Structured Distributions of Gas and Solids in Protoplanetary Disks: Theoretical Perspectives

Jaehan Bae (University of Florida)

Structured Distributions of Gas and Solids in Protoplanetary Disks

Jaehan Bae University of Florida Carnegie Institution for Science

Andrea Isella

Rice University

Rebecca Martin

University of Nevada, Las Vegas

Satoshi Okuzumi

Tokyo Institute of Technology

Scott Suriano

The University of Tokyo

Zhaohuan Zhu

University of Nevada, Las Vegas

other examples:

velocity kinks, misalignments, shadows, streamers, clumps, ...

In this talk, I will

- focus on spirals and rings/gaps;
- present properties of the observed substructures from a statistical point of view;
- summarize proposed origins of substructures;
- <u>NOT</u> give you answers to what created substructures;
- discuss how we can possibly distinguish different possibilities in the future.

The sample

- Total 423 disks, most of which are located in Taurus, Ophiuchus, Upper Scorpius, Lupus, and Chameleon I star-forming regions.
- Substructures are detected in about 80 disks.

disks with substructuresdisks without substructures: upper limit (116 disks)

*The figures show ALMA observations exclusively.

Caveats of the current analysis

- Observational biases DO exist.
 - Brighter disks are observed at higher angular resolution.
- Uncertainties in the disk mass
 - 1.3 mm flux is used to infer the disk mass. For those without 1.3 mm continuum observations, we estimate 1.3 mm flux from 0.87 mm continuum observations.
- Methods to measure the properties of substructures (e.g., width of rings, pitch angle of spirals) differ among literature.
- Limited to nearby low-mass star forming regions.

Caveats of the current analysis

Spirals: potential origins

- companion
- stellar flyby
- gravitational instability
- magneto-hydrodynamic turbulence
- infall

	# of spirals	pitch angle	pattern speed	time variation
companion (Lindblad)				
companion (buoyancy)				
stellar flyby				
GI				
MHD turbulence				
infall				

Spirals: observational data

2MASS Name	Alt. Name	d (pc)	$\stackrel{M_{\star}}{(M_{\bigodot})}$	${}^{L_{\star}}_{(L_{\odot})}$	Class	M_d (0.01 M_{\bigodot})	λ	m	ψ (⁰)	radial extent (au)	FWHM (au)	binary sep.
J04554582+3033043	ABAur	163	3.17	123.03	Ш	2.12	mm	2	20	30-90	18	-
							ir	8	22	30-100	10	-
J05302753+2519571	MWC758/HD36112	156	1.5	10.96	II	1.16	mm	2	19	30-80	31	-
							ir	2	19	30-80	4	-
J05355845+2444542	CQTau	162	1.67	10	II	2.31	mm	2	20-40	30-65	19	-
							ir	2	4, 34	30-60	16	-
03454828+3224118	LkHa330	309	2.95	22.91	п	16.97	ir	2	12-16	60-150	46	-
J04555938+3034015	SUAur	158	2.18	14.45	Π	0.58	ir	6	-	-	11	-
J05380526-0115216	V1247Ori	398	1.9	15.81	PTD	7.72	ir	1	6.5	96-119	16	-
J04300399+1813493	UXTauA	140	1.67	3.24	TD	0.91	mm	2	20-30	140-280	18	2.7
							ir	2	-	-	18	2.7
J05194140+0538428	HD34700A	356	4.1	25.12	II	0.8	ir	6	27-55	110-320	18	5.2
J16264502-2423077	GSS39/Elias2-27	116	0.63	1.51	п	3.59	mm	2	16	47-244	6	-
J16484562-1416359	WaOph6	123	0.68	2.88	II	2.08	mm	2	14 9-18	20-70	7	-
							ir	2	14-20	20-45	7	-
-	SR21	138	2.5	12.59	II	2.93	ir	2	2-14	25-40	7	-
J11100010-7634578	WWCha	192	1.9	2.69	п	17.18	ir	1	-	-	13	-
J11332542-7011412	HD100546	110	2.2	25.12	TD	4.34	ir	6	-	-	6	-
J11493184-7851011	DZCha	110	0.5	1	-	0.07	ir	2	27	5-25	6	-
J11015191-3442170	TWHya	60	0.8	0.28	II	1.72	mm	3	3-9	70-210	1	-
J15560921-3756057	Sz82,IMLup	158	0.95	2.57	п	4.37	mm	2	10-22	30-94	8	-
J15564230-3749154	Sz83,RULup	160	0.67	1.48	п	3.65	ir	5	21-31	250-1200	4	-
J15451286-3417305	Sz68,HTLup	154	2.15	5.37	II	1.35	mm	2	17	13-39	4	2.8
J15564188-4219232	HD142527	157	2.1	16.22	II/TD	24.85	mm	3	3-17	290-670	31	0.1
							ir	6	-	80-130	31	0.1
J11330559-5419285	HD100453	103	1.5	10	-	1.35	mm	2	6	20-30	3	1.045
						1.35	ir	2	14-18	20-30	3	1.045
J15154844-3709160	SAO206462/HD135344B	135	1.6	9.77	TD	10.79	ir	2	11	38-107	12	-
J16113134-1838259	AS205N	128	0.99	2.19	-	12.65	mm	2	14	19-68	6	1.3

TABLE 3 Systems with spirals

Spirals: statistics

 Spirals are detected in a larger fraction of massive disks (M_{disk}/M_{star} ≥ 0.04) compared with the lowmass counterpart.

 $\Delta\!\Delta$ Δ

Δ

- No clear trend is found between the number of spirals and M_{disk}/M_{star}.
- In mm continuum, only two-armed spirals are found until now.

- Pitch angle might decrease as a function of M_{disk}/M_{star} .
- There is a weak trend that the pitch angle increases as a function of the radial location of the spirals,
 H/R, or sound speed.

Bae & Zhu (2018a,b), see also Miranda & Rafikov 2019

- A smaller number of spirals are excited for more massive companions.
 - Stronger waves propagate faster.

• Additional second-order spirals excite for companions having non-zero orbital eccentricity.

Price et al. (2018)

Avenhaus et al. (2017)

• Pitch angle increases as a function of the <u>companion mass</u>.

Bae & Zhu (2018b)

• Pitch angle increases as a function of the <u>sound speed</u>.

Bae & Zhu (2018b)

- Pitch angle increases as a function of the sound speed.
 - <u>Vertical disk temperature structure</u> matters.

Juhász & Rosotti (2018)

Law et al. (2021), MAPS

- Pitch angle increases as a function of the sound speed.
 - <u>Vertical disk temperature structure</u> matters.

Rosotti et al. (2021)

Updated from Bae et al. (2018), Disk Dynamics et al. (2020)

Updated from Bae et al. (2018), Disk Dynamics et al. (2020)

N: buoyancy frequency (a.k.a. Brunt-Väisälä frequency)

$$N^{2} = \frac{g}{\gamma} \frac{\partial}{\partial z} \left[\ln \left(\frac{P}{\rho^{\gamma}} \right) \right]$$

When a gas parcel is vertically displaced,

- if N²>0, the gas parcel will vertically oscillate;
- if N²=0, the gas parcel won't move any further;
- if N²<0, the gas parcel will further rise.

For a vertically isothermal disk with an isothermal EOS, $P = \rho c_s^2$ and $\gamma = 1$. $\rightarrow N^2 = 0$ For a vertically stratified disk (hotter surface) with an adiabatic EOS, $N^2 > 0$

When planet's orbital frequency matches to the buoyancy frequency, the oscillatory motion can amplify through the resonance: <u>buoyancy resonance</u>.

Zhu et al. (2012), Lubow & Zhu (2014)

Adiabatic

Bae et al. (2021)

Bae et al. (2021)

Teague, Bae et al. (2019)

Bae et al. (2021)

van Boekel et al. (2017)

Bae et al. (2021)

Bae et al. (2021)

Spirals by stellar flyby

Cuello et al. (2019)

see also Thies et al. (2010), Cuello et al. (2020), Nealon et al. (2020)

Spirals by stellar flyby

Cuello et al. (2019)

see also Thies et al. (2010), Cuello et al. (2020), Nealon et al. (2020)

Monnier et al. (2019), Uyama et al. (2020)

Monnier et al. (2019), Uyama et al. (2020)

Spirals by GI

Cossins et al. (2009)

Hall et al. (2019)

see also Forgan et al. (2011), Bethune et al. (2021)

Hall et al. (2019)

see also Forgan et al. (2011), Bethune et al. (2021)

Spirals by MHD turbulence

Flock et al. (2011)

see also Heinemann & Papaloizou (2009), Suzuki & Inutsuka (2014), Gogichaishvili et al. (2017)

Spirals by MHD turbulence

Flock et al. (2011)

see also Heinemann & Papaloizou (2009), Suzuki & Inutsuka (2014), Gogichaishvili et al. (2017)

Spirals by infall

see also Bae et al. (2015), Lesur et al. (2015), Hennebelle et al. (2016, 2017)

Spirals by infall

left: AB Aur (Boccaletti et al. 2020)

right: RU Lup (Huang et al. 202

see also Bae et al. (2015), Lesur et al. (2015), Hennebelle et al. (2016, 2017)

Spirals: summary

	# of spirals	pitch angle	pattern speed	time variation
companion (Lindblad)	2 – 3 in the inner disk 1 – 2 in the outer disk	~5° - 30°	Ω _c	steady
companion (buoyancy)	1 – a few	$\lesssim 10^{\circ}$	Ω _c	steady
stellar flyby	2	~10° - 30°	~Ω _c	disappear on the wave propagation timescale after the encounter
GI	2 – 10	~5° – 15°	Ω_{K}	variable
MHD turbulence	~5 - 10	$\lesssim 10^{\circ}$	$\Omega_{\rm K}$	variable
infall	~5 – 10	≳ 10°	~Ω _{cent}	variable

Rings: potential origins

- companion
- zonal flows
- inhomogeneous accretion
- icelines

	# of rings	ring location	ring width*	time variation
companion				
zonal flows				
inhomogeneous accretion				
icelines				

*The dust ring width can be much smaller than the gas ring width.

$$w_d \simeq \left(\frac{\alpha}{St}\right)^{\frac{1}{2}} w_g$$
, where $St = \pi \rho_s s / 2\Sigma_g$

 Rings are detected in a larger fraction of massive disks (M_{disk}/M_{star} ≥ 0.01) compared with the lowmass counterpart.

- No clear correlation is seen between the radial locations of the rings and the expected locations of icelines (see also Huang et al. 2018, Long et al. 2018, van der Marel et al. 2019).
- The width of most rings is greater than a gas scale height.

• Spiral arms transport angular momentum as they shock the disk gas, **opening gaps** (Goodman & Rafikov 2001, Rafikov 2002).

• Spiral arms transport angular momentum as they shock the disk gas, **opening gaps** (Goodman & Rafikov 2001, Rafikov 2002).

• Thermodynamics matters.

 $Tc = \beta = cooling timescale/dynamical timescale$

Left: Zhang & Zhu 2020, Right: Miranda & Rafikov 2020

• Thermodynamics matters.

Facchini et al. (2020), see also Ziampras et al. (2020)

• Orbital migration can complicate things.

Kanagawa et al. (2021)

see also Meru et al. (2019), Nazari et al. (2019), Kanagawa et al. (2020), Wafflard-Fernandez & Baruteau (2020)

• Orbital migration can complicate things.

Kanagawa et al. (2021)

see also Meru et al. (2019), Nazari et al. (2019), Kanagawa et al. (2020), Wafflard-Fernandez & Baruteau (2020)

Rings by zonal flows – vertical shear instability

• Driven by the vertical "shear" in the rotational velocity.

$$\rho(R, Z) = \rho_0 \left(\frac{R}{R_0}\right)^p \exp\left(\frac{GM}{c_s^2} \left[\frac{1}{\sqrt{R^2 + Z^2}} - \frac{1}{R}\right]\right),$$

$$\Omega(R, Z) = \Omega_K \left[(p+q)\left(\frac{H}{R}\right)^2 + (1+q) - \frac{qR}{\sqrt{R^2 + Z^2}}\right]^{1/2}$$

- Cooling requirement
 - Vertical shear is generally weak and can be stabilized by buoyancy if cooling is not efficient (Lin & Youdin 2015).

•
$$t_{cool} \lesssim \frac{\left|\frac{r\partial\Omega}{\partial z}\right|}{N_z^2} \simeq \frac{h|q|}{\gamma-1} \Omega_K^{-1}$$

Pfeil & Klahr (2019)

Rings by zonal flows – vertical shear instability

[AU]

-25

-50

-75

-100 - 100

-50

Ó [AU] 50

100

$k_r \simeq 5 - 20 \text{ H}^{-1}$
$\rightarrow \lambda_r \simeq 0.3 - 1.2 \text{ H}$
(Lin & Youdin 2015,
Pfeil & Klahr 2019)

Rings by zonal flows – MHD

Typically multiple rings/gaps with widths of ~1 – 5 H The properties depend on the magnetic field strengths/morphology

left: Suriano et al. (2019), right: Riols et al. (2020)

Typically multiple rings/gaps with widths of $\sim 1-5$ H

Rings by zonal flows – MHD

left: Suriano et al. (2019), right: Riols et al. (2020)

Rings by inhomogeneous accretion

Perturbation in the gas (blue). Dust (brown) drifts toward peaks of the perturbations. This reduces the viscosity at those locations (brown arrow). Thereby the gas perturbation is amplified (blue arrow).

top: Dullemond & Penzlin (2018) bottom: Flock et al. (2015)

Rings by inhomogeneous accretion

Rings by icelines

- grain size changes
- opacity changes across icelines
- radial drift speed changes
 - dust surface density changes
 - collisional growth/fragmentation rate changes
- sintering can enhance dust surface density
- ice "surfaces" instead of ice "lines"
- icelines can be thermally unstable

Ros & Johansen (2013), Schoonenberg & Ormel (2017), Drazkowske & Alibert (2017), Okuzumi et al. (2016), Sirono & Ueno (2017), Qi et al. (2019), Owen (2020), Tominaga et al. (2021)

figure credit: Lee et al. (2019), NAOJ

Rings by icelines

• grain size changes

icelines

•

- opacity changes across icelines
- radial drift speed changes

Ros & Johansen (2013), Schoonenberg & Ormel (2017), Drazkowske & Alibert (2017), Okuzumi et al. (2016), Sirono & Ueno (2017), Qi et al. (2019), Owen (2020), Tominaga et al. (2021)

ice "surfaces" instead of ice "lines"

• icelines can be thermally unstable

of rings

~1 for species

figure credit: Lee et al. (2019), NAOJ

Rings: summary

	# of rings	ring location	ring width	time variation
companion	1 – many	inside/at/outside the companion's orbit	~1 – few H	can vary if migrating
zonal flows	multiple	global	~0.3 – 5 H	variable
inhomogeneous accretion	1 - many	low accretion	≳H	variable
icelines	~1 for species	inside/outside T = T _{condensation}	?	steady (but outburst, instability)

Summary

- Disk substructures appear to be ubiquitous.
- Proper statistical studies would require homogeneous data sets and data analysis.
- Linking dust substructures to the underlying gas (sub)structure is often challenging.
- Numerical simulations do not always include both gas and dust.
- There are probably as many mechanisms as the number of disks with substructures.
- How can we possibly distinguish different possibilities?
 - I'd argue that we need to find the cause of substructures more directly.

Origin	Observable signatures, diagnostics	Required observations (aka theorists' wish list)			
	direct detection (IR, H α , CPD)	high angular resolution imaging			
companion	kinematic planetary signatures	high angular + velocity resolution line observations			
stellar flyby	detection of flyby stars	large FOV imaging, proper motion with Gaia			
MHD	direct detection of magnetic fields	continuum/line polarization observations			
zonal flows	coherent vertical motions for upper & lower surfaces	high angular + velocity resolution line observations			
GI	large disk mass	measure surface density (how?) & temperature			
	spiral pattern speed & pitch angle	long-term monitoring, high angular resolution imaging			
infoll	large-scale envelope, streamers	medium/low-resolution mosaic line observations			
infall	shocks	shock tracers (e.g., SO), chemical tracers			
inhomogeneous accretion	variable accretion rates inside/outside a ring	turbulence measurement using line observations (but what if accretion is not arising from turbulence?)			
iceline	condensation temperature	temperature measurements for a large sample			
	grain size changes across icelines	multi-wavelength continuum observations			
dust backreaction	high dust-to-gas mass ratio	measure both gas and dust surface density (how?)			