but rather a merged subsample of all particles within the fluid to be
described. How many physical particles comprise a numerical particle depends both on
the scale of the simulation and its resolution. In cosmological codes, a numerical particle
will often hold a total mass in excess of 103M⊙. In the remainder of this work, particle
shall always refer to a numerical particle as described here.

The exact implementation of Lagrangian methods can be done following various
different approaches and philosophies. In this section, we will focus on the method of
smoothed particle hydrodynamics (SPH, first implementations by Gingold and Monaghan
1977 and Lucy 1977), a popular candidate in astrophysical CFD and GADGET’s historic
hydrosolver of choice. We will do so by following the excellent review paper by Price
(2012) to which we refer the interested reader for much more details than fits the scope of
this thesis. In Sec. 3, we will then introduce in detail so-called meshless methods, the very
topic of this work. We also note, however, that there are other methods available, even
though they are not as commonly used in astrophysics, such as particle-in-cell schemes
(see e.g. Park et al. 2013 and Lee et al. 2019) or Osiptsov’s method (see Lebedeva and
Osiptsov 2016 for its theory and Mishchenko et al. 2020 for a recent application).

2.2.1 The Interpolation Problem and Its Solution in SPH

While the choice of a Lagrangian over an Eulerian scheme offers some intriguing ad-
vantages, such as the aforementioned facilitated coupling to others physics modules like
gravity, it imposes one very striking problem: How can one describe continuous fluid
properties using a discrete and finite set of particles? Or, to apply this problem to a con-
crete example: How can one calculate densities, given only a set of point masses at known
positions? The idea at the very core of SPH schemes is to do so by using geometrically
weighted averaging:

ρ(~r0) =

Nngb
∑

i

mi W
(

|~r0 − ~ri| , h
)

. (2.12)

Nngb is the number of neighbouring particles to an arbitrary position ~r0, and mi and ~ri
are the mass and position, respectively, of each summed over neighbour particle i. The
intricacies of SPH lie in the two remaining quantities, the kernel function W and the
smoothing length h that shall be discussed in more detail in Sec. 2.2.3. For now, suffice
it to say that W is a monotonically decreasing, radially symmetric function that weighs
the contributions of particles closer to r0 more than those of particles further away, and
h is a parameter we can use to fine-tune the behaviour of W.

Having calculated the density at ~r0, we can immediately use this to calculate any
other arbitrary quantity X(~r0) (both of scalar and vectorial nature) by realizing that

lim
h→0

W
(

|~r0 − ~ri| , h
)

= δ
(

|~r0 − ~ri|
)

(2.13)
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with δ indicating Dirac’s delta function. It thus follows that

X(~r0) =

∫

X(~r) δ
(

|~r0 − ~r |
)

d~r

≈

∫

X(~r)

ρ(~r)
W
(

|~r0 − ~r | , h
)

ρ(~r) d~r

≈

Nngb
∑

i

mi
Xi

ρi
W
(

|~r0 − ~ri| , h
)

. (2.14)

From (2.14) we can directly calculate gradients by making use of the circumstance
that only the kernel function W depends on our target point ~r0:

∇X(~r0) = ∇

Nngb
∑

i

mi
Xi

ρi
W
(

|~r0 − ~ri| , h
)

=

Nngb
∑

i

mi
Xi

ρi
∇W

(

|~r0 − ~ri| , h
)

(2.15)

While Eqs. (2.12), (2.14), and (2.15) are valid for any target point within our simula-
tion domain, we will almost exclusively use them to evaluate quantities at those positions
where a particle is placed, effectively calculating the properties associated to this particle.
This process is illustrated in Fig. 2.1.

2.2.2 Equations of Motion

At this point, we have established how to evaluate a Lagrangian fluid at any given point
in time, making use of a kernel function for interpolation. What we are lacking still is a
way to evolve the system in time. We will shorten the following derivation for readability
and repeat our advise for the interested reader to consult Price (2012) for a thorough
treatment.

The equations of motion are a direct consequence of the principle of least action,
stating

∫

δL dt = 0 (2.16)

where L denotes the discrete Lagrangian (L = T − V with the kinetic energy T and the
potential energy V ) and δ is an arbitrary, infinitesimal variation of the particle coordinates
in phase space. Making use of the generality of δ in Eq. (2.16), we find the Euler-Lagrange
equation:

d

dt

(

∂L

∂~vj

)

−
∂L

∂~rj
= 0 . (2.17)

In our purely hydrodynamical examination, the potential energy is equal to the thermal
energy of our particles and we can equate

L =
∑

i

mi

(

1

2
~v 2
i − ui

)

(2.18)

with the specific internal energy ui = ui(ρi, si), si being the specific entropy. We must
now evaluate the two derivatives of L that appear in Eq. (2.17). In doing so, we make

6



Figure 2.1: Visualization of the kernel averaging as done in SPH, using a random particle
distribution. In this case, the grey gradient corresponds to the M4 kernel, see Eq. (2.23).
Due to the smooth transition of the kernel function towards 0 near |~ri − ~rj|/h → 1, the
edges are not easily distinguishable. For better visibility, all particles that still lie within
the kernel of the target particle (green) are coloured orange.

use of the first law of thermodynamics (Eq. 2.8) and also take into account that h is a
function of ρ2 with ∂h/∂ρ = −h/(ρd) with dimensionality d. We then find

d~vj
dt

= −
∑

i

mi







pj
Ωjρ2j

∂W
(

∣

∣~rj − ~ri
∣

∣ , hj

)

∂~rj
+

pi
Ωiρ2i

∂W
(

∣

∣~rj − ~ri
∣

∣ , hi

)

∂~rj






(2.19)

2This is not an inherent fact of the theory as introduced so far but rather a convenient choice, as will
become clear later.
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with hj = h(~rj) and

Ωj =






1−

∂hj
∂ρj

∑

i

mi

∂W
(

∣

∣~rj − ~ri
∣

∣ , hj

)

∂hj






. (2.20)

Note that in deriving Eq. (2.19) we implicitly assumed L to be differentiable in
the first place. We thus imposed the condition that our solution cannot feature any
discontinuities. In physical reality, this assumption is, of course, not always justified, e.g.
if shocks are present in our system. We will come back to this problem in later sections.

One last ingredient we need for being able to advance our simulation in time is an
equation that describes the temporal evolution of energy. In the absence of dissipation,
the specific internal energy changes as

duj
dt

=
pj
ρ2j

dρj
dt

. (2.21)

Combining this with an expression for the density ρj analogue to Eq. (2.12) yields us
then

duj
dt

=
pj

Ωjρ2j

∑

i

mi

(

~vj − ~vi
)

∇jW
(

∣

∣~ri − ~rj
∣

∣ , hj

)

. (2.22)

In principle, SPH schemes allow for other, equivalent quantities (e.g. specific total
energy or entropy) to be traced instead of the internal energy and many codes make use
of this free choice. We decided to discuss the internal energy here for no other reason
than the simplicity of the derivation of Eq. (2.22) as well as the obvious correspondence
to Eq. (2.10).

With Eqs. (2.12), (2.19), and (2.22) (or equivalent) we now have the basic description
we need to realistically evolve a fluid in time. Furthermore, upon closer inspection, we can
identify the three equations as corresponding to the continuity equation (Eq. 2.4), Euler’s
equation (Eq. 2.7), and the hydrodynamical energy equation (Eq. 2.10), respectively,
demonstrating that the SPH approach is indeed a means to simulate hydrodynamical
interactions. The next sections will highlight some peculiarities one has to take into
account when applying SPH as well as briefly discuss the implementation of magnetic
fields.

2.2.3 Kernel Functions

The choice of the right kernel function W for a simulation is of vital importance due to its
prevalence in almost all relevant SPH calculations. All functions that might be considered
should fulfil a set of prerequisites:

• The function must be monotonically decreasing. This requirement is quite intuitive
since we expect close neighbours to impact a target particle’s properties much more
than particles further away.

• The function must be radially symmetric, i.e. W(~r − ~r ′) = W(|~r − ~r ′|). All other
choices would lead to an unmotivated directional bias.
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• The function must be normalized as
∫

V
W(~r − ~r ′, h) dV ′ = 1 (V being the total

simulation domain) so as to fulfil basic conservation properties. This requirement
is, of course, not as constraining since any otherwise qualified function can simply
be renormalized.

• The function must have a flat slope in the central part to avoid small changes in
neighbour positions resulting in large property changes.

• Lastly, the function must feature a smooth transition W → 0 as |~r − ~r ′| → h
in order to, once again, prevent small changes in neighbour position (marginally
inside/outside of the kernel) leading to significant changes in W.

A popular choice for a kernel function is the cubic spline that was suggested in
Monaghan (1992). We will refer to this spline as the M4 kernel in the following. Here,
for comparability with other kernel functions to be quoted later on, it is reformulated to
account for a maximum extend of h (instead of 2h as in the original formulation):

W (~r, h) =
Cd
hd















































1 + 6

(

|~r|

h
− 1

)(

|~r|

h

)2

if 0 ≤
|~r|

h
≤ 0.5

2

(

1−
|~r|

h

)3

if 0.5 <
|~r|

h
≤ 1

0 otherwise

(2.23)

with d the number of dimensions and C1 = 4/3, C2 = 40/(7π), and C3 = 8/π.

More recently, Dehnen and Aly (2012) were able to show that convergence at shear
flows, a notorious problem for kernels such as the previously discussedM4, can be achieved
much more easily when using the Wendland functions (after Wendland 1995) as a kernel.
Rosswog (2015) found similar results. The second highest order function of these is now
commonly referred to as the C6 kernel:

W (~r, h) =























55

32h

(

1−
|~r|

h

)7
(

1 + 7
|~r|

h
+ 19

(

|~r|

h

)2

+ 21

(

|~r|

h

)3
)

if 0 ≤
|~r|

h
≤ 1

0 otherwise

(2.24)
in one dimension and

W (~r, h) =
Cd
hd























(

1−
|~r|

h

)8
(

1 + 8
|~r|

h
+ 25

(

|~r|

h

)2

+ 32

(

|~r|

h

)3
)

if 0 ≤
|~r|

h
≤ 1

0 otherwise

(2.25)
in two or three dimensions (C2 = 78/(7π), C3 = 1365/(64π)).

In addition to the choice of the kernel function, the smoothing length h should also
be chosen with intent. In practice, h is determined dynamically such that a fixed number
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of neighbours is achieved:

NNgb
!
=

N∗

Ngb
∑

i

W (~r − ~ri, h) . (2.26)

Note that here, N∗
Ngb refers to the real number of particles inside the kernel, i.e. N∗

Ngb ∈ N,
whereas NNgb is the sum of these particles, multiplied by their individual kernel weight,
hence NNgb ∈ R

3,4. This method of determining h has the added benefit of making the
resolution of SPH automatically adaptive — in dense regions, a small smoothing length
is chosen, making the interpolations intrinsically more accurate. In sparsely populated,
uneventful regimes on the other hand, a rough estimate with a larger value of h suffices in
most cases. In the remainder of this work, the term neighbour number shall always refer
to the kernel weighted sum on the left side of Eq. (2.26).

2.2.4 Magnetohydrodynamics

Magnetic fields have been known to have significant impacts on astrophysical systems
of various scales for quite some time (see e.g. Parker 1958, Turner and Widrow 1988,
and Brandenburg and Subramanian 2005; also refer to Widrow 2002 for an extensive, if
slightly old review). Luckily, SPH schemes can be adjusted in a straightforward manner
such that they include the treatment of magnetohydrodynamics (MHD) within the fluid.

From the induction equation

d

dt

(

~B

ρ

)

=

(

~B

ρ
· ∇

)

~v (2.27)

with the magnetic field vector ~B we can directly infer

d

dt

(

~Bj

ρj

)

=
∑

i

mi

(

~vi − ~vj
)

~Bj

Ωjρ2j
∇W

(

~rj − ~ri, hj
)

. (2.28)

The equations of motion can be derived via a similar ansatz as in Sec. 2.2.2 with a
slightly modified Lagrangian:

L =
∑

i

mi

(

1

2
~v2i − ui −

1

2µ0

B2
i

ρi

)

(2.29)

with the vacuum permeability µ0. We will skip some intermediate steps for brevity since
they do not yield much insight. The final result for the acceleration equation reads

dvkj
dt

=
∑

i

mi

[

Skl
j

Ωjρ2j
∇l

jW
(

~rj − ~ri, hj
)

+
Skl
i

Ωiρ2i
∇l

jW
(

~rj − ~ri, hi
)

]

(2.30)

where k and l run over the spatial dimensions and Skl is the MHD stress tensor:

Skl = −

(

p+
1

2µ0

B2

)

δkl +
1

µ0

BkBl . (2.31)

3Compare this to Fig. 2.1 where 53 neighbours have been associated with the target particle, even
though the kernel weighted neighbour number only equals to roughly ten, i.e. N∗

Ngb = 53, NNgb ≈ 10.
4In practice, the requirement of Eq. (2.26) to be an exact equality is slightly lifted by setting an

allowed deviation. This allows the root-finder that calculates the required h to terminate much faster.
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The energy equation is altered in a similar manner:

duj
dt

=
∑

i

mi

(

Skl
j

Ωjρ2j
vki ∇

l
jW
(

~rj − ~ri, hj
)

+
Skl
i

Ωiρ2i
vkj∇

l
jW
(

~rj − ~ri, hi
)

)

(2.32)

The equation governing the density (Eq. 2.12) is not altered by the addition of magnetic
fields.

One problem in all numerical treatments of magnetic fields is to ensure that the
absence of magnetic monopoles (∇·B = 0) is respected in all cases. This behaviour is
not inherent in the equations derived above and therefore, fixing mechanisms must be
invoked. Popular choices are to use a more accurate but non-conservative gradient in the
anisotropic force, or to subtract either the unphysical source term or a constant from the
stress (see also Sec. 4.5).

2.2.5 Correction Terms

While SPH offers a convenient way to formulate and solve hydrodynamical problems
numerically, it has some known flaws. A part of which is inherent and our motivation
to implement a new scheme (see Sec. 3.1) but some can be mitigated by expanding the
framework as discussed this far. We will present a small, non-exhaustive subset of these
corrective terms here.

∇h terms Hernquist (1993) demonstrated that while standard SPH approaches are
quite good at conserving energy, entropy conservation is everything but guaranteed. As
mentioned before, we are free to exchange the internal energy for the entropy as the
energetic variable we want to evolve. This does indeed lead to significantly better entropy
conservation but instead, the conservation of energy is lost in turn. To overcome this
problem, Springel and Hernquist (2002) introduced a tweak to the equation of motion
that fundamentally improves the synchronous conservation of the two quantities:

d~vj
dt

= −
∑

i

mi






fj

pj
Ωjρ2j

∂W
(

∣

∣~rj − ~ri
∣

∣ , hj

)

∂~rj
+ fi

pi
Ωiρ2i

∂W
(

∣

∣~rj − ~ri
∣

∣ , hi

)

∂~rj






(2.33)

with the corrective terms

fj =

(

1 +
hj
3ρj

∂ρj
∂hj

)−1

. (2.34)

Note that this correction implicitly assumes that a constant mass is present inside the
kernel with radius h (instead of a constant neighbour number as we stated in Eq. 2.26).
However, if we assume constant and equal particle masses, these two constraints are, of
course, the same.

Artificial viscosity In highly dynamical regions such as shocks, dissipative terms must
be taken into account to correctly reproduce the dispensation of energy. But, since SPH
is constructed in a way to solve the ideal hydrodynamical equations, these effects are not
considered by default. One (of many) ways to implement an artificial viscosity term is
given in Monaghan (1992) where the new equation of motion reads:

d~vj
dt

= −
∑

i

mi

(

pi
ρ2i

+
pj
ρ2j

+Πij

)

∇jW
(

~rj − ~ri, hj
)

(2.35)
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with

Πij =



















−αcijµij + βµ2
ij

ρij
if
(

~vj − ~vi
)

·
(

~rj − ~ri
)

< 0

0 otherwise

(2.36)

and

µij =
hij
(

~vj − ~vi
) (

~rj − ~ri
)

(

~rj − ~ri
)2

+ η2ij
. (2.37)

The condition (~vj−~vi) ·(~rj−~ri) > 0 is equal to ∇~v > 0 and thus the viscous term vanishes
in this case. The parameters α and β can be adjusted depending on the individual needs
of the simulation at hand, but the authors report good results for α ≈ 1 and β ≈ 2.
ηij prevents singularities in high density regions and is best chosen as ηij ≈ hij/10.
Eq. (2.35) conserves total linear and angular momenta and yields both shear and bulk
viscosities (linear term) as well as Von Neumann-Richtmeyer viscosity (quadratic term).

Artificial conduction In order to improve mixing properties of SPH implementations,
various authors have proposed schemes to facilitate transport of internal energy (see e.g.
Price 2008, Wadsley et al. 2008, or Read and Hayfield 2012). One of the more recent
efforts can be found in Beck et al. (2016) who approximate the conduction as

duj
dt

∣

∣

∣

∣

cond

=
∑

i

2mi

ρj + ρi

(

ui − uj
)

αc
ijFij

√

2
∣

∣pj − pi
∣

∣

ρj + ρi
(2.38)

with Fij = (Fij(hi) + Fij(hj))/2 the symmetrized scalar part of the kernel gradient terms
∇iW(~ri − ~rj, hi) = Fij~rij/|~rij| and the symmetrized conduction coefficient

αc
ij =

1

2

(

hi
3

|∇u|i
|ui|

+
hj
3

|∇u|j
|uj|

)

. (2.39)

2.3 Eulerian Methods

Eulerian methods follow a vastly different paradigm than their Lagrangian counterparts.
Whereas we previously represented the fluid of consideration as an ensemble of particles
with known masses and positions, we now instead simulate a grid (either static or dy-
namic) occupied by the fluid. Hence, Eulerian schemes are often referred to as grid codes
or grid schemes and we will use these terms synonymously. Inside each cell, the proper-
ties of the fluid are (at a given point in time) described independently. The equations of
motion are replaced by fluxes from one adjacent cell to another.

While the field of Eulerian methods is equally wide and complex as that of Lagrangian
methods, we will restrict ourselves to a very short overview of which, closely following
Teyssier (2015), as the focus of this work is on the comparison of two Lagrangian methods.
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2.3.1 Simulating Fluxes

The starting point for grid schemes is the reformulation of the equations derived in Sec.
2.1 in their Eulerian form, highlighting conservation properties more prominently:

∂ρ~v

∂t
+∇ (ρ~v × ~v + p1) = 0 (2.40)

∂ρ

∂t
+∇ (ρ~v) = 0 (2.41)

∂E

∂t
+∇

(

~v (E + p)
)

= 0 (2.42)

where we replaced the internal energy u with the fluid energy density E = ρ(u + 1
2
v2).

The advantage of the above formulations is that we can forego a flaw of the Lagrangian
equivalents that we thus far only touched upon very briefly — they are only viable in
continuous environments. While Lagrangian schemes have to apply corrective functions
to reduce the resulting inaccuracies when dealing with discontinuities, some of which we
mentioned in Sec. 2.2.5, Eulerian schemes elegantly avoid these problems altogether. In
practice, this means that the flow variables (that are exchanged between cells) can be
discontinuous from one cell to another, as long as the flux functions (that appear in the
divergence operator in Eqs. 2.40 - 2.42) remain continuous.

To solve the above equations in the presence of propagating waves with sound speed

cs =

√

γ p

ρ
, (2.43)

a popular numerical technique is the one brought forward by Godunov and Bohachevsky
(1959). In the following, we will express the fluid quantities in terms of vectors of conser-
vative variables

~U = ~U (~r, t) :=







ρ
ρ~v
E






. (2.44)

Each cell is assigned a cell-averaged conservative vector

~Un
i =

1

Vi

∫

Vi

~U (~r, tn) dV (2.45)

with n indicating the discrete time step and Vi being the volume of the ith cell. The time
evolution of each cell can then be described as

~Un+1
i − ~Un

i

∆t
= −

1

Vi

∫

Si

〈

~F
〉

t
· ~n dS (2.46)

where ~n is the normal vector of the cell face Si and
〈

~F
〉

t
is the time-averaged flux function

〈

~F
〉

t
=

1

∆t

∫ tn+1

tn

~F (~r, t) dt . (2.47)

We stress that the above formulations are agnostic to the exact implementations of
both ~U(~r, t) and ~F (~r, t). The former can be used to change the physical representation
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within a cell — in so-called first-order Godunov schemes, ~U is assumed to be constant
at each point within a cell, whereas higher order approaches assume linear or parabolic
gradients, see Fig, 2.2 for a comparison. The latter is used to fine-tune the accuracy of
quantities exchanged between cells. In practice, Riemann solvers are applied at each cell
boundary to calculate the flux functions and whether exact or approximate variants are
used is left to be decided by the simulator. We will deepen our discussion of Riemann
solvers in Sec. 3.3.

(a) First order (b) Second order

Figure 2.2: Comparison between Godunov schemes of first order (a) and second order
(b). The colour indicates the value of an arbitrary quantity at each point within the
simulation domain. The second order scheme produces a constant gradient over each
cell. Note that in the middle (around the darkest cells) the transition between cells is
not approximated smoothly due to the implementation of slope limiters. We shall discuss
their relevance in more detail in Sec. 3.2.

The theory laid out so far represents the bare backbone of grid codes and any compet-
itive implementation must take into account plenty of additional effects such as non-ideal
hydrodynamics (see e.g. Fromang et al. 2007), gravity (e.g. Truelove et al. 1997 and
Käppeli and Mishra 2014), and radiative transport (see Mihalas and Mihalas 1984 for a
theoretical treatment). We refrain from delving into these in more detail here, refer the
interested reader to the literature cited in this section, and shall close our brief discussion
by taking a closer look at two optional features of grid codes concerning grid geometry.

2.3.2 Adaptive Mesh Refinement and Moving Mesh

While a regular, Cartesian grid is a logical first choice for a Eulerian scheme, there is
no need to restrict ourselves to such a realization. In fact, choosing a grid with stiff
axes is prone to produce preferred directions along these since all cell faces will lie in
perpendicular planes. Luckily, the formalism presented in Sec. 2.3.1 is valid for (almost)
arbitrary grid geometries. We can utilize this circumstance in two different ways.
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Adaptive Mesh Refinement While adaptive mesh refinement (AMR) codes still ad-
here to a Cartesian grid with fixed axes, they make use of the fact that there is no inherent
need for cells to be of equal size. Similar to how SPH (automatically) adapts is resolution
in very dense regions by having a smaller kernel width and thus more local smoothing,
AMR schemes decrease the cell size if the density exceeds a certain threshold5. In 1D, this
is usually done by simply halving the cell in the middle, in 2D every quadrant becomes
a new cell, and in 3D every octant. This process can be repeated indefinitely until the
required resolution is reached. In addition to increasing the spatial resolution, most AMR
codes also increase the temporal resolution of refined cells by halving the time step ∆t
with each level of refinement. Brought forward by Berger and Oliger (1984) and Berger
and Colella (1989), this technique is now employed in many popular astrophysical grid
codes such as RAMSES (Teyssier, 2002) and ENZO (Bryan et al., 2014).

Moving Mesh To minimize numerical diffusion, so-called moving mesh or adaptive
mesh redistribution schemes change the structure of the underlying grid with time. The
total number of cells generally stays constant and the geometry is always chosen in such
a way as to reduce the maximum wave speed. It has been shown, however, that failing
to limit the resulting mesh geometry at all can lead to large numerical errors in areas of
the computation domain where cell sizes vary largely (see e.g. Katz and Sankaran 2011).
A contemporary code making use of the moving mesh technique is AREPO (Weinberger
et al., 2019).

A comparison between a simple Cartesian grid, an AMR realization and a moving
mesh is depicted in Fig. 2.3.

(a) Simple Cartesian grid (b) Cartesian with AMR (c) Moving mesh

Figure 2.3: Comparison of different grid geometries. The AMR pattern in panel (b)
resembles the refinement around an over-dense region, e.g. a globular cluster or a galaxy.
Here, a maximum refinement of three levels was chosen. The moving mesh in panel (c) is
realized using a Voronoi tessellation, similar to AREPO’s approach.

5In theory, the criterion that determines whether or not a cell shall be refined can be chosen arbi-
trarily, the density (i.e. total mass in a cell) just being one possibility. Another popular choice is using
Richardson-type estimates of the truncation error (Berger and Oliger, 1984).
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3 Meshless Methods

Over the last decades, the methods for solving CFD that we introduced in the previous
section have been both studied and applied extensively, yielding a plethora of scientific
insight. More recently, however, a new type of solvers was developed in the field of
computer science by Lanson and Vila (2008a,b) and first applied in an astrophysical
context by Gaburov and Nitadori (2011). In this section, we shall highlight the key
aspects of these so-called meshless methods. Since GADGET, the code we are working with,
is currently using an SPH scheme, we will start by motivating the implementation of the
new solver by drawing attention to the problems that SPH solvers are often facing6.

3.1 The Shortcomings of SPH

3.1.1 Dealing with Discontinuities

A consequence of the kernel-based averaging which is at the very centre of the SPH ap-
proach is that large differences in particle properties are smoothed over. In most cases,
this helps to reduce numerical noise since the effect that outliers have on their environ-
ments is dampened. When dealing with discontinuities, however, this smoothing fails to
accurately reproduce the sharp difference between the two states. More precisely, the
discontinuity is smeared out over 2h — one full kernel width. Fig. 3.1 illustrates this ef-
fect. The issue becomes especially problematic when other quantities such as the internal
energy are injected externally (as is e.g. the case when simulating supernovae in SPH)
and still feature a real (i.e. sharp) numerical discontinuity, leading to an inconsistent
treatment and resulting numerical artefacts, see e.g. Price (2008).

Figure 3.1: Comparison of a discontinuity of an arbitrary quantity Q in its analytic
form (left panel) and when simulated using SPH (right panel).

3.1.2 Fluid Mixing

Agertz et al. (2007) carried out a study directly comparing Eulerian to Lagrangian
schemes. To avoid bias caused by specific implementations, they took five AMR and

6It should be noted that many authors have brought forward suggestions how these problems might
be remedied through various tweaks of the SPH implementation, see e.g. Hopkins (2013) and references
therein. While most of those ideas were actually able to circumvent the issues they set out to fix,
they always introduced other spurious effects such as additional ad hoc dissipation terms, violations of
conservation laws, or reduced numerical stability.
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two SPH codes into account. Despite the large number of simulations, their results were
quite conclusive: Both SPH schemes failed to realistically resolve fluid mixing in a range
of standard tests that were performed. Whenever two different gas phases interacted,
they would remain separate even after multiple dynamical times. The grid codes fared
considerably better. The authors attributed this feature to erroneous pressure forces be-
ing introduced in SPH codes inside kernels that comprise a steep density gradient. As a
result, crossing the gap between high-density and low-density is impeded and most par-
ticles remain in their respective phase, hindering fluid mixing altogether. Okamoto et al.
(2003) found similar results.

3.1.3 Runtime

Of course, we would be ill-advised to claim that SPH codes are running slowly per se.
However, following the results of Dehnen and Aly (2012), we know that in order to reduce
noise at shear flows, SPH schemes ought to use one of the Wendland kernels. Not only are
they expensive due to their high order polynomials7, they also demand a large number
of neighbours. The C6 kernel (Eq. 2.25), for example, requires ∼ 300 neighbours in 3D
to produce good results. In addition to the sums becoming larger and taking longer to
evaluate, this also produces considerable overhead in parallel computing since, very often,
not all of these particles will be evaluated on the same CPU.

3.2 Fluxes in a Lagrangian Scheme

To address the issues discussed above while still maintaining the undisputed advantages
of SPH-like schemes (such as exact conservation properties, numerical robustness, auto-
matically adaptive resolution, or the straightforward implementation in N -body codes),
meshless methods maintain an overall Lagrangian approach while borrowing convenient
features from grid codes.

The following derivation is a condensed version of the arguments brought forward by
Hopkins (2015) and we recommend the interested reader study this publication for more
details, including a comprehensive appendix.

The basis for this novel approach is the same we used in Sec. 2.3.1, see Eqs. (2.40)
- (2.42). We will summarize these equations describing the nature of hydrodynamics in
their Eulerian form in one single formula, making use of vector notation:

∂~U

∂t
+∇

(

~F − ~vframe × ~U
)

= 0 (3.1)

with ~U the conserved state vector as defined in Eq. (2.44), ~vframe the velocity of an
arbitrary moving frame and the flux vector

~F =







ρ~v
ρ~v × ~v + p1
(E + p)~v






. (3.2)

7While one evaluation is, of course, not very time consuming, note that the kernel function is called
excessively during the simulation, being present in every major equation in Sec. 2.2.
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3.2.1 Domain Partitioning

We shall solve Eq. (3.1) with the Galerkin method which can be treated as a generalization
of Godunov’s method (Ladonkina and Tishkin, 2015). In doing so, we multiply Eq. (3.1)
by an arbitrary test function φ = φ(~r, t), integrate over the domain Ω and, after performing
an integration by parts and making the (very reasonable) assumption that fluxes vanish
at infinity, ultimately find:

0 =
d

dt

∫

Ω

~U (~r, t)φ dd ~r =

∫

Ω

~F
(

~U,~r, t
)

· ∇φ dd ~r (3.3)

with the co-moving derivative df/ dt ≡ ∂f/∂t + ~vframe(~r, t) · ∇f and d the number of
spatial dimensions. The freedom we now have is to decide how to associate each particle i
at coordinates ~ri with a discrete domain volume Ωi. Choosing to associate every particle
with its respective Voronoi cell8 would yield a moving mesh scheme (see Sec. 2.3.2).
Instead, we now choose an association that is more akin to an SPH approach: Each point
~r ∗ within the computation domain is partitioned among surrounding particles with a
weighting function, prioritizing close particles. The fraction ψi that each point contributes
to particle i can then be estimated as

ψi (~r
∗) =

W
(

|~r ∗ − ~ri| , h
)

∑

j W
(

∣

∣~r ∗ − ~rj
∣

∣ , h
) (3.4)

where the denominator ensures that
∑

i ψi ≡ 1. The weighting function W imposes all
requirements we listed in Sec. 2.2.3 and as a result, the kernel functions we discussed
therein are an excellent fit for our needs9. Note that the edge case of a moving mesh we
discussed above corresponds to the steep limit where W converges to a δ-function

We can now insert this volume partitioning approach into Eq. (3.3) and after a few
steps we find

0 =
∑

i

[

φi
d

dt

(

Vi~Ui

)

− Vi ~Fi (∇φ)~r=~ri

]

(3.5)

with the effective volume

Vi =

∫

ψi (~r) d
d ~r (3.6)

representing the sum of all domain partitions that particle i received. In theory, the
integral extends to spatial infinity but in practice, integrating a sphere of radius h suffices.

3.2.2 Gradient Estimates

The accuracy of meshless schemes now hinges on how well we can estimate the gradients
∇φ. A popular choice are locally-centred least-square matrix gradient operators (see e.g.
Luo et al. 2008). While these can, in theory, be designed to be accurate to arbitrary
orders, we will restrict ourselves to the second-order approach to maintain reasonable

8A particle’s Voronoi cell is defined such that it contains all points within the computation domain
that lie closer to it than to any other particle.

9Due to the inherent normalization of Eq. (3.4), we could theoretically lift the requirement for W

itself to be normalized. We will, however, hold on to this attribute for better comparability to SPH.
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runtime. Gradients are then estimated as

(∇f)αi =
∑

j

d
∑

β=1

(

fj − fi
)

Bi
αβ
(

~rj − ~ri
)β
ψj (~ri) +O

(

h2i
)

≡
∑

j

(

fj − fi
)

χα
j (~ri) (3.7)

where we substituted

χα
j (~ri) =

d
∑

β=1

Bi
αβ
(

~rj − ~ri
)β
ψj (~ri) = Bi

αβ
(

~rj − ~ri
)β
ψj (~ri) (3.8)

and used Einstein’s summation convention over the element indices α and β. The matrix
Bi

αβ is defined in terms of another matrix Ei
αβ as Bi = Ei

−1 with

Ei
αβ =

∑

j

(

~rj − ~ri
)α (

~rj − ~ri
)β
ψj (~ri) . (3.9)

Inserting Eq. (3.7) in Eq. (3.5) and rearranging the sums, we find

0 =
∑

i

φi







d

dt

(

Vi~Ui

)

+
∑

j

[

Vi ~F
α
i χ

α
j (~ri)− Vj ~F

α
j χ

α
i

(

~rj
)

]







(3.10)

which must hold for any function φi, thus:

0 =
d

dt

(

Vi~Ui

)

+
∑

j

[

Vi ~F
α
i χ

α
j (~ri)− Vj ~F

α
j χ

α
i

(

~rj
)

]

. (3.11)

To automatically include real dissipative terms, one last step we need to perform
is shift the fluxes ~Fi from the position of the particles to inter-particle locations. Now,
instead of describing the total flux of one particle, our new flux vectors Fij denote the

fluxes between two particles i and j alone. Conservation demands ~Fij ≡ −~Fji. Using the

vector Aα
ij = Viχ

α
j (~ri) − Vjχ

α
i (~rj) and the shorthand ~Aij = |A|ijÂij with the projection

operator ˆ we ultimately find the flux equation in the form

d

dt

(

Vi~Ui

)

+
∑

j

~Fij · ~Aij = 0 . (3.12)

Closer inspection tells us that this expression is nothing else than a continuity equation,
stating that the temporal change of conserved quantities ~Ui multiplied by the effective
volume Vi associated with particle i must equal the sum of all fluxes to neighbouring
particles j. Hence, the term ~Aij must correspond to an effective face area between the
particles i and j.

3.2.3 Solving the Flux Equation

To be able to solve Eq. (3.12), we need to perform some additional steps.

First, we must determine where we actually want to calculate the flux. In principle,
any point on a straight line between ~ri and ~rj would be admissible. To preserve symmetry,
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a natural choice is the quadrature point, i.e. the point that is partitioned equally between
i and j along this line:

~r quad
ij = ~ri +

hi
hi + hj

(

~rj − ~ri
)

. (3.13)

According to Hopkins (2015), however, a much simpler approximation yields results of
almost equal quality:

~rij =
~ri + ~rj

2
. (3.14)

This approximation is justified by the fact that neighbouring particles should have similar
smoothing lengths as they experience similar densities (and since Eq. 3.14 is the limit
of Eq. 3.13 for hi − hj → 0). Now, we can also define the frame velocity we already
introduced in Eq. (3.1) as

~vframe = ~vi +
(

~vj − ~vi
)





(

~rij − ~ri
)

·
(

~rj − ~ri
)

∣

∣~rj − ~ri
∣

∣

2



 . (3.15)

Fig. 3.2 illustrates the geometric reconstruction of cell faces as well as the domain
partition that is performed in meshless schemes.

To maintain a framework to which we can easily attach fluxes we will trivially trans-
form our conservative state vectors ~U into primitive vectors ~W with ~W = (ρ,~v, p).

Next, we must extrapolate the physical quantities defined at the locations of the
particles i and j to the cell face. We already performed this exercise in Eq. (3.7) and can
use the same approach here. We ought to, however, make sure that we do not overshoot
with our reconstruction and introduce artificial extrema. To this avail, we must also
introduce a slope limiting procedure in which we substitute ∇fi 7→ αi∇fi with αi ∈ (0, 1].
There exist plenty of possibilities to calculate the numerical value of αi and we refer the
interested reader to appendix B in Hopkins (2015) for a general formulation of the slope
limiting procedure as well as further references.

Having done so, we have obtained information of the primitive variables at the loca-
tion of the face, extrapolated from both sides (i.e. both from particle i and j). We are
free to rotate (and boost, as will become important in Sec. 3.4) our reference frame and

associate these two vectors with a left and right state, ~WL and ~WR, respectively. For a
more accurate flux estimate, we can also shift these primitive vectors to their time-centred
state, i.e. ~WL,R 7→ (∂ ~WL,R/∂t)(∆t/2). Luckily, this is rather easily done with

∂ ~W

∂t
= −







~v ρ 0
0 ~v 1/ρ
0 γp ~v






∇ ~W . (3.16)

At this point, all that is left for us to do is calculate the flux between the (now time-

centred) ~WL and ~WR, multiply these with the time step ∆t, rotate back to the simulation
frame, and update all quantities accordingly.

3.3 Riemann Solvers

As the two primitive vectors ~WL and ~WR are extrapolated independently from each other
(one from particle i and its respective gradients, the other from j), we do not expect
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Figure 3.2: Visualization of the geometry of meshless schemes. Note that this depicts
the same random particle distribution as Fig. 2.1, only zoomed in on the target particle
(green dot). The orange dots represent the neighbours to the target particle with which
the flux computations are performed. The grey gradients represent the domain partition
around each particle. While in theory, they would extend further out (to a maximum
radial distance of h), the dotted mesh confines the area in which the respective particle
receives the main contribution, thereby creating a Voronoi tessellation. Also note that
the faces for the flux computation (green crosses) are taken as the middle point between
the respective particle pair (Eq. 3.14), thereby exactly coinciding with the edges of the
Voronoi mesh. Contrary to moving mesh schemes (see Fig. 2.3c), however, it is not in
fact necessary to explicitly calculate this tessellation.

them to be equal even though both describe fluid quantities at the exact same point.
We thus need an algorithm capable of calculating fluxes (i.e. solving the continuous
hydrodynamical equations) in the presence of discontinuities. Such algorithms are called
Riemann solvers. Many of these exist at the time of this writing, both of exact and
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approximate nature. We will highlight one example each, focussing on those that were in
fact implemented in GADGET.

3.3.1 Exact Solver by Toro (1999)

Even though no closed-form solutions for the Riemann problem of hydrodynamics exist,
it is in fact possible to design an iterative scheme that computes the solution to arbitrary
(up to machine) precision. The original idea for such an approach was brought forward
by Godunov and Bohachevsky (1959) and was subsequently improved upon by various
authors (Chorin 1976, van Leer 1979, among others). Our brief outline shall follow the
approach presented in chapter 4 of Toro (1999) and we will assume an equation of state
for ideal gases (Eq. 2.11).

The evolution of the Riemann problem in our case equals that of the shock tube
problem. As the system evolves, it divides into four distinct states: the initial states
(denoted by their primitive vectors) ~WL and ~WR as well as an intermediate region, often

referred to as the star region, that itself is again split into a left and right state, ~W ∗
L and

~W ∗
R; see Fig. 3.3 for a visualization.

Figure 3.3: The temporal evolution of the Riemann problem. At ∆t > 0, four regions
can be identified: the two initial states to the left and right ( ~WL and ~WR, respectively) as

well as two distinct star regions, ~W ∗
L and ~W ∗

R. The direction that the contact discontinuity
(dashed line) expands into depends on the initial conditions. The solid lines may either
represent rarefaction waves or shock discontinuities.

Theoretical examinations of the Euler equations (as carried out in Toro 1999, chapter
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3.1.3) conclude that the pressure p∗ and the particle velocity v∗10 are constant over the
entire star region, whereas the density is piecewise constant over each of the two subre-
gions, but in general ρ∗L 6= ρ∗R. The exact solution can then be found by using root-finding
algorithms to solve the following equation for p∗:

fL

(

p∗, ~WL

)

+ fR

(

p∗, ~WR

)

+ vR − vL = 0 . (3.17)

Using the shorthand X to identify either of the two indices L and R, the functions fX
equate to

fX

(

p∗, ~WX

)

=











































(p∗ − pX)

√
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p∗ +BX

if p∗ > pX

2cs,X
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pX

)
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if p∗ ≤ pX

(3.18)

with the speed of sound cs,X and

AX =
2

(γ + 1) ρX
, (3.19)

BX =
γ − 1

γ + 1
pX . (3.20)

The velocity of the star region is then easily calculated as

v∗ =
1

2
(vL + vR) +

1

2

[

fR

(

p∗, ~WR

)

− fL

(

p∗, ~WL

)

]

(3.21)

and the densities on both sides within the star region are

ρ∗X =



























ρX

(

γ − 1

γ + 1
+
p∗

pX

)(

γ − 1

γ + 1

p∗

pX
+ 1

)−1

if p∗ > pX

ρX

(

p∗

pX

)γ−1

if p∗ ≤ pX .

(3.22)

Having obtained the full information about the star region, we can now translate its
expansion to fluxes and update the particle properties accordingly.

3.3.2 The HLL Solver

While the exact scheme presented above has clear advantages in its physical accuracy,
its root-finding algorithm is computationally quite expensive. Taking into account that
it will be called for every two-particle interaction, the toll on total runtime can quickly
accumulate. Hence, approximate Riemann solvers that strike a balance between required
accuracy and performance have been studied. Here, we will present one of the earliest
examples of such solvers, developed by Harten et al. (1983).

10Since we already reduced the problem to one dimension, we can trivially identify v = |~v|.
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Named the HLL solver after the authors of the inaugural publication (Harten, Lax,
and van Leer), its ansatz is to calculate fluxes between cells directly, thereby omitting
the evaluation of the star region. Furthermore, it is assumed that the system can be
characterized by two waves propagating with wave speeds11 SL and SR, separating the
left and right states from a single middle state. This explicitly means that the ensuing
contact discontinuity is not considered, see Fig. 3.4.

Figure 3.4: The temporal evolution of the Riemann problem in the HLL approach.
Contrary to Fig. 3.3, only two waves (with wave speeds SL and SR) are considered,

separating the initial states from a single intermediate state ~UHLL.

In a first step, the wave speeds SX must be estimated. The simplest approach is to
infer them from a particle’s gas and sound speed as

SX = vX − cs,X . (3.23)

With the wave speeds obtained, we can now directly compute the intercell fluxes as

11Keeping in mind that we are dealing with ensembles of gas particles within each simulated particle, a
more precise formulation would be: the fastest signal velocities perturbing the initial data (Toro, 1999).
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~FHLL =
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(
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if 0 ≤ SL

SR
~F
(
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− SL
~F
(
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)

+ SLSR

(

~UR − ~UL
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if SL ≤ 0 ≤ SR

~F
(

~UR

)

if SR ≤ 0

(3.24)

where the ~F (~UX) are evaluated using the definitions of ~F (Eq. 3.2) and ~U (Eq. 2.44) in
combination with the equation of state. For a full derivation of Eq. (3.24), we recommend
the lecture of chapter 10 in Toro (1999).

The HLL solver is fairly simple to implement and, in most cases, produces adequate
results. Nevertheless, due to its negligence of contact discontinuities, it struggles in cases
where these become important on macroscopic scales as well as in the presence of shear
waves (which produce similar intermediate waves). To overcome these issues, several
advancements of the simple HLL solver have been proposed, such as the HLLE solver
(Einfeldt 1988, see also Davis 1988 for a similar ansatz) that uses a more educated guess
for the wave speeds SX or the HLLC solver (Toro et al., 1994) which assumes a three-wave
model.

3.4 Flavours: MFV and MFM

Although it might seem that we have defined the meshless approach rather rigorously so
far, there is still quite some amount of customization left that we can utilize to enforce
desired behaviours.

For one, whenever we previously referred to a velocity ~v in this section, we implicitly
meant the fluid velocity. There is no need per se for this velocity to always equal the
velocity of our (Lagrangian) particles. We could, for example, keep the particle velocities
to be exactly zero at all times in which case our meshless method would become fully
Eulerian. We will, however, assume that each particle i indeed moves with the fluid
velocity at ~ri to obtain a wholly Lagrangian description. We stress that these two choices
merely represent two extrema in a wide field of possibilities that is as of yet only very
sparsely explored.

Secondly, when integrating the fluxes over the time step ∆t, we should take into
account that the face between a pair of particles will not remain at a fixed location over
time. This is even true after we rotated our reference frame so as to reduce the problem to
one spatial dimension. Nevertheless, one realization of the meshless method is to simply
neglect this effect (since we did boost to the reference frame of the quadrature point, the
corrections are in most cases small enough to justify this). This has the advantage of
preserving the volume of both cells in each interaction, and therefore the volume of every
cell. Hence, this method is called meshless finite volume (MFV), adopting the naming
convention of Hopkins (2015).

Another way to estimate the motion of the face is to associate it with the motion of
the star region within the Riemann problem (see Fig. 3.3 for a visualization and Eq. 3.21
for an exact solution thereof). Effectively, we are moving the cell face with the velocity of
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the contact discontinuity12 with mass being conserved on either side. Consequently, this
manifestation is called meshless finite mass (MFM).

3.5 Time Steps and Time Integration

In principle, the scheme for determining the time steps ∆t for each two-particle interaction
is not inherently dictated by the meshless scheme and can be chosen independently, as
long as consistency is ensured. As is usual in CFD, however, the goal is to resolve highly
dynamical environments more finely (i.e. with smaller ∆t) than quiescent ones. Here,
we will exemplarily outline the approach of Hopkins (2015) which itself is derived from
Springel (2010).

Time steps are assigned to each particle based on a Courant-Friedrichs-Lewy cri-
terion, ensuring that information cannot travel further than one cell during each step.
Following Whitehurst (1995) and Monaghan (1997), the time steps are calculated as

(∆t)CFL,i = 2CCFL
hi

∣

∣vsig,i
∣

∣

(3.25)

with the parametric Courant-Friedrichs-Lewy number CCFL ≤ 1 dictating what fraction
of a kernel with diameter 2h can be crossed per time step and the signal velocity

vsig,i = max
j







cs,i + cs,j −min

[

0,

(

~vi − ~vj
) (

~ri − ~rj
)

∣

∣~ri − ~rj
∣

∣

]







(3.26)

determined over all neighbours j for particle i. The obtained time steps are afterwards
arranged in a power-of-two hierarchy by reducing each (∆t)CFL,i to the next smallest
available time bin in order to facilitate synchronization. This procedure is coupled with
a so-called wake up mechanism (see Saitoh and Makino 2009) which limits the maximum
difference in assigned time steps in adjacent particles. If a violation is detected, the time
step of the particle in the higher time bin is reduced accordingly.

Having assigned the correct time steps, we can then update our conservative variables
(via the proxy ~Qi ≡ (V ~U)i) from one time step n to the next step n+ 1 as

~Q
(n+1)
i = ~Q

(n)
i − (∆t)i

∑

j

~Aij
~F
n+1/2
ij (3.27)

with the time-centred flux ~F
n+1/2
ij calculated from the predicted primitive vectors at time

step n + 1/2 (see Eq. 3.16). As soon as one particle’s time step becomes active, fluxes
are calculated and the conserved quantities are updated for both particles. Primitive
variables, however, are only updated for active particles.

3.6 First Results

The meshless approach is, still, in an early stage and lacks the plethora of research and
expertise that the methods we discussed in Sec. 2 can draw from. However, it has since

12It should be stressed that we rely heavily on the simplification of the Riemann problem to one
dimension. In violent environments in simulations in two or three dimensions, we can thus not expect to
capture the whole complexity and our estimates for the velocity of the star region will (even when using
an exact solver) become somewhat incorrect.
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its inauguration been able to produce very promising results and we shall highlight some
of the work already done here.

Already in the very first application of a meshless scheme in an astrophysical context,
Gaburov and Nitadori (2011) implemented a full magneto-hydrodynamical (MHD) treat-
ment. As is illustrated in Fig. 3.5, their MFV-scheme was able to maintain the constraint

∇ ~B
!
= 0 reasonably well even on long timescales.

Figure 3.5: 2d axisymmetric shearing box with magnetic field strength ~B (left) and ∇ ~B
(right) after considerable simulation time; taken from Gaburov and Nitadori (2011).

Hopkins (2015) carried out a comprehensive comparison between the SPH, meshless,
and Eulerian methods in the code GIZMO. Their conclusion is that both MFM and MFV
were at least on par with established SPH, AMR, or moving mesh methods. In all cases,
the conservation of angular momentum was fulfilled more accurately. Some of the finer
findings of their work include:

• Compared to SPH solvers, meshless schemes are less diffusive and have reduced
numerical viscosity. The smaller number of required neighbours lessens the effect
of over-smoothing of discontinuities. In addition, instabilities and fluid mixing are
resolved better without requiring additional corrective terms, see Fig. 3.6.

• Compared to AMRmethods, MFM and MFV were free of grid alignment phenomena
and did not produce spurious grid heating when coupled to gravity. In addition,
advection errors could be minimized.

• While the differences to moving mesh methods were much more subtle, mesh defor-
mation noise could be slightly reduced.

• Differences between the two meshless schemes include better angular momentum
conservation and slightly reduced noise when choosing MFM over MFV. On the
other hand, the latter is less diffusive and spreads contact discontinuities over a
smaller fraction of the kernel width. This resolves phase boundaries more sharply,
as can be seen in Fig. 3.6.
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Figure 3.6: Comparison of the Kelvin-Helmholtz instability using meshless schemes
(top panels) and two different formulations of SPH (bottom panels). TSPH refers to the
classical approach as in GADGET (Springel, 2005) whereas PSPH refers to an alternative
formulation as in Hopkins (2013). The number of neighbours is kept constant across all
simulations. Figure taken from Hopkins (2015).

Recent astrophysical results are presented by Davé et al. (2019) who carried out
the cosmological galaxy formation simulation suit SIMBA using GIZMO, including stellar
and AGN feedback, radiative cooling, photoionisation, an H2 based star formation rate,
chemical enrichment, metal-loaded galactic winds, dust, and a black hole growth model,
see Fig. 3.7. The authors opted to use MFM over MFV for its reduced noise and easier
coupling to additional physics. They were able to reproduce numerous observables such
as galaxy stellar mass functions, the stellar mass-star formation rate main sequence, sizes
of star-forming galaxy, and hot gas fractions in massive halos. However, their inferred
mass function at z = 0 features an insufficiently sharp truncation and low-mass quenched
galaxies are too large in size.
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Figure 3.7: Randomly selected 10Mpc h−1 slice of a 50Mpc h−1 SIMBA cube at redshifts
z = 2 and z = 0; taken from Davé et al. (2019).
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4 The GADGET Code

GADGET is an N -body/SPH code designated to cosmological studies, both of large-scale
structures and of individual objects such as galaxies and clusters. It is written in the
C programming language and focuses heavily on parallel execution on supercomputers.
GADGET was originally authored and published by Volker Springel (Springel et al., 2001)
as a means to study galaxies with dark matter and gas interaction. Over the years, many
contributors have advanced the scope, capabilities and performance of the initial code a
great deal, see e.g. Springel (2005), Dolag and Stasyszyn (2009), Petkova and Springel
(2009), Arth et al. (2014), and Beck et al. (2016).

Currently, GADGET-2 is freely available at https://wwwmpa.mpa-garching.mpg.de/
gadget/. Due to the open source nature of the code and its popularity, many derivatives
exist concurrently, both open source and unpublished versions. The iteration that will be
described in this chapter and which was the focus of this work is OpenGadget3, an as of
yet unpublished derivative whose development is led by Klaus Dolag at Max Planck Insti-
tute for Astrophysics and the university observatory of Ludwig-Maximilians-Universität
Munich as well as by Stefano Borgani at INAF observatory Trieste.

This section shall highlight the key aspects of OpenGadget3 (many of which shared
with other GADGET iterations) and give a non-exhaustive overview of the scientific results
that were achieved with it. We will focus on the treatment of physics and ignore aspects
such as code structure and parallelisation techniques.

4.1 The Gravity Solver

The details of the treatment of gravity in OpenGadget3 are explicated in Springel (2005).
We will limit ourselves here to a drastically simplified description.

The general approach used to solve gravitational interactions is that of an N -body
solver: Phase space is populated by a discrete number N of tracer particles and interac-
tions are calculated between them. The Hamiltonian of the ensemble in Newtonian space
is then given by

H =
N
∑

i=1

~p 2
i

2mi

+
1

2

N
∑

i=1

N
∑

j=1
i 6=j

mimjϕ
(

~ri − ~rj
)

(4.1)

with the particle momentum ~pi and the interaction potential

ϕ
(

~ri − ~rj
)

=
−G

∣

∣~ri − ~rj
∣

∣

, (4.2)

G being Newton’s constant. Using

d~pi
dt

= −mi

∑

j

Gmj
∣

∣~ri − ~rj
∣

∣

3

(

~ri − ~rj
)

(4.3)

and
d~ri
dt

=
~pi
mi

(4.4)

one can then use simple numerical integration schemes to evolve the system indefinitely13.

13Although some precautions should be taken concerning the order in which Eqs. (4.3) and (4.4) are
solved, see Sec. 4.3.
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This fundamental ansatz is improved upon in GADGET in a threefold manner to make
the simulation both less time consuming and more physically accurate.

1. Since every (simulated) particle actually represents a whole ensemble of (physical)
particles (such as stars), gravity should be realized in a collisionless manner. We
can ensure this by spreading the mass mi associated with each particle within a
finite region around it, thus avoiding the singularity at |~rj − ~rj| → 0. This mass
smoothing is done using a kernel function akin to those we discussed in Sec. 2.2.3.
To avoid confusion, we denote the gravitational smoothing length, also referred to
as the softening length, with ǫ and reserve h for fluid smoothing. Generally, ǫ is
constant for all particles but a scheme for adaptive gravitational softening in GADGET

is available as well (Iannuzzi and Dolag, 2011).

2. Eq. (4.1) prominently features a double sum in the second term. Since both of
these sums run over all N particles, the execution time using a direct evaluation
would scale with N2, making resolution improvements very costly. To avoid this
behaviour, GADGET refrains from calculating gravitational interactions on a strict
particle-to-particle basis while still maintaining the long-range nature of the force.
This is realized with the implementation of a so-called tree code (see Barnes and
Hut 1986). To this end, the computational domain is split into a hierarchical set
of subdivisions. Starting from a cubical root node comprising the entire set of
particles, subdivisions are performed by dividing each node into 2d equally sized
daughter nodes (with dimensionality d). This process concludes once every node
only contains a single particle. These nodes are then referred to as leaf nodes.
Upon calculating the gravitational forces, particles are replaced by their respective
nodes with the explicit possibility of grouping them together. The second sum in
Eq. (4.1) follows this hierarchical structure of nodes (the tree) from root to leaf, in
each step checking if a node (encompassing more than one particle) can enter the
sum as a whole or if a smaller subdivision must be considered. A node is refined if
the following criterion is met:

GM

r2

(

l

r

)2

> α |~a| (4.5)

with the total mass inside the nodeM , its distance from the particle being evaluated
(particle i) r, its extension l, the size of the total acceleration obtained in the
last time step ~a, and a tolerance parameter α. Evidently, the distance of a node
to the particle in question is the most important factor, followed by its spatial
extension and only then by its mass. Since the obtained result is naturally only an
approximation of the exact result, α can be used to tune the accuracy of which to an
arbitrary degree. Using this approach, the scaling is reduced from N2 to N logN .

3. In full cosmological runs, cosmic expansion is accounted for. See Sec. 4.4 for details.

4.2 The Hydro Solver

Since gravity is handled as an N -body problem (i.e. on a particle basis), it was a natural
decision to apply a Lagrangian method to solve hydrodynamical interactions in GADGET.
More specifically, SPH (see Sec. 2.2) was chosen due to its established performance,
exact conservation properties, and the amount of research already available regarding
this approach.
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The default kernel in OpenGadget3 is the M4 kernel (see Eq. 2.23) although, based
on the findings of Dehnen and Aly (2012), either the C6 kernel (Eqs. 2.24 and 2.25) or the
similar C4 kernel are now used predominantly for their improved accuracy and stability.

The basic SPH method is improved upon by a number of additions such as artificial
viscosity, a shear flow limiting procedure, and artificial conduction. See Beck et al. (2016)
for an overview of the current state of OpenGadget3’s hydrosolver.

4.3 Time Stepping

OpenGadget3 evolves its particles using the kick-drift-kick (KDK) mode of a leapfrog
integrator. A kick refers to an update of the particles momenta whereas a drift calculates
the change in position of a particle. These are done in turn and synchronization is regained
after each full KDK step. In practice, this means that evolving a single particle i from a
distinct time step n to the next step n+ 1 with a given (∆t)i is achieved as

First half-kick: ~p
n+1/2
i = ~pn

i + ~f
n−1/2
i

(∆t)i
2

(4.6)

Drift: ~r n+1
i = ~r n

i +
~p
n+1/2
i

mi

(∆t)i (4.7)

~f
n−1/2
i 7→ ~f

n+1/2
i (4.8)

Second half-kick: ~pn+1
i = ~p

n+1/2
i + ~f

n+1/2
i

(∆t)i
2

(4.9)

with ~fi being the sum of all forces acting on particle i. The exact nature of the force
update (Eq. 4.8) depends on the physics applied for each simulation and may become
arbitrarily complex.

In addition, OpenGadget3 allows for individual time steps for each particle. Similar
to the time stepping approach we discussed for meshless schemes (Sec. 3.5), the calcu-
lated time steps (∆t)calc are then rearranged in a power-of-two hierarchy of refined time
steps. This ensures that at the end of each maximum time step (∆t)max, all particles are
manifestly synchronized. The code advances time in instances of the smallest occupied
time bin and every particle is drifted during each time step (Eq. 4.7). The kicks (Eqs. 4.6
and 4.9), however, as well as the force update will only be calculated for those particles
that have reached the end of their time step, i.e. active particles.

The formal calculation of the particle time steps (∆t)calc for SPH (i.e. gas) particles
follows Eq. (3.25). For gravitational particles, the time step is calculated as

(∆t)grav,i =

√

2ηǫ

|~ai|
(4.10)

with the gravitational softening ǫ, acceleration ~ai = ~fi/mi, and an accuracy parameter η.
Additional physics such as artificial conduction, stellar feedback, and black hole inclusion
may impose different time step constraints on affected particles. The time step that is used
for placing a particle into the hierarchical time bin structure always equals the minimum
of all applicable time steps.
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4.4 Cosmology

Simulations are not limited to Newtonian space but can also be carried out with a cos-
mological background. In theory, OpenGadget3 can be run with arbitrary cosmologies so
long as they unambiguously produce a scale factor a(t)14.

The scale factor, quantifying the expansion (or, theoretically, contraction) of space,
is taken into account when evaluating the central equations laid out so far. Most impor-
tantly, the Hamiltonian becomes

H =
∑

i

~p 2
i

2mia(t)2
+

1

2

∑

i

∑

j

mimjϕ
(

~ri − ~rj
)

a(t)
(4.11)

and the KDK scheme (where now t corresponds to the total time of time step n) is
modified as

First half-kick: ~p
n+1/2
i = ~pn

i + ~f
n−1/2
i

∫ t+(∆t)i/2

t

dt′

a(t′)
(4.12)

Drift: ~r n+1
i = ~r n
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a(t′)2
(4.13)
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n+1/2
i

∫ t+(∆t)i

t+(∆t)i/2

dt′

a(t′)
. (4.15)

Furthermore, the evaluations are performed using comoving coordinates ~rc = ~r/a(t)
to ensure stable resolution for the entirety of the simulation.

4.5 Magnetic Fields

Dolag and Stasyszyn (2009) complemented GADGET with a comprehensive treatment of
magnetic fields. Their implementation makes use of the points we presented in Sec. 2.2.4
and couples them with various stabilization and regularization mechanisms:

• In order to suppress the clumping instability (Phillips and Monaghan, 1985), a
correction term to the magnetic force was introduced, following Børve et al. (2001).
This term explicitly subtracts the effects of any non-vanishing ∇B contributions
and is calculated as
(

d~vi
dt

)

corr

= −
dt

dη

β

µ0

~Bi

∑

j

mj

[

fi
~Bi

ρ2i
· ∇iW

(

~ri − ~rj, hi
)

+ fj
~Bj

ρ2j
· ∇jW

(

~ri − ~rj, hj
)

]

(4.16)
with the conformal time η, a control parameter β ≤ 1 and fi given by Eq. (2.34).

• To reduce numerical noise within the magnetic fields (especially on scales smaller
than typical smoothing lengths), the magnetic field itself is treated as a smoothed
quantity in accordance to Eq. (2.14).

• To the same extend, artificial magnetic dissipation was introduced, analogous to
the implementation of artificial viscosity we discussed in Sec. 2.2.5. Based on the
findings of Price and Monaghan (2004), this dissipation term scales with the change
of the total magnetic field.

14A Newtonian universe, in actuality, is nothing else than the edge case a(t) ≡ 1.
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4.6 Sub-Grid Physics

A general drawback of every cosmological code is that in order to have sufficient statistics
on large scales, resolution must be chosen rather coarsely. A single particle (or cell) may
easily contain thousands or even millions of M⊙, making any simulation of internal or
external processes for single objects unfeasible by orders of magnitude. However, some of
these processes have important consequences even on scales that are large enough to be
resolved. In the following, some of these processes and their approximative treatment in
OpenGadget3 shall be highlighted.

4.6.1 Star Formation and Stellar Feedback

The standard model for star formation in GADGET was introduced by Springel and Hern-
quist (2003). In it, hot and cold gas coexist in each gas particle in pressure equilibrium.
The equations of hydrodynamics are solved solely for the hot gas which is assumed to
encase cold clouds that fuel star formation. Combined with the emerging stellar particles,
this results in three different phases that baryons can occupy with the following processes
linking these:

• Gas may be transferred from the hot to the cold phase by radiative cooling (see e.g.
Tornatore et al. 2003).

• Cold clouds may form star particles15. Due to resolution constraints, these always
represent a whole population of stars, taken to be drawn from a predetermined initial
mass function (IMF). IMFs that can be chosen include those brought forward by
Salpeter (1955), Kroupa (2001), and Chabrier (2003) but the implementation of
custom IMFs is very straightforward. The star formation rate follows a Kennicutt-
Schmidt relation (Schmidt 1959 and Kennicutt 1989).

• Massive stars explode as supernovae. This recycles mass and energy to the hot
phase while cold clouds are partially evaporated.

A similar approach of modelling star formation and multiphase particles in GADGET

is presented in Murante et al. (2010). In their multiphase particle integrator (MUPPI)
model, star formation efficiency is based on the dynamical time of the cold phase, thus
not imposing an ad hoc Kennicutt-Schmidt relation. Their model is, however, able to
reproduce such. Additionally, the interactions between all three baryon phases are de-
scribed using a number of ordinary differential equations that are integrated for each gas
particle, thereby abandoning the reliance on equilibrium solutions. While MUPPI is not
yet part of the standard repository of OpenGadget3, it is still in active development (see
e.g. Valentini et al. 2020) and intermediate results look promising.

4.6.2 Chemical Evolution

The chemical enrichment model follows Tornatore et al. (2007). Taking into account the
mass-lifetime relation of stars produced from the IMF (as per Padovani and Matteucci
1993) allows for metal releases from supernovae Type II (Woosley and Weaver, 1995) and
Type Ia (Thielemann et al., 2003) as well as those of asymptotic giant branch stars (van
den Hoek and Groenewegen, 1997) to be tracked. Lifetime functions, stellar yields, and

15This occurs as soon as a gas particle exceeds a certain temperature threshold TSFR to trigger thermal
instabilities as well as a density threshold depending on TSFR, the characteristic star formation time scale,
and the energy budget from supernovae.
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the IMF itself are adjustable. This scheme poses another time step constraint on star
particles to ensure that a constant percentage of supernovae of each type explode during
each ∆t.

4.6.3 Cosmic Rays

A more recent addition to OpenGadget3 is the inclusion of cosmic rays. Following the work
of Miniati (2001), Böss et al. (in prep.) implemented a scheme that simulates both protons
and electrons as populations contained within gas particles. Their treatment takes into
account source terms such as shock injection and supernovae, adiabatic changes due to
the excitation of Alfvén waves (see e.g. Lerche 1967 for theoretical background), radiative
changes, and turbulent reacceleration.

Although extensive tests on the effects of this inclusion are yet to be carried out, cos-
mic rays are expected to be of particular importance in galaxies due to various interaction
processes with the interstellar medium, see e.g. Grenier et al. (2015) for a comprehensive
review.

4.6.4 Black Hole Growth Model and AGN Feedback

Black holes (BHs) in GADGET are realized as an own subspecies of particles with the ability
to accumulate mass either from accreted gas or by merging with other BHs. Their exact
growth model and feedback as active galactic nuclei (AGNs) follow Springel et al. (2005a)
with modifications by Fabjan et al. (2010) and Hirschmann et al. (2014).

BHs are seeded inside a halo of dark matter particles whenever its stellar mass com-
ponent reaches a certain threshold (∼ 1010 M⊙ h−1). The determination which particles
constitute a halo is done with a friends-of-friends algorithm, grouping particles based on
proximity. Once formed, BHs may be pinned to their host halo (by forcing them to the
position of the particle with the minimum potential within the BH’s kernel) or be allowed
to move freely. The latter avoids spurious migration of BHs from satellite galaxies to
the central halo galaxy but additional measures16 have to be taken to keep BHs in the
potential minimum (i.e. the centre of their host galaxy).

BH mergers are implemented in a straightforward manner, combining the masses
of the two progenitors into a single particle when their distance drops below a specified
threshold. The accretion rate onto a BH is estimated using the Bondi-Hoyle-Littleton
approximation (see e.g. Bondi 1952) as

Ṁ• =
4πG2M2

•αρ

(c2s + v2•)
3/2

(4.17)

with ρ and cs being the density and sound speed, respectively, of the surrounding gas, v•
the velocity of the BH with respect to the surrounding gas, and α a boost factor accounting
for the fact that gas properties in the near vicinity of the BH cannot be resolved accurately.
Gas particles may either transfer all of their mass or only a (predetermined) fraction of
it onto the BH. Additionally, accretion rates can never exceed the Eddington limit given
by the necessary outwards directed radiation pressure needed to balance out the inwards
directed gravitational forces.

16These measures include a strict conservation of momentum for gas accretion as well as momentum
and centre of mass conservation for BH mergers. Additionally, an aggressive gravitational softening is
applied.
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AGN feedback is directly proportional to the accretion rate onto the black hole and
realized as thermal energy being injected to the surrounding gas particles according to
their kernel weight. The rate of this feedback is given by

ĖAGN = ǫrǫfṀ•c
2 (4.18)

with the speed of light c, ǫr ≈ 0.1 being the radiative efficiency and ǫf a free parameter.
ǫf can be used to distinguish between different environments, e.g. in quasars ǫf = 0.15
whereas radio-mode feedback would constitute ǫf = 0.6 (see Hirschmann et al. 2014).
Lastly, the accretion rate is adjusted for this feedback so that

∆M• = (1− ǫr) Ṁ•∆t . (4.19)

4.7 Scientific Results

The scientific goal of GADGET and all its iterations is to study structure formation and
evolution on large scales. Hence, the majority of research carried out using this code is
concerned with galaxies, clusters, and large-scale structure itself.

Querying NASA’s Astrophysics Data System (ADS) for articles citing Springel (2005)
(the article accompanying the release of GADGET-2) alone yields thousands of results and
discussing them all would surely exceed the scope of this (or any) work. We will therefore
limit ourselves here to a very short and subjective selection of results that were achieved
with different versions of the code.

One of the earliest astrophysical investigations using GADGET was published by Bor-
gani et al. (2004). Assuming a ΛCDM cosmology, the authors studied the X-ray prop-
erties of clusters and groups of galaxies, using a cosmological box with a side length
of 192Mpc h−1 as well as 4803 gas particles and as many dark matter particles. Mass-
temperature relations, X-ray temperature functions and luminosity-temperature relations
were all found to be in good agreement with observations. However, their simulated clus-
ters suffered from overcooling and thus, the fraction of baryons in stars was overestimated.

The capabilities of GADGET-2 were impressively demonstrated with the execution of
the Millennium run (Springel et al., 2005b), simulating 2,1603 dark matter particles in a
box of side length 2.23Gly and following their evolution from z = 127 to z = 0. See Fig.
4.1 for a depiction of the dark matter component at z = 0. Galaxies and quasars were
added in post-processing. The authors were able to strengthen the idea that small baryon-
induced perturbations in the initial conditions would propagate to become features now
observable in the distribution of low-redshift galaxies.

Kereš et al. (2009) studied avenues of galaxy formation using a 50Mpc h−1 box with
2883 particles of dark and baryonic matter each. They found that, contrary to many
historic analytical models, cooling of shock-heated virialized gas only plays a minor role
whereas most mass is accreted through inflow from filaments, independent of the mass of
the galaxy.

More recently, the non-public version GADGET-3 was used to simulate a suite of cos-
mological boxes with various resolutions, named the Magneticum Pathfinder simulations
(see Hirschmann et al. 2014 and Ragagnin et al. 2017, also see Fig. 4.2). Various studies
have since been carried out using the (in part publicly available) data for scientific investi-
gations. Teklu et al. (2015) conducted an extensive study connecting galaxy morphologies
to their angular momentum. They found that simulations agreed well with observations
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Figure 4.1: The dark matter distribution in the Millennium simulation at z = 0 in
various zoom levels. The colour code represents density and local dark matter velocity
dispersion. Figure taken from Springel et al. (2005b).

and that the specific angular momentum in cold gas of disk galaxies is smaller by ∼40%
and scatters more compared to the total dark matter halo. Steinborn et al. (2016) studied
galaxies at z = 2 with two distinct BHs in their centre, either with one or both of them
showing AGN activity, and found that BH masses were comparable if both where active.
In contrast, the AGN was shown to be systematically more massive than the inactive
BH in galaxies that featured both. These galaxies also showed smaller AGN accretion
rates. Dolag et al. (2016) investigated the thermal Sunyaev-Zeldovich effect (Sunyaev and
Zeldovich, 1970), an analysis made possible by the detailed thermal and chemical model
for the intracluster medium, and compared their results to the findings of the Planck
Collaboration et al. (2016). They found good agreement up to angular scales of l ≈ 1000.
Beyond that, their values overestimated the observed data significantly. Schulze et al.
(2018) studied the kinematics of the simulated galaxies and found a dichotomy between
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slow and fast rotators at early times, in good agreement with observations. A complete
and well maintained list of all publications concerning the Magneticum Pathfinder sim-
ulations can be found at http://www.magneticum.org/publications.html.

Figure 4.2: Distribution of diffuse baryonic matter at z = 0.2 from Box2b/hr of the
Magneticum Pathfinder simulations. The colour code corresponds to the gas tempera-
ture and the visualization is centred on the most massive cluster within the box. Figure
taken from Ragagnin et al. (2017).

4.8 Derived Codes

Fuelled by the solid performance of the code, both numerically and physically, a handful
of spin-off codes were (and are still being) developed based upon the GADGET framework.
Here, we present two of these.

GIZMO The GIZMO code (Hopkins, 2015, 2017) supplements the developer version of
GADGET-3 with several additional physics modules such as turbulent eddy diffusion models,
radiation-hydrodynamics, cosmic rays, and treatment of dusty fluids (see e.g. Jalil et al.
2017 for theoretical background on the latter). More importantly, GIZMO offers the choice
between different hydro solvers at compilation time. Users can choose between a modern
SPH approach (modern meaning that the correction terms discussed in Sec. 2.2.5 are
applied, among others), the meshless schemes MFM and MFV, as well as a fixed-grid
Eulerian treatment (itself being an edge case of a meshless approach). For more details
on its performance, see also Secs. 3.6 and 6.2.

The EAGLE Project Schaye et al. (2015) carried out an ambitious suite of cosmolog-
ical simulations in a ΛCDM context, comparable in scale to the Magneticum Pathfinder

simulations. While they did not make their code publicly available, they incorporated
great changes to the default version of GADGET-3, including alternations to the time
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stepping, the SPH implementation and numerous aspects of the sub-grid physics. The
latter are in large parts an adaption to the methods applied in Schaye et al. (2010).
See Crain et al. (2015) for an early study concerning the parameter space of EAGLE and
http://icc.dur.ac.uk/Eagle/publications.php for a list of publications using their
simulated data.
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5 Implementing an MFM Scheme in GADGET

Our meshless scheme of choice for implementation in OpenGadget3 is MFM rather than
MFV for its convenient feature of preserving masses, facilitating coupling to gravity, as
well as for the slightly better performance that Hopkins (2015) found upon thorough
direct comparison.

In this section, we will first describe the most important facets of our realization of
the MFM scheme in OpenGadget3 and afterwards present various numerical tests that we
carried out, each highlighting different aspects of the implementation.

5.1 Code Structure

The MFM package in OpenGadget3 is written in the C++ programming language (as op-
posed to C which is used for the majority of other functionalities). The first reason for this
decision is based on the additional capabilities of C++ over its predecessor, most notably
the object oriented approach of the language. For example, we realized different Riemann
solvers as child classes of a base class RiemannSolver, facilitating the implementation
of new solvers a great deal. The second reason is of purely practical nature, namely to
allow for an easy porting of the MFM scheme applied in GANDALF (Hubber et al., 2018),
a code natively written in C++, which we used as a basis for our implementation. Luckily,
this decision does not disrupt workflows, since OpenGadget3 ought to be compiled with
C++-compatible compilers in any case to make use of their numerous advancements.

To enable OpenGadget3 to use MFM instead of SPH, a switch can be set in the
configurations file, resulting in the differentiation between solvers at compile time. Addi-
tional switches may be set to choose the slope limiter and Riemann solver to be applied.
The parameter file, specifying the characteristics of each run, such as the initial condi-
tions (ICs) file, the output frequency, and the total runtime, may be left untouched (other
than adjusting the neighbour number to the kernel used). Parameters pertaining to SPH
specific parts are simply ignored.

Fig. 5.1 illustrates how OpenGadgets’s main loop (iterating over all time steps) is
altered when MFM is chosen over SPH. After each particle was assigned a time step (see
Sec. 4.3), the fluxes between neighbouring particles are calculated if at least one of them
is currently active. We allow for parallel computation using the message passing interface
(MPI) framework by creating appropriate, reduced data structures for every gas particle

that can easily be exchanged between CPUs. Since conservation demands ~Fij = −~Fji, we
can reduce the number of iterations necessary to calculate all fluxes by almost half. We do
so by skipping each neighbour j of a target particle i if (∆t)j < (∆t)i, knowing that this
flux will ultimately be calculated when j becomes the target particle. The resulting fluxes
are always recorded for the target particle and, if (∆t)j > (∆t)i, also for the neighbour
particle (with opposite sign). Only if both particles are in the same time bin will the
two fluxes be calculated independently. We accept this penalty in computation time to
avoid the necessity of bookkeeping on which neighbour pairs on equal time steps have
already been evaluated. All calculated fluxes are multiplied by the current time step of
the target particle and accumulated in a d ~Q variable. During the ensuing first half-kick,
these variables are adjusted for gravitational contributions for all active particles.

The following drift routine remains untouched by our implementation, as do the
domain decomposition and the gravity update. Likewise, the density calculation using
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Figure 5.1: Comparison of OpenGadget3’s main loop using either SPH (a) or MFM (b)
as a hydro solver, unique routines are highlighted. These massively simplified diagrams
ignore any physics other than gravity and fluid interactions.
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the SPH framework is performed for all active particles and the primitive vectors ~W are
updated accordingly.

The second half-kick resembles the first one in that we update the d ~Q by gravitational
accelerations. At this point, we also carry out the update of the ~Q vectors of active
particles as ~Qnew = ~Qold+d ~Q. Afterwards, all affected d ~Q are zeroed again, the primitive
vectors are recalculated from the updated conservative vectors, and the entropy is trivially
calculated from the internal energy.

This is followed by the computation of gradients. Similar to the flux computation,
we make full use of the capabilities of MPI to allow for parallel execution. We apply the
formalism introduced in Sec. 3.2.2 and evaluate it for all active particles. As a safeguard,
we calculate the squared condition number N2

cond,i as

N2
cond,i =
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∥

∥

∥
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and accordingly for ||Bi||. N2
cond,i is a measure for how much errors propagate during

matrix inversion. In practice, a large condition number is usually the result of an ill-
defined gradient in one spatial dimension due to a lack of neighbouring particles in this
direction. If we identify a value of N2

cond,i above a certain threshold, we do not use the
gradients obtained in this manner but rather fall back on using the less accurate but more
stable gradients obtained from the SPH-like density calculation. At this point, we also
check if any particles ought to be woken up, see Sec. 5.4 for more details. Lastly, the
calculated gradients are flattened (if necessary) with the chosen slope limiting scheme,
once again exploiting MPI.

Afterwards, the code checks if any special stop conditions are met (such as a manual
abort or a depletion of assigned CPU time) and enters the loop anew if that is not the
case, advancing the physical time t by the time step ∆t of the previous iteration.

5.2 Treatment of Discontinuities

First, we examine how our meshless scheme fares in dealing with discontinuities by per-
forming Sod shock tube tests. Studied extensively by Sod (1978), these numerical prob-

lems are characterized by ICs that are split in two distinct regimes: a left state ~WL and a
right state ~WR. By convention, we set ρL = 1 and ρR = 0.125 as well as ~vL = ~vR = 0. We
also fix the pressure of the left state pL ad hoc and apply a double root-finding algorithm
to calculate pR such that a target Mach number of the shock M will be reached. All
physics other than hydrodynamics are switched off. The problem can be solved in one,
two, or three dimensions17; we choose the latter for a more realistic test. In each case,
the shock will be aligned along the x-axis. Since we use periodic boundary conditions,

17Note that Riemann solvers (Sec. 3.3) are themselves nothing else than algorithms solving the shock
tube problem in 1D. When assessing how our MFM implementation captures these in 3D we are thus, in
a sense, testing how well these particle-to-particle solutions scale to more dimensions and bigger scopes.
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we are in actuality dealing with two discontinuities. To avoid self-interactions we extend
the computational domain generously in x-direction, ultimately obtaining a box of side
lengths [140, 1, 1] with the left and right initial state separated at x = 70. Both sides
of this tube are constructed by stacking cubes of 73 particles that have previously been
relaxed with the chosen kernel. One the right side, we simply repeat the cube 70 times.
To maintain constant particles masses, eight of these cubes comprise a single stacked cube
on the left side (resulting in an eightfold increase in density) which is then repeated 70
times as well. We let the system evolve and compare our results to those obtained with
the AMR code Athena++ (White et al. 2016, Felker and Stone 2018) and to the analytic
solution (which we calculate with the approach outlined in Pfrommer et al. 2006).

We start by choosing pL = 200/3 andM = 1.5, resulting in pR ≈ 8.154. This scenario
represents mild shocks that we expect to see plentiful in cosmological simulations. We
choose CCFL = 0.05, a fairly low value which, however, allows us to reduce the noise in
MFM. We use the exact Riemann solver by Toro (1999), a slope limiting scheme following
Springel (2010), as well as the C6 kernel with 295 neighbours. Fig. 5.2 shows the outcome
of these tests. The three regions of interest will be referred to as the rarefaction wave
(from x ≈ 54 to x ≈ 67), the contact discontinuity (x ≈ 80), and the shock discontinuity
(x ≈ 93).

Figure 5.2: Sod shock tube with a Mach number M = 1.5 at t = 1.5. The SPH and
MFM runs in OpenGadget3 were executed with the same parameters and ICs. The ideal
solution is calculated according to Pfrommer et al. (2006). The solution of Athena++ was
achieved using 800×1×1 cells and with a considerably higher CCFL (by a factor of eight).

Overall, we see that SPH and MFM yield similar results although a thorough analysis
reveals differences in certain details. For example, the beginning of the rarefaction wave
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(see detail in the ρ(x) panel, upper left) is better resolved in MFM and does not feature
the undershoot of the SPH solution. However, MFM shows considerably more noise
despite the low CCFL we chose. This is a consequence of the lack of artificial viscosity,
leading to smoother solutions in SPH. The detail in the p(x) panel (lower left) shows the
pressure blip, an artefact of the inconsistency between the smoothed-over discontinuity in
ρ and the sharp discontinuity in p in the ICs. While it is present in both solutions, its
amplitude is slightly reduced in MFM. The pressure blip also leads to an over-smoothed
contact discontinuity (detail in E(x) panel, lower right) present in both schemes. Lastly,
the shock discontinuity shows a slight undershoot of the MFM solution, most notably in
the velocity (detail in vx(x), upper right panel).

We also simulate more violent shocks, setting once again pL = 200/3 but this time
choosing M = 100, yielding pR ≈ 0.001. All remaining parameters are kept constant.
While Mach numbers of this scale are generally much rarer, they are expected in accretion
shocks of galaxy clusters (see e.g. Skillman et al. 2008 and Vazza et al. 2015a,b). Fig. 5.3
shows the outcome of this simulation.

Figure 5.3: Sod shock tube with a Mach number M = 100 at t = 1.5. Apart from a
different pR in the ICs, the same parameters as in the previous run (Fig. 5.2) were used.

While the density is, in general, still more noisy in the MFM scheme, we see that the
pressure within the shock region is better resolved with our meshless approach, leading
to a pressure blip that is both smoother and less pronounced than in SPH. This, in turn,
leads to a slightly better approximation of the contact discontinuity (detail in ρ(x)) even
though both approaches do produce an undershoot. The contact discontinuity, however,
still shows spurious features in MFM, this time more clearly visible in the downstream
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region (details of vx(x) and E(x)). We also observe a region of increased noise within the
rarefaction wave both in this and the previous simulation.

We repeated all tests with the exact same parameters but using the M4 kernel with
32 neighbours instead. The results were qualitatively similar to those shown in Figs. 5.2
and 5.3 but featured considerably more noise both with SPH and MFM. The next section
will illuminate the choice of kernel functions in more detail.

We conclude that our MFM implementation performs about as well as SPH when
using equal parameters. The biggest drawback we found was the considerable increase
in noise, especially in the density estimates. This is also observable in regions not yet
penetrated by the shock. Lowering CCFL allows us to lessen this effect but for any choice,
SPH still delivers better (i.e. smoother) results with the C6 kernel. However, our MFM
approach resolves discontinuities slightly better and shows less over-smoothing. An ex-
ception from this is the shock discontinuity that is resolved worse in MFM. We expect
this issue to be addressable by a better suited choice of slope limiting procedure but did
not explore this avenue any further.

We also note that the solution of Athena++ performs much better than both schemes
while taking mere seconds to compute. This, however, is simply attributed to the one-
dimensional nature of these runs18, combined with a much larger CCFL. In addition, the
Riemann solver is only called between direct neighbour cells whereas in OpenGadget3 it is
invoked for each active particle (roughly) NNgb times. Hence, the solution obtained with
the AMR code resembles the solution of a single Riemann solver call much more closely.

5.3 Kernel Functions and Neighbour Numbers

We test the hypothesis that MFM would allow us to use both a simpler19 kernel function
as well as a smaller number of neighbours.

To this extent, we set up a Sedov blast wave test after Sedov (1959): Inside a region
of homogeneous density (which we realize through a perfect grid of particles) we insert
an amount of thermal energy. The energy may either be associated to one particle alone
or spread out over a kernel — we choose the latter. This setup leads to a blast wave
expanding from the point of injection outwards. We compare the results of the simulation
to the analytical solution by Book (1994).

Fig. 5.4 shows the outcome of our tests. Depicted are radial profiles of a 3D cube
containing 643 particles, simulated both with SPH and MFM as well as with the C6 kernel
(with 295 neighbours) and theM4 kernel (32 neighbours)20 each. The first striking obser-
vation is that the C6 kernel with its significantly larger neighbour number (by almost a
factor of ten) shows considerably less scatter than theM4. Comparing the performance of
the C6 kernel in the two schemes shows that they yield comparable results with the most
noteworthy difference that MFM slightly decreases the width of the smoothed wave pre-
ceding the actual shock front (see the regime at r ≈0.4). Changing the kernel drastically

18Due to the Eulerian nature of the code, the solution for this particular problem would virtually be
the same in two and three dimensions.

19We quantify the simpleness of a kernel by the inverse of its highest order polynomial. The higher
this value, the easier (i.e. quicker) the computation of each W(∆~r, h) becomes.

20As pointed out by Dehnen and Aly (2012), the M4 kernel becomes susceptible to pairing instabilities
for NNgb > 55 whereas the C6 heavily benefits from an increased neighbour number. Our exact values
are taken such that the full width at half maximum, given h(NNgb), equals that of a pure Gaussian in a
field of constant density.
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increases the noise in the SPH approach. While MFM also sees an increase in scatter, it
is much less significant. As can be seen most prominently in the density profile, the run
using MFM and theM4 kernel approximates the analytic solution of the shock best while
further reducing the effect of the leading smoothing wave.

Figure 5.4: Sedov blast wave in 3D, simulated from an initial regular grid of 643 par-
ticles with internal energy injected (in a kernel-weighted manner) in the most central 32
particles. We plotted every 50th particle after sorting them according to their distance r
to the centre of the initial energy injection. vr in the second panel is the radial velocity
with respect to this point. The M4 kernel (Eq. 2.23) used 32 neighbours whereas the C6

kernel (Eq. 2.25) used 295. For the MFM runs, we applied the exact Riemann solver by
Toro (1999) and followed the slope limiting procedure of Springel (2010).

The phenomenon of a larger number of neighbours leading to less noise is very much
expected as greater neighbour numbers lead to increased smoothing lengths and hence
smoothing over a larger radius, effectively equalizing physical properties on larger scales.
We also expect to see less over-smoothing with MFM since meshless schemes reduce
the prevalence of the kernel to the domain partitioning alone21 (see Sec. 3.2.1), thereby
alleviating the effect of the smoothing procedure. The reason for the superior performance
of the C4 kernel in MFM, however, may not be so obvious.

21This is not exactly true in our implementation since we still use a density loop performed in an
SPH-like manner. This lessens, but does not invalidate, the argument.
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Fig. 5.5 illustrates why, in contrast to SPH, a higher (i.e. too high) number of
neighbours leads to declining results using MFM. Nevertheless, this does not imply that
we can just reduce the number of neighbours to an arbitrary degree as Fig. 5.6 shows.

Figure 5.5: Repetition of Fig. 3.2, this time taking into account more neighbouring
particles (based on proximity to the target particle). As indicated by the red crosses, the
fluxes with particles that do not share a common boundary with the target particle are
evaluated within the domain of other particles, tarnishing their accuracy.

In summary, we find that a simpler kernel with a lower neighbour number indeed
leads to better results. This, however, comes with the negative side effect of increasing
the noise of MFM even further. To offset this, a lower CCFL may be chosen.

5.4 Wake Up Scheme

Time stepping in our MFM scheme follows the principles that we outlined in Sec. 3.5. In
a purely hydrodynamical simulation, the only time step criterion we use is given by Eq.
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Figure 5.6: Repetition of Fig. 3.2, this time taking into account fewer neighbouring
particles. The two particles in red are now not counted as neighbours and fluxes between
them and the green target particle are neglected, introducing random errors. If the fluid
features a density gradient, a common occurrence in cosmological simulations, this would
lead to a systematic directional bias instead.

(3.25). The resulting (∆t)i are then converted to a time bin in a power-of-two time step
hierarchy and the fluxes are solved accordingly.

While the above approach works reasonably well in most cases, it does struggle to
accurately reproduce shocks. Per definition, these feature particle velocities in excess of
their sound speed, leading to a propagation of information not taken into account in our
simple approach. This in turn may lead to particles on largely different time steps coming
close to each other and, ultimately, particles on small time steps penetrating a regime of
particles on larger time steps without the latter accurately reacting to their presence until
much later (i.e. when they become active themselves).
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To prevent these fringe cases from happening, we applied a wake up scheme similar to
the one of the SPH mode of OpenGadget3: Each particle is assigned a wakeup attribute,
a flag indicating whether the particle should enter the wake up routine which is called
during the determination of time steps at the beginning of each iteration of the main
loop (cf. Fig. 5.1). Initially, these flags are unset for all particles. During the gradient
computation22 (the last physics routine in the main loop) we perform the check

vsig,ij
?
>W vsig,j (5.3)

for each pair of target particle i and neighbour particle j with

vsig,ij = cs,i + cs,j −min

[

0,

(

~vi − ~vj
)

·
(

~ri − ~rj
)

∣

∣~ri − ~rj
∣

∣

]

(5.4)

the signal velocity between i and j (the last addend taking into account their relative
movement), vsig,j the maximum of which detected for particle j (cf. Eq. 3.26), and W ≥ 1
a parameter. Note that while particle i must be active to enter the gradient computation
in the first place, this is not necessarily true for particle j. Hence, the maximum signal
velocity of j stems from the last time step when this particle was evaluated. If the
condition in Eq. (5.3) is met we know that the signal velocity in the vicinity of j has
increased since it was last estimated and the particle ought to be woken up. W can be used
to control the aggressiveness of the wake up scheme (with higher values corresponding to
a higher wake up threshold) and is set at compilation time.

We test the effects of the wake up scheme by once again simulating a Sedov blast wave
with MFM. This time, the simulations are performed in 2D with 642 particles initially
positioned along a regular grid. We choose a very conservative Courant-Friedrichs-Lewy
number of CCFL = 0.025 to exclude errors caused by too small temporal resolution. We
perform the simulation with and without using the wake up scheme. In the former case,
we choose a wake up parameter of W = 3.0.

Fig. 5.7 shows the evolution of the blast wave in physical space; the particles are
colour coded according to their current time step with larger (∆t)i corresponding to
lighter colours. Already at very early times (leftmost panels) we see that the wake up
scheme adjusts time steps in a large radius around the blast. In contrast, the simulation
without wake up only evaluates particles very close to those that where initially excited
more often. As the simulation progresses, the spurious effects of this become clear: At
t = 0.004 (central panels), when ignoring wake ups, the energetic particles penetrate the
surrounding regular grid without the grid reacting to their presence. As the rightmost
panels show, this ultimately even breaks the radial symmetry of the solution.

Fig. 5.8 furthers this observation: Early on during the simulation, the run without
wake ups transforms almost half of the total energy budget Etotal,0 into kinetic energy Ekin

— the central particles are accelerated but feel little to no pushback from their surround-
ings. The turnaround of this trend coincides exactly with the maximum permissible time
step we set for this test. Only at this time, the time steps of all particles are re-evaluated.
This behaviour is mirrored two more times, albeit less pronounced. Eventually, both runs

22We could, in theory, perform a direct check for too large time step differences after the time step
assignment instead. This, however, would require an additional double loop over all particles and their
respective neighbours. Since such a loop is necessary when calculating gradients in any case, we save
computation time by checking for the wake up condition there.
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Figure 5.7: Evolution of a Sedov blast wave in 2D, initialized as a regular grid of 642

particles. Shown are three snapshots at distinct times, both when implementing the wake
up scheme (W = 3.0, lower panels) and without it (upper panels). The colour code of the
particles corresponds to their time step — darker colour indicate smaller values of (∆t)i.
To ensure numerical stability also in the case of no wake up, a neighbour number of 24
was used, a value considerably larger than the ideal value for the M4 kernel in 2D (∼12).

approach a similar ratio of kinetic energy to thermal energy Eth. The small deviations
from the total energy (which should be conserved) at the beginning of the simulation (see
detail) is attributed to the asynchronous updating of active and inactive particles.

We conclude that the implementation of the wake up scheme significantly improves
the outcome of the simulation. Since the maximum signal velocities vsig,i are computed
in the gradient routine in any case, the additional steps required are miniscule. We note,
however, that our implementation of the wake up scheme introduces spurious fluxes. As
described in Sec. 5.1, we accumulate flux contributions in d ~Q values and only update the
~Q vector once a particle is active. During each flux evaluation, these d ~Q are increased by
~Fij ·(∆t)i (i being the active particle). While ~Qi is updated during the same time step,
the contributions to an inactive particle j are stored by summing them up into a single
value of (d ~Q)j. If the time step of the (previously) active particle i is now reduced even
further due to it being woken up before particle j becomes active again, the contribution
of i to (d ~Q)j will be counted again (albeit only a fraction of it). Despite our best efforts,
we did not find a compelling solution to this problem. The biggest hurdle in setting up a
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Figure 5.8: Evolution of the energy components of the simulations depicted in Fig. 5.7.

correction is the lack of stored previous data. Since a d ~Q vector cannot be divided into
its contributions retroactively, we cannot simply subtract the superfluous contributions,
and since old ~W or ~Q vectors are not stored either23, we are unable to recalculate them.
Nevertheless, we did not find a significant impact of these errors on our simulations and
it is debatable if the improvements in accuracy would justify the considerable additional
storage space required.

All simulations in upcoming sections, as well as those already shown in Secs. 5.2 and
5.3, made use of the wake up scheme.

5.5 Fluid Mixing

We test the efficiency of fluid mixing by studying how well our implementation can resolve
Kelvin-Helmholtz instabilities (see e.g. Tian and Chen 2016). To this extend, we set up
ICs in a sheet with dimensions [256, 256, 8]. We separate our particles in two regimes
A and B with transitions between the two at y = 64 and y = 192 (periodic boundary
conditions enabled). The density of particles in B equals roughly double the density of
particles in A (ρB ≈ 2ρA) whereas the pressure is constant over both phases. Additionally,
all particles in A are assigned an x-velocity vx,A > 0 and all particles in B the same, but
opposite velocity (vx,B = −vx,A). For all particles vy = vz = 0. With this setup, vortices
where both phases are intertwined should form at the transition layers.

23A rigorous solution would also require to store the times at which each ~Fij was last calculated, as
well as the positions of particles i and j at that time.
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The outcome of these tests is depicted in Fig. 5.9. As can be seen clearly, in a
pure SPH approach the two phases remain well separated. Although the contact layer is
deformed, the spurious pressure terms in SPH suppress any mixing effects (see Sec. 3.1.2).
Invoking the correction terms for SPH introduced by Beck et al. (2016) (most notably
the artificial viscosity and conduction) changes the outcome: The scheme becomes more
dissipative and a transition layer between the phases A and B can be observed. Applying
our MFM implementation reinforces this behaviour quite significantly. We prominently
observe a fuzzy and broad transition between both phases. It should be noted that the
outcome is more noisy, even in regimes of constant density. We attribute this to the fact
that we used the M4 kernel with 32 neighbours (as opposed to the C6 kernel and 295
neighbours in SPH), naturally leading to less smoothing and more small-scale variations.

We stress that performing these tests highlighted the importance of checking the
condition number after the gradient estimation, see Eq. (5.1). Amplified by the regularity
of the grid, the ensuing shear flows at the transition layers sporadically led to ill-defined
gradients in perpendicular directions and exceeded the threshold for N2

cond. In such cases,
we disregarded the gradients calculated with MFM and used those generated during the
(SPH-like) density loop instead. These are less accurate and lead to more noise — however,
this fallback scheme was invoked seldom enough that we do not expect any significant
deterioration in accuracy.

5.6 Runtime

In addition to the qualitative performance of MFM, we also study how much computation
time our scheme uses compared to SPH, making use of already simulated test suites. We
also study the impact of exchanging the applied Riemann solver.

Tab. 5.1 shows how long each combination of Mach number M , kernel, and hydro
scheme took to simulate a Sod shock tube as described in Sec. 5.2. Unsurprisingly,
the Mach number does not impact the runtime significantly. With the M4 kernel and
constant CCFL and NNgb, MFM runs roughly 20-25% slower than SPH. When changing to
the C6 kernel and increasing the number of neighbours by a factor of ∼9, the slowdown
increases to about 40%, indicating a worse scaling with neighbour number for MFM
than for SPH. This and the overall faster performance of SPH over MFM with similar
parameters is attributed to the necessity of repeatedly calling a Riemann solver in the
latter, a procedure more time consuming than the calculation of hydrodynamical forces
in SPH. Additionally, this force calculation requires a single loop over all active particles
and their neighbours whereas in MFM the flux computation, the gradient estimates, and
the slope limiters each require such a loop (cf. Fig. 5.1).

As we showed in Sec. 5.3, however, one advantage of MFM over SPH is that it allows
for less neighbours to be used while still achieving good (if not better) results. A more
appropriate comparison would thus be to contrast the performance of SPH using the C6

kernel with that of MFM and the M4 kernel, yielding a speed-up by a factor of ∼2 when
using the meshless approach. We note, however, that all our tests showed that such a
comparison leads to considerable more particle noise in the solution obtained with MFM.
To offset this, we found a decrease of CCFL to be most effective. This has the added
advantage that CCFL scales rather directly with the total computation time of the code,
allowing for a precise fine-tuning of accuracy to the allotted CPU time for production
runs.
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Figure 5.9: The Kelvin-Helmholtz instability as simulated using SPH with correction
schemes described in Beck et al. (2016) (SPH+, upper panels), SPH without any corrective
terms (middle panels), and with MFM (lower panels). Both SPH runs used the C6 kernel
with 295 neighbours and CCFL, SPH = 0.2 whereas the MFM simulation was run with the
M4 kernel, 32 neighbours, and CCFL, MFM = 0.1. We simulated a total of 774,144 gas
particles, initially organized in a regular grid (of different spacing in areas A and B). The
colour code symbolizes density; only every 70th particle is plotted.

We also stress that our conclusions drawn here apply to pure hydrodynamical appli-
cations. In full cosmological runs, many more subroutines come into play, most of which
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Solver M=1.5 M=100

M4 C6 M4 C6

SPH 2:34:28 6:19:55 2:28:33 6:14:36
MFM 3:09:15 8:54:22 3:04:05 8:39:02

Table 5.1: The total runtimes (real time) of all eight shock tube tests in Sec. 5.2. All
simulations were run on 32 MPI tasks on a single node with hyperthreading and one
OpenMP thread. Each simulation handled 216,090 particles and tmax, CCFL, as well as
the minimum and maximum allowed time bins have been kept constant. In all cases, the
M4 kernel used 32 neighbours and the C6 295.

unaffected by the choice of hydro solver. This lessens the impact on total computational
time that the chosen CFD scheme has.

The choice of Riemann solver We implemented both the exact Riemann solver by
Toro (1999) as well as the approximate HLL solver (Harten et al., 1983), see Sec. 3.3 for
a comparison of the two approaches. We carried out a short suit of tests to determine
if the trade-off in accuracy when using the HLL solver is worth the gained computation
speed.

Tab. 5.2 shows the total runtime of the Sedov blast wave test when performed with
the HLL solver, the exact solver, and both compared to SPH. The setup for these tests
is the same as described in Sec. 5.3. Throughout all tests, we used CCFL = 0.15. We
found the HLL solver to be crashing frequently when using the slope limiting procedure
according to Springel (2010) and thus changed to a total variation diminishing (TVD)
scalar limiter as in Heß and Springel (2010). This choice leads to a slight increase of
diffusion but does not meaningfully affect the runtime on its own.

Solver M4 C6

SPH 0:03:49 0:19:44
MFM (exact) 0:10:04 0:52:41
MFM (HLL) 0:08:54 0:49:39

Table 5.2: Comparison of runtimes (real time) of Sedov blast wave tests in 3D, simulating
643 particles. All tests were run on eight MPI ranks.

Here, we see that MFM shows a bigger temporal performance discrepancy to SPH
than in the shock tube tests. With equal parameters, MFM takes more than twice as
long to execute, independent of the chosen Riemann solver. We note that these tests
were executed on a laptop with only moderate resources and suspect these differences
to originate in an architecture less optimized towards parallel computing24. Tests using
only a single task per simulation support this hypothesis as we see a decrease in runtime
differences.

24Recall that, as mentioned before, MFM needs to perform two additional double loops over particles
and their neighbours compared to SPH, therefore also requiring more MPI calls.
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The above notwithstanding, we still find that a comparison of SPH with the C6

kernel to MFM with the M4 kernel results in a faster computation time by a factor of
∼2. Comparing both Riemann solvers, we find that the HLL solver results in a speed-up
of 6-13% (for the M4 and C6 kernel, respectively). In Fig. 5.10, we contrast this to the
qualitative performance of both solvers.

Figure 5.10: Comparison of our two Riemann solvers simulating a Sedov blast wave in
3D. The setup equals the one of Fig. 5.4. The M4 kernel with 32 neighbours was used in
both cases. For the exact solver, we used the slope limiting scheme from Springel (2010)
whereas the HLL solver was run alongside the slope limiter of Heß and Springel (2010).

Both Riemann solvers produce similar results. Notable differences include a very
slight trailing of the HLL solution (especially distinguishable in the p(x) panel at the
bottom) as well as an increase in the noise within the wave preceding the actual shock.
These phenomena can be explained by the more diffuse nature of both the HLL solver
and the TVD slope limiter. We argue that the two solution agree well enough to justify
the choice of the faster scheme. Nevertheless, we found the HLL solver to be less stable
than its exact counterpart. As mentioned above, this precluded us from using the slope
limiter by Springel (2010). We did not study the interplay of more limiting schemes and
Riemann solvers and remark that more optimization would be necessary in this regard.
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5.7 Coupling to Gravity

So far, all tests that we performed were simulating hydrodynamical interactions alone. To
see if our implementation is of any merit, however, we also ought to ensure that it couples
well to other physics modules. While a complete integration of MFM in all additional
subroutines of OpenGadget3 would require considerably more work to be done, we carried
out some primary tests to study the interaction of MFM with the N -body gravity solver.

First, we simulate the collapse of a sphere of constant density. Fig. 5.11 shows
our results. We see that the initial accelerations due to gravitational forces are resolved
equally well by both schemes. The deviations from the ideal line at r → 1 (i.e. at the
sphere edges) is a result of the density of the outermost particles being underestimated25.
Studying the evolution of the half-mass radius of the sphere, we also see good agreement
between both methods. Only towards the end of the simulation when the sphere collapse
is well advanced, the MFM run produces slightly smaller values of R1/2 (i.e. a faster
collapse) which are, however, in better agreement with the ideal solution. This shows
yet another effect of the suppressed over-smoothing in meshless schemes, postponing the
inevitable numerical diffusion of the theoretically ensuing singularity.

Figure 5.11: Free fall test in 3D using 4,000 particles. The left panel shows the total
acceleration ~ar acting on a particle at the very start of the simulation as a function of
distance r to sphere centre. Every tenth particle is plotted. The right panel shows the
evolution of the half-mass radius R1/2, i.e. the radius containing half of the mass of the
total sphere, with time. The MFM simulation used an exact Riemann solver and the
TVD slope limiter by Heß and Springel (2010). Both tests were performed with the M4

kernel and 32 neighbours.

Secondly, we set up a Rayleigh-Taylor instability (see e.g. Sharp 1984). To this
extent, we place two fluids in a 2D unit box with a constant gravitational field of g = −0.5
in y-direction. We align the fluids such that the heavier one is placed on top of the lighter

25This, in turn, is a direct consequence of the spherical symmetry and finite extent of the kernel
functions. Particles at the sphere edge take the void outside of the sphere into consideration for their
density estimate.
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one. We apply periodic boundary conditions in x and reflective ones in y. The latter
is realized by forcing all particles with yi < 0.1 or yi > 0.9 in place for the entirety of
the simulation. To excite an instability, we insert a velocity perturbation at the phase
boundary. Self-gravity of gas particles is switched off. The exact set up follows Sec. 4.4.2
in Hopkins (2015).

Fig. 5.12 depicts the outcome of these simulations. Both schemes form two distinct
drops that follow the gravitational field and descend with a similar velocity. In SPH,
the two drops show significant differences to one another. This is an artefact of small
aberrations in the ICs, propagating to different pressure estimates and starting a self-
reinforcing pattern. Such an effect is absent in MFM since pressure terms are not directly
inferred from density. Other than that, we see phenomena manifest that we already
discussed in previous sections: The MFM implementation (once again run with a lot less
neighbours) shows considerably more noise and mixing. Whereas the columns above the
drops are very sharply defined in SPH, they are smeared out in MFM. The immediate
vicinity of the lower ends of the drops also shows more substructure in SPH. We attribute
the lack of distinct features in MFM to the relatively low resolution as well as the diffusive
slope limiter by Heß and Springel (2010) that was used for its stability.

A more demanding test case we study is that of a hydrostatic sphere. We follow the
setup of Viola et al. (2008) and initialize a dark matter (DM) halo with 88,088 particles
and a spherical density profile as described in Navarro et al. (1997):

ρ(r) =
ρ0

(

r/rs
) (

1 + r/rs
)2 (5.5)

with central density ρ0 and scale radius rs. We afterwards populate this DM halo with
95,156 gas particles such that both components are in hydrostatic equilibrium. Note that
this simulation is thus the first in this work to feature more than one type of particle. If
all effects are resolved correctly, the initial profile should persist indefinitely. We test our
MFM implementation both with fixed and adaptive gravitational softening (AGS).

We show our results in Fig. 5.13. It is apparent that SPH is able to maintain a
stable profile (that is, however, slightly different to the initial profile) much more easily.
Apart from a somewhat significant difference between the ICs and the first output at
t = 2, no discernable trend with time is traceable. Note that the small fluctuations near
the sphere centre are, in part, due to a low number of particles within each bin combined
with a smaller bin size. The MFM simulations, on the other hand, struggle to find an
equilibrium configuration. While mass gets accumulated near the sphere centre, internal
energy (and thus temperature) is transported outwards. This phenomenon persists when
invoking AGS although its amplitude is slightly reduced. Interestingly, however, at late
times, we see a turnaround at the centre of the sphere with density decreasing and internal
energy increasing again. This, on one hand, could point to a spurious interaction between
MFM and AGS not yet fully understood. On the other hand, this might indicate that
MFM oscillates around an equilibrium state on massively longer timescales than SPH.
Missing viscosity terms and the ensuing lack of energy dissipation might prevent our
implementation from relaxing in a timely fashion.

We conclude that our MFM implementation at the current stage is unable to re-
solve a sphere in hydrostatic equilibrium correctly. While the numerical deviation is not
catastrophic, no stable configuration could be reached, even after considerable physical
runtime. The reasons for this failure are currently unknown, although we suspect a bug
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Figure 5.12: Rayleigh-Taylor instability simulated using SPH with all relevant corrective
terms (upper panels) and with MFM (lower panels). The simulation followed 65,536
particles; we plotted every seventh of which. Due to the self-similarity of the simulation,
we show only half of the box. The colour code indicates density with darker colours
corresponding to higher values of ρ.

or an oversight in the code to be at fault more so than theoretical limitations. We will
shortly revisit the test of the hydrostatic sphere in Sec. 6.2.
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Figure 5.13: Evolution of the hydrostatic sphere. The SPH run used the C6 kernel,
295 neighbours and CCFL = 0.15; both MFM runs used the M4 kernel, 32 neighbours
and CCFL = 0.05. The first MFM simulation (middle panels) used fixed gravitational
softening, as did the SPH simulation (left panels), whereas the right panels show MFM
with AGS. ρ(r) is calculated as the sum of particle masses within radius r divided by
sphere volume V (r) = (4/3)πr3. u(r) is the average internal energy of all particles within
r. Both quantities are binned in 100 logarithmically equally sized bins with rmin = 14
and rmax = 1000. Only gas particles are evaluated.
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6 Discussion

While our implementation of an MFM scheme in OpenGadget3 shows some promising
initial results, it is still unfit to be implemented in full cosmological applications. In this
section, we will point out the most important aspects that are as of yet missing in our
realization and present a brief comparison of our current results to those achieved by other
authors.

6.1 Missing Features

• The inclusion of any sub-grid physics was not yet examined. Due to the modular
nature of OpenGadget3, some of them do not require a lot of (if any) adjustment,
such as the black hole model. Others, most importantly the simulation of multiphase
particles and chemical networks, ought to be deeply intertwined with the MFM
scheme to guarantee a coherent treatment.

• Our implementation is thus far only applicable in Newtonian space, i.e. neglecting
dark energy. As pointed out by Hopkins (2015), when switching to a general de-
scription in comoving coordinates ~rc = ~r/a(t) with the scale factor a(t) (which is
GADGET’s current approach to tackle cosmic expansion, see Sec. 4.4), the majority of
the MFM algorithms remain untouched as long as primitive vectors are converted
into physical coordinates before being fed to the Riemann solver. The resulting
fluxes are then to be translated back to their comoving counterparts.

• We are lacking any inclusion of magnetic fields in MFM. These would require a
considerable expansion of our basic framework, see e.g. Hopkins and Raives (2015)
for an exemplary method of integration.

• As described in great detail in Springel (2010) (§ 3.5), Riemann solvers tend to
produce erroneous fluxes in regimes where flows are dominated by kinetic energies.
Since Riemann solvers in general evolve the total energy (and since this quantity
is manifestly conserved), small discretization errors may propagate if Ekin ≫ Eth.
Following Bryan et al. (1995), this problem may be alleviated by evolving the inter-
nal energy independently in addition to the total energy and using these results if
sufficiently supersonic flows are detected.

• While we offer the choice between two Riemann solvers, these are only two extremes
out of a wide range of available algorithms: The approach by Toro (1999) is exact at
the cost of greater computation time (due to its iterative nature) whereas the HLL
solver (Harten et al., 1983) makes a series of assumptions to significantly simplify
the problem. However, more advanced approximate schemes (such as the HLLC or
HLLE solvers, Toro et al. 1994 and Einfeldt 1988, respectively) might offer a better
balance between computation speed and accuracy.

• Similarly, we implemented two slope limiters as well as the possibility to not limit
gradients at all. The latter is prone to crashes since no safeguard prevents e.g. too
much energy being transported from one particle to another, leading to negative
(and therefore unphysical) energy terms. However, we also experienced instabilities
with the implemented limiters. While we found the approach by Heß and Springel
(2010) to be generally more stable than the one by Springel (2010), other limiters
might prove to be even more robust.
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• At the moment, the second-order accuracy of the gradient estimates is hard-coded
into our approach even though arbitrarily high-order schemes are possible. When
pertaining the locally-centred least-square approach, this is realized by increasing
the size of the Bi and Ei matrices (see Sec. 3.2.2). Since Bi is recovered from Ei

through inversion, this also requires more CPU time. In-depth numerical analysis
would be necessary to verify if the second-order approach truly is the best compro-
mise (as claimed e.g. by Hopkins 2015).

6.2 Comparison to Other Codes

The pure hydrodynamical treatment in our code is comparable in quality to that of other
codes that feature an MFM implementation.

In Fig. 6.1, we show Sod shock tubes simulated with the GANDALF (Hubber et al.,
2018) code on which our own implementation is based. Unsurprisingly, we observe similar
artefacts — MFM generally leads to less over-smoothing but, as the contact discontinuity
in the u(x) plot shows (lower panels), the effects of the inconsistent treatment of dis-
continuities remain. Note that Fig. 6.1 also depicts simulations using unequal particle
masses which produce rather spurious results in MFM. Based on those findings we did
not attempt such runs.

Figure 6.1: Sod shock tubes as simulated with GANDALF. Gradh-SPH refers to the
standard SPH approach with the ∇h correction terms discussed in Sec. 2.2.5. The
unequal-mass particles were initialized equally spaced; taken from Hubber et al. (2018).

In Fig. 3.6, we already showed the Kelvin-Helmholtz instability as performed with
the GIZMO code (Hopkins, 2015). Their findings generally resemble ours (see Fig. 5.9)
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with some notable differences: Comparing the solutions obtained with SPH, we clearly see
a better resolution of the instability and the ensuing mixing in our approach (when using
correction terms). This is mainly attributed to the considerably higher neighbour number
we used but shows that modern SPH with correctly chosen parameters is indeed capable
of resolving fluid mixing to a certain degree. Secondly, our MFM approach appears to
be slightly more diffusive than the one in GIZMO. While we did not carry out an in-depth
analysis to establish the reason for this, we note that a fair amount of parameters can —
directly or indirectly — impact the noise and diffusivity of the scheme. Among those are
CCFL, the allowed deviation of neighbour number when determining h (see Eq. 2.26), as
well as the chosen Riemann solver and slope limiter.

A comparison of the Rayleigh-Taylor instability (see Fig. 5.12) in our code and
in GIZMO yields a similar verdict. While the coupling to gravity shows no significant
differences, our MFM scheme is more diffusive, producing less substructure. In this case, in
addition to the possible sources mentioned above, our simulation also used a considerably
lower number of particles (by a factor of 16), naturally decreasing the resolution further.

No other authors — to the best of our knowledge — published an attempt to resolve
the hydrostatic sphere with MFM. We therefore repeated our simulation (see Sec. 5.7)
with the publicly available version of GIZMO for comparison. We used the same ICs file and
parameters, as well as utilizing the AGS mode of GIZMO. For consistency, we also repeated
the simulation with OpenGadget3’s SPH solver and AGS enabled. Fig. 6.2 depicts the
outcome of these runs. It is evident that AGS also improves the results for SPH with
both ρ(r) and u(r) resembling the initial profile more closely. Only for large r we see
a slight overshoot of internal energy. Comparing the results of MFM obtained with our
implementation and GIZMO we find the latter to perform much better. The calculated
profiles maintain similar shapes to the ICs even at late times. One peculiarity we point
out is the u(r) line at t = 8, following the ICs almost exactly for small radii but then
converging to the relatively stable solution at later times for greater values of r. This
indicates that, also in GIZMO, fluctuations of the results remain, albeit significantly less
pronounced than with our MFM implementation.

We note that we also attempted to simulate an Evrard sphere collapse (Evrard,
1988) as done by Hopkins (2015). However, our attempts to do so were unfruitful since
we encountered numerical instabilities. While we are, at the time of this writing, unable
to name the reason for this with certainty, we suspect either the missing possibility to
evolve the internal energy independently from the total energy (see Sec. 6.1) or a wrong
choice of slope limiter to be responsible. Whatever the cause, it might be expected that
the solution may also further improve the outcome of some of the tests we showed in this
work.

To conclude, we find good agreement of our implementation with other codes con-
cerning pure hydrodynamical interactions with the only difference being enhanced noise in
our scheme. For advanced gravitational tests, however, we see considerable discrepancies.
Compared to GIZMO, our implementation lacks the HLLC Riemann solver as well as the
slope limiting procedure described by Hopkins (2015), both being invoked by default in
GIZMO. An implementation of these two might prove useful in determining the root of the
current limitations.
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Figure 6.2: Evolution of the hydrostatic sphere as simulated with OpenGadget3 and
GIZMO. All runs used AGS and the SPH simulation used CCFL = 0.1. All remaining
parameters are the same as described in Sec. 5.7. The two central panels depict the same
run as the two right panels in Fig. 5.13 (note the slightly adjusted y-axes).

64



7 Conclusion and Outlook

We implemented an MFM scheme in the cosmological code OpenGadget3, following the
realization of Hubber et al. (2018). While the installation at the current stage is not yet
fit for full cosmological simulations, we investigated its performance on common test cases
in great detail and found very promising results.

For pure hydrodynamical runs, we were able to achieve outcomes that are of the same
quality as those obtained using a modern SPH solver. More importantly, we demonstrated
that MFM can be operated with both a simpler kernel function and a lower number of
neighbours compared to SPH, halving the runtime and lessening various over-smoothing
effects. However, we also found our solutions with MFM to be consistently more noisy. We
therefore recommend to reduce the Courant-Friedrichs-Lewy number when using MFM
in order to get a better temporal resolution. We furthermore showed the necessity of a
wake up scheme to avoid spurious particle penetration.

We coupled our implementation to the N -body gravity solver of OpenGadget3. For
simple test cases, we found good agreement with the results achieved with SPH, in part
trumping them. More involved tests, however, revealed our code to struggle in terms
of both physical and numerical stability. Since said test cases (namely the hydrostatic
and the Evrard sphere) are resolved well with other MFM codes, we suspect the issue to
originate in an implementation error rather than a true limit of the scheme.

For future work, finding the root of this problem surely would benefit the performance
of our MFM scheme greatly. Likewise, many more features (such as coupling to additional
physics modules or more advanced slope limiters) are as of yet missing and would further
enhance the capabilities and utilities of the implementation. Ultimately, we would like to
apply MFM to cosmological simulations in order to study in detail how its results differ
from those achieved with SPH. We remain positive that with a stable version and a better
investigated parameter space MFM might provide a way to solve CFD both quicker and
more accurately. While currently, not many cosmological codes offer such an approach,
we expect this to change in upcoming years.
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Davé, R., Anglés-Alcázar, D., Narayanan, D., Li, Q., Rafieferantsoa, M. H., and Appleby,
S. (2019). SIMBA: Cosmological simulations with black hole growth and feedback.
MNRAS, 486(2):2827–2849.

Davis, S. F. (1988). Simplified second-order godunov-type methods. SIAM J. Sci. Stat.
Comput., 9(3):445–473.

Dehnen, W. and Aly, H. (2012). Improving convergence in smoothed particle hydrodynam-
ics simulations without pairing instability. Monthly Notices of the Royal Astronomical
Society, 425.

Dolag, K., Komatsu, E., and Sunyaev, R. (2016). SZ effects in the Magneticum Pathfinder
simulation: comparison with the Planck, SPT, and ACT results. MNRAS, 463(2):1797–
1811.

Dolag, K. and Stasyszyn, F. (2009). An MHD GADGET for cosmological simulations.
MNRAS, 398(4):1678–1697.

Einfeldt, B. (1988). On godunov-type methods for gas dynamics. Siam Journal on
Numerical Analysis - SIAM J NUMER ANAL, 25:294–318.

Evrard, A. E. (1988). Beyond N-body: 3D cosmological gas dynamics. MNRAS, 235:911–
934.

Fabjan, D., Borgani, S., Tornatore, L., Saro, A., Murante, G., and Dolag, K. (2010).
Simulating the effect of active galactic nuclei feedback on the metal enrichment of
galaxy clusters. MNRAS, 401(3):1670–1690.

Felker, K. G. and Stone, J. M. (2018). A fourth-order accurate finite volume method
for ideal MHD via upwind constrained transport. Journal of Computational Physics,
375:1365–1400.

Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T. (2007). MHD simulations of
the magnetorotational instability in a shearing box with zero net flux. II. The effect of
transport coefficients. A&A, 476(3):1123–1132.

Gaburov, E. and Nitadori, K. (2011). Astrophysical weighted particle magnetohydrody-
namics. MNRAS, 414(1):129–154.

Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory
and application to non-spherical stars. MNRAS, 181:375–389.

68



Godunov, S. K. and Bohachevsky, I. (1959). Finite difference method for numerical com-
putation of discontinuous solutions of the equations of fluid dynamics. Matematičeskij
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Rubiño-Mart́ın, J. A., Rusholme, B., Said, N., Salvatelli, V., Salvati, L., Sandri, M.,
Santos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M. D., Serra, P., Shellard,
E. P. S., Spencer, L. D., Spinelli, M., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev,
R., Sutton, D., Suur-Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi, L., Toffolatti, L.,
Tomasi, M., Tristram, M., Trombetti, T., Tucci, M., Tuovinen, J., Türler, M., Umana,
G., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wan-
delt, B. D., Wehus, I. K., White, M., White, S. D. M., Wilkinson, A., Yvon, D., Zacchei,
A., and Zonca, A. (2016). Planck 2015 results. XIII. Cosmological parameters. A&A,
594:A13.

Price, D. J. (2008). Modelling discontinuities and Kelvin Helmholtz instabilities in SPH.
Journal of Computational Physics, 227(24):10040–10057.

Price, D. J. (2012). Smoothed particle hydrodynamics and magnetohydrodynamics. Jour-
nal of Computational Physics, 231(3):759–794.

Price, D. J. and Monaghan, J. J. (2004). Smoothed Particle Magnetohydrodynamics - II.
Variational principles and variable smoothing-length terms. MNRAS, 348(1):139–152.

Ragagnin, A., Dolag, K., Biffi, V., Cadolle Bel, M., Hammer, N. J., Krukau, A., Petkova,
M., and Steinborn, D. (2017). A web portal for hydrodynamical, cosmological simula-
tions. Astronomy and Computing, 20:52–67.

Read, J. I. and Hayfield, T. (2012). SPHS: smoothed particle hydrodynamics with a
higher order dissipation switch. MNRAS, 422(4):3037–3055.

Rosswog, S. (2015). Boosting the accuracy of SPH techniques: Newtonian and special-
relativistic tests. MNRAS, 448(4):3628–3664.

Saitoh, T. R. and Makino, J. (2009). A Necessary Condition for Individual Time Steps
in SPH Simulations. ApJ, 697(2):L99–L102.

Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ, 121:161.

Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla
Vecchia, C., Frenk, C. S., McCarthy, I. G., Helly, J. C., Jenkins, A., Rosas-Guevara,
Y. M., White, S. D. M., Baes, M., Booth, C. M., Camps, P., Navarro, J. F., Qu, Y.,
Rahmati, A., Sawala, T., Thomas, P. A., and Trayford, J. (2015). The EAGLE project:
simulating the evolution and assembly of galaxies and their environments. MNRAS,
446(1):521–554.

Schaye, J., Dalla Vecchia, C., Booth, C. M., Wiersma, R. P. C., Theuns, T., Haas, M. R.,
Bertone, S., Duffy, A. R., McCarthy, I. G., and van de Voort, F. (2010). The physics
driving the cosmic star formation history. MNRAS, 402(3):1536–1560.

Schmidt, M. (1959). The Rate of Star Formation. ApJ, 129:243.

Schulze, F., Remus, R.-S., Dolag, K., Burkert, A., Emsellem, E., and van de Ven, G.
(2018). Kinematics of simulated galaxies - I. Connecting dynamical and morphological
properties of early-type galaxies at different redshifts. MNRAS, 480(4):4636–4658.

72



Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics.

Sharp, D. H. (1984). An overview of Rayleigh-Taylor instability. Physica D Nonlinear
Phenomena, 12(1):3,IN1,11–10,IN10,18.

Skillman, S. W., O’Shea, B. W., Hallman, E. J., Burns, J. O., and Norman, M. L. (2008).
Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration
of Cosmic Rays. ApJ, 689(2):1063–1077.

Sod, G. A. (1978). Review. A Survey of Several Finite Difference Methods for Systems of
Nonlinear Hyperbolic Conservation Laws. Journal of Computational Physics, 27(1):1–
31.

Springel, V. (2005). The cosmological simulation code GADGET-2. MNRAS,
364(4):1105–1134.

Springel, V. (2010). E pur si muove: Galilean-invariant cosmological hydrodynamical
simulations on a moving mesh. MNRAS, 401(2):791–851.

Springel, V., Di Matteo, T., and Hernquist, L. (2005a). Modelling feedback from stars
and black holes in galaxy mergers. MNRAS, 361(3):776–794.

Springel, V. and Hernquist, L. (2002). Cosmological smoothed particle hydrodynamics
simulations: the entropy equation. MNRAS, 333(3):649–664.

Springel, V. and Hernquist, L. (2003). Cosmological smoothed particle hydrodynamics
simulations: a hybrid multiphase model for star formation. MNRAS, 339(2):289–311.

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro,
J., Thacker, R., Croton, D., Helly, J., Peacock, J. A., Cole, S., Thomas, P., Couchman,
H., Evrard, A., Colberg, J., and Pearce, F. (2005b). Simulations of the formation,
evolution and clustering of galaxies and quasars. Nature, 435(7042):629–636.

Springel, V., Yoshida, N., and White, S. D. M. (2001). GADGET: a code for collisionless
and gasdynamical cosmological simulations. New A, 6(2):79–117.

Steinborn, L. K., Dolag, K., Comerford, J. M., Hirschmann, M., Remus, R.-S., and
Teklu, A. F. (2016). Origin and properties of dual and offset active galactic nuclei
in a cosmological simulation at z=2. MNRAS, 458(1):1013–1028.

Sunyaev, R. A. and Zeldovich, Y. B. (1970). Small-Scale Fluctuations of Relic Radiation.
Ap&SS, 7(1):3–19.

Teklu, A. F., Remus, R.-S., Dolag, K., Beck, A. M., Burkert, A., Schmidt, A. S., Schulze,
F., and Steinborn, L. K. (2015). Connecting Angular Momentum and Galactic Dynam-
ics: The Complex Interplay between Spin, Mass, and Morphology. ApJ, 812(1):29.

Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement. A new
high resolution code called RAMSES. A&A, 385:337–364.

Teyssier, R. (2015). Grid-based hydrodynamics in astrophysical fluid flows. Annual Review
of Astronomy and Astrophysics, 53:150619171245001.

73



Thielemann, F. K., Argast, D., Brachwitz, F., Hix, W. R., Höflich, P., Liebendörfer, M.,
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