Observability of the vertical shear instability in protoplanetary disk CO kinematics

Marcelo Barraza-Alfaro Max Planck Institute for Astronomy MPIA

collaborators: M. Flock, S. Marino (Cambridge) and S. Perez (USACH)

European Research Council Established by the European Commission

Why do we care about turbulence in planet formation?

Dust evolution

Birnstiel+2010; Fromang+2006, Desch+2017; Flock+2018,2020; Lin+2019

Planetesimal formation

Youdin & Goodman 2005, Lenz+2019: Gole+2020; Klahr & Schreiber 2020; Schäfer+2020

Sub-structures

Pinilla+2015; Fu+2014; Barge & Sommeria 1995: Flock +2015. Manger+2018: Flock+2018,2020

Planet-disk interactions

Kley and Nelson 2012: Fung+2014: Bae+2018: Baruteau+2011; Xu+2017, Ormel & Liu 2018: Picogna+2018

Semenov & Wiebe 2011; Heinzeller + 2011

The vertical shear instability (VSI)

Requirements

Vertical shear:

> Naturally arises from radial temperature and entropy gradients

Fast cooling: Buoyancy forces do not stabilise the disk

Height 1.4 1.6 1.4 1.6 1.8 1.8 1.2 Height 1.4

Nelson+2013; see also Baker & Latter 2015; Lin & Youdin 2015

Why do we care about VSI in planet formation?

Planetesimal formation

Schäfer+2020

CO kinematic observations

Disk Dynamics Collaboration et al. 2020

CO kinematic observations

Disk Dynamics Collaboration et al. 2020

Offset (arcsec)

Velocity centroid maps

Teague et al. 2018

Non-Keplerian signatures in velocity centroid maps

Teague et al. 2019

Non-Keplerian large scale gas motions in TW Hya

Our work

- Are these kinematic signatures observable with ALMA?
- Does the VSI produce significant non-thermal broadening?

What kinematic signatures are expected in CO observations of VSI-unstable disks?

Numerical methods

1. Hydrodynamical simulations

- PLUTO code (Mignone+2007)
- Global in spherical coordinates
- Physical Model of Nelson+2013
- Inviscid and locally isothermal
- Disk aspect ratio of 0.1 at 100 au

4. Observables :

- Velocity centroid maps
 Bettermoments (Teague+2018)
- Deviations from Keplerianity Eddy (Teague+2019)

2. Radiative transfer

- RADMC3D code (Dullemond+2012)
- Dust thermal Monte Carlo
- Gas line emission for ¹²CO, ¹³CO, and C¹⁸O for the J:2-1 transition

3. Synthetic Images :

CASA simobserve + ms.corrupt + tclean

Simulation results

Barraza-Alfaro et al. 2021

	-2 -
	2 -
	1 -
VSI produces 'spurs' in	0 -
all channel maps	-1 -
	-2 -
More visible for low disk	2 -
Inclinations	1 -
	0 -
	-1 -
	-2 -
	2 -
	- 1 -
	o [a]

offse −1 --2 -

-1 -

Barraza-Alfaro et al. 2021

The VSI produces rings and arcs of non-Keplerian gas

-1 -2

The meridional flows dominate the residuals from Keplerianity

CO tracer

The morphology of the non-Keplerian motion weakly varies with CO tracer

Non-thermal line broadening

Simon et al. 2018

Non-thermal line broadening

The VSI produces negligible non-thermal broadening

Take home messages

- Kinematic signatures of hydrodynamic turbulence could probe its origin
- 3D global hydro-simulations and high resolution observations are crucial to understand gas kinematics in protoplanetary disks
- VSI can produce observable features in channel maps and velocity centroid maps