Edwin A. Bergin University of Michigan

images: Hacar+ 2015; Pinte+ 2016; Louvet+ 2018 Andrews+ 2018; NOAA

MAKINGA HABITABLE PLANET FROM THE PERSPECTIVE OF ASTRO/COSMO/ GEOCHEMISTRY

The Ingredients for a Habitable World

at right distance from star

liquid water

elements of life Carbon, Hydrogen Oxygen, and Nitrogen

image credit: NOAA

How can we make connections from astronomy to planets/ exoplanets?

Tracing Chemical Origins

- For terrestrial worlds and giant planets: difficult to determine what was provided when and in what form.
- For C and N carriers it is easier to concentrate on BULK composition (if possible).
 - i.e. not worrying about a particular organic needed to make RNA
- Oxygen is an important outlier in this regard as we know it was provided as H_2O + silicates.
- Could also discuss isotopic evidence (e.g. D/H, an oxygen isotopes) as evidence of origins...

TERRESTRIAL PLANET FORMATION

1 M_{Earth} (6000 km)

Embryos (Mars mass)

Planetesimals (~100 km)

numerous potential loss terms drift/sublimation; internal heating in planetesimals; collisions; core formation; atmospheric loss need to understand key processes first!!! talk to experts who have studied our planet focus on key elements: C, O(H), N, S (and P)

Dust (1 µm or ~10⁻⁹ km) ~0.1-0.3 iviyr ιινιγι

adapted from Meech & Raymond 2019; see also Johansen & Lambrechts 2017 and Morbidelli 2018

IU IVIY

100 Myr

What is t=0?How do we trace "time" in the evolution?

LEAD-LEAD DATING and t=0

- ²³⁸U(99.27%) decays to ²⁰⁶Pb half-life of 4.47 Byr
- ²³⁵U(0.72%) decays to ²⁰⁷Pb half-life of 0.704 Byr
- ²³²Th(100%) decays to ²⁰⁸Pb half-life of 14.1 Byr

- rock started with? No rocks on Earth can provide this ratio.
- C. Patterson used the Canyon Diablo meteorite which had very low
- provided primordial isotope ratios and unlocked t=0

U-Th-Pb governing equations

what is the initial state? what is the initial expected isotopic ratio that the

values of the Pb daughter products and also low in Uranium relative to Pb

CORE FORMATION

- Hf = lithophile, W = siderophile
- Decay half-life is 8.9 Myr
- If core forms early then all W in mantle is from Hf decay.
- If core forms late then Hf decay creates ¹⁸²W which goes to core.
- If core formation occurs during the frame where Hf decay is active then you have the date of Earth solidification.

for more explicit details see Wood 2011 for discussion

Hafnium—Tungsten Dating

W is siderophilic (iron loving)

image from wikipedia

core formation estimates are ~30-40 Myr but could be as much as 100 Myr assuming variable accretion events (Dauphas and Chaussidon 2011)

TERRESTRIAL PLANET FORMATION

1 M_{Earth} (6000 km)

Embryos (Mars mass)

Planetesimals (~100 km)

Dust (1 µm

or ~10⁻⁹ km) ~0.1-0.3 Myr 1 Myr

adapted from Meech & Raymond 2019; see also Johansen & Lambrechts 2017 and Morbidelli 2018

10 Myr

100 Myr

WATER WORLD?

Cook (Woods Hole) & Howard Perlman (USGS) image credit: NOAO Jack

CARBON-BASED LIVING PLANET

The Earth received less than 1 carbon atom per 10000 available

less than 1 N atom per 100000 available

We are a silicate rock with a tiny sprinkling of carbon, nitrogen and some water.

How did this happen? Is this common?

Slide from D. Catling

'SECONDARY' origin of terrestrial world atmospheres?

- 1) Noble gases () severely depleted
- negligible gas from solar nebula (e.g., very little neon)
- atmospheres derive from solids

H₂O - hydrated minerals

- hydrocarbons (+carbonates?)

2) Theory:

- pre-main sequence *T-Tauri* phase $\sim 10^7$ yr blows away any accreted primary atmosphere + hydrodynamic escape
- planet formation from protoplanets (10³-10⁴ km size)

OUTGASSING, INGASSING, AND DEGASSING

Qu.) What is a volatile? are present as liquids or gases in a planet's Old Ideas:

Outgassing by volcanoes: William Rubey, USGS (1955) and subsequent workers presumed that the atmosphere and oceans were Slide derived this way after the Earth formed from **Current Ideas:** D. Impact degassing: Catling Once Earth reaches ~1/3 present mass, volatiles in accelerated bolides get vaporized. Atmosphere starts to form as the planet forms, then ocean condenses.

Ingassing:

On Earth, at least, some volatiles have returned to the interior, e.g., carbon.

relatively low melting or boiling points, so that they hydrosphere or atmosphere. Same concept for disk but sublimation/deposition is the process.

If impacts ->atmospheres, meteorites must provide clues

Slide from D. Catling

Types of meteorite

BASIC TYPES OF METEORITE

1) Irons – predominantly iron. 2) Stony – predominantly silicates. (a) >90% chondrites, i.e., contains chondrules (globules of silicate minerals, up to a few mm size, interpreted as rapidly cooled silicate melt formed by condensation of melted dust in the nebula).

D. Ordinary chondrites, 5-15% Fe-Ni Catling

Slide

from

Carbonaceous chondrites, C-rich

(b) achondrites do not contain chondrules and formed from igneous rocks of their parents (e.g. Martian meteorites)

3) Stony-iron – silicate and iron mixture.

(from Beatty et al., The New Solar System, Ch. 26)

Region

Mottl et al. 2007 Slide from K. Meech

Hydrosphere

Sed. Rocks

Upper Mantle

Lower Mantle

[Core

TOTAL BSE

HOW MUCH VOLATILE MATERIAL? TAKE WATER AS EXAMPLE

Low [Oceans]	High [Oceans]	Capacity [Oceans]
1.2	1.2	1.2
0.2	0.20	0.1
< 0.02	< 0.02	3.3
0.04	1.8	15.1
0.03	2.8	28.1]
1.6	3.2	59.7

VOLATILES, METEORITES, AND OCEANS Carbonaceous chondrites - Up to 20 wt.% H₂O – ~3.5 wt% organic C, 0.3 wt%N Carbonaceous chondrite Earth: $6 \times 10^{24} \text{ kg} (x \ 0.15) = 9 \times 10^{23} \text{ kg} \sim 600 \text{ oceans}$

- ~0.1 wt% H₂O, ~0.03 wt% N, ~0.1 wt% C

- Ordinary chondrite Earth: $6 \times 10^{24} \text{ kg} (x = 0.001) = 6 \times 10^{21} \text{ kg} \sim 4 \text{ oceans}$

suffice

Slide from D. Catling

- Ordinary chondrites (97% of all chondrites in collection)
- => A few planetesimals with carbonaceous chondrite composition

VOLATILITY TREND AND THE CONDENSATION SEQUENCE

Li, Bergin, Blake, Ciesla, & Hirschmann 2020

THE "CONDENSATION MODEL" (JOHN LEWIS)

Slide from D. Catling

Temp/ K	Substance	General groups (Comments)	
~1800	Highly refractory metals, W, Os, Ir, Re	Refractory metals	
1677	Corundum, Al ₂ O ₃	Refractory oxides	
1593	Perovskite, CaTiO ₃		
1397	Spinel, MgAl ₂ O ₄		
1360	Nickel-iron metal, Ni, Fe	Ni-Fe (core forming metals)	
1347	Pyroxene, CaMgSi ₂ O ₆ (diopside)	Silicates (rock forming minerals)	
1354	Olivine, Mg ₂ SiO ₄ (forsterite) or Fe ₂ SiO ₄ (fayalite)		
<1000	Alkali feldspars, (Na, K)AlSi ₃ O ₈	(60% of Earth's crust)	
~700	Troilite, FeS	<i>Sulfides</i> . (Chalcophile (sulfur-loving) elements also include Zn and Pb).	
550-330	Minerals with $-OH$ or H_2O in their formulae	Hydrated minerals	
lonic substances above \blacktriangle , Molecular substances below \blacktriangledown			
~180	Water ice, H ₂ O	<i>Ices</i> (Caveat: The form in which C or N condenses	
~120-130	Ammonia ice, $NH_3 \cdot H_2O$	depends upon the availability of water and kinetics. If there is not enough water, they will not condense as clathrates, e.g., graphite could condense at higher temperature (Lodders, 2003)).	
40-78	Methane ice, $CH_4 \cdot 7H_2O$ or CH_4 ice		
50-60	Nitrogen ice, N ₂ ·6H ₂ O and N ₂ ·7H ₂ O		

- Accretion: outer disk is accreting unprocessed material.
- Pebbles:
 - Pebble accretion plays an important role in planet formation.
 - Pebble drift can supply material from greater distances (pending pressure structure of the disk).
 - Pebbles can lose volatiles via sublimation in hot inner nebula or during accretion to early atmosphere.
- Planetesimals:
 - \rightarrow Volatiles can be lost through metamorphic process and due to ²⁶Al decay.
- Planets: core formation and atmospheric loss.
- Mixing induced by interactions with giant planets.
- dominate later stages.

MODERN PERSPECTIVE

• Condensation and sublimation must play a role in early stages and parent body processes

GENERAL EVOLUTION

STAR & PLANET FORMATION

Cloud Pre-Stellar Core Protostar

Proto-Planetary Solar System Disk

Öberg & Bergin 2021 Lichtenberg et al. 2021

GENERAL EVOLUTION

Bergin, Alexander, Gounelle, & Drozdovskaya (in prep.)

WHAT IS IN SOLIDS(?) - SUBLIMATION

Minissale et al. (in prep.)

Note: Will focus on carbon for the most part. Nitrogen comes with carbon - and water is a related story.

ELEMENTAL ACCOUTING

BULK COMPOSITION CARRIERS Volatiles Refractory

(C) PAHs and/or aliphatic hydrocarbons

(O) Silicates

Gladstone and others, 201 NASA/JHU APL/SWRI

(C) CO, CO₂ (O) H_2O , CO, CO_2

о 20 рс 5 рс 0.1рс

100 au

1 au

 \mathbf{O}

Goldsmith+ 2008; Boogert+ 2015

CO Refractory Carbon

n_H ~ 3000 cm⁻³ T ~ 20 K

image credit: ESO; extinction map: Alves+ 2001

DENSE PRE-STELLAR CORES

m/

20 рс

5 рс

0.1pc

100 au

1 au

molecular emission images: Bergin+ 2002

image credit: ESO

rion KL

PROTOSTAR: ORION KL

- Angular resolution is ~45" (460 GHz/652 µm) to ~10" (1900 GHz/158 μm)
- Corresponds to 0.02 pc x $(\theta/10'')$ x (D/450 pc)

PROTOSTAR: ORION KL

EXAMPLE: HCOOCH₃

Complex organic with >1000 emissive transitions at HIFI frequencies

Data - plotted in white LTE Model - single component: T=110K, N_{col} =1x10¹⁷cm⁻², v_{lsr} =8.0 km/s, Δv =2.5 km/s

Crockett +2015

)
	ر ر
)
)
	1

 ¹³ CH ₃ CN		C₂H₅OH	
 ³⁴ SO ₂		CH ₃ OCH ₃	
CH ₃ CN		CH₃OCHO	
$CH_gCN, v8=1$		СН _а ОН	
 S0 ₂		OCS	
NH ₂ CHO	all mal	ooulos	
 C ₂ H ₅ CN	an molecules		

SETTING THE STAGE FOR PLANET FORMATION

carbon

COice

CH₄ ice

Refractory Carbon

Andrews+ 2019

10 au

NEPTUNE/URANUS ZONE

15 AU

CO

Padius

CH

5 AU

CO

HCN, CS

1 AU

 H_2O , NH_3 ,

CH₃Oŀ

100 K

60 K

NEPTUNE/URANUS ZONE

disk structure: I. Cleeves

NEPTUNE/URANUS ZONE

disk structure: I. Cleeves

JOVIAN PLANET ZONE -> HABITABLE ZONE

disk structure: I. Cleeves

HABITABLE ZONE

Carbon

Refractory Carbon

OXYGen

Earth image: NOAA

Temperature @ 1 AU - Radiation Dominated

> 1 Myrage for all disks

> Long +2018 Andrews+ 2016

- 100 110
- << T_c of refractory carbon carrier

THE HABITABLE ZONE

- refractory material
- ISM Grain $C/Si \sim 5$
- Silicate Earth C/Si < 10⁻³

abundances from Lodders 2019; Bergin+ 15; Li+ 2020, in prep.

Problem is the content - look at Carbon to Silicate Ratio in

We should be sitting on a carbon rock with no water!

MAKING ANEARTH?

Bergin +2015; Li+ 2020

Ngen

TERRESTRIAL PLANET FORMATION: Pebbles

ISM C & N RICH GRAIN DESTRUCTION

- In the inner solar system (< 5 au) -
 - Destroy carbon-rich grains
 - Silicates remain intact.
- MUST happen early before/during planetesimal formation Hard to destroy large rocks
 - Need grains to be small (pebble sized)
- Release of C and N will have implications for Astrochemistry (Wei et al. 2018; van 't Hoff et al. 2020).

ISM C & N RICH GRAIN DESTRUCTION

Options

1.Oxidation (Lee+ 2005) 2.Sublimation (Gail & Trieloff 2017; Li+ 2020, in prep.)

- does not work (Anderson+ 2018; Klarmann+2018)

ALTERING EARTH'S BUILDING BLOCKS

Li, Bergin Blake, Ciesla, & Hirschman 2020

3 au 4 au

accretion vs time; Hartmann+ 2016

> Li, Bergin Blake, Ciesla, & Hirschman 2020

EARTH'S BUILDING BLOCKS complication: ➡C & N rich pebbles drift inwards providing continuous supply of carbon to 1 AU 1 au gas pressure gradient C-Rich

C-Rich
Si-Rich
not to scale

EARTH'S BUILDING BLOCKS possible solution:

→ Jupiter core formation by ~1 Myr (Kruijer+ 17)

au

gas pressure

gradient

Earth's building blocks have modest amounts of C and N with (possibly) some water

gas pressure gradient

not to scale

PEBBLE ACCRETION LOSS TERMS

- Modeled pebble accretion of a proto-Earth forming inside the ice line.
- Growing planet attracts gaseous envelope heated by pebble accretion luminosity.
- At some point becomes hot enough to sublimate water and refractory carbon - this is lost.
- In their model volatile fraction comes from material accreted early prior to sublimation.

Johansen et al. 2021

TERRESTRIAL PLANET FORMATION: Planetesimals

C/N as a Tracer of Process

C/N as a Tracer of Process

Parent Body Processing: Hashizume & Sugiura 1998

- ordinary chondrites: exposed to vary degrees of thermal metamorphism
- T can reach 1300 K in center of 40 km sized body
- depending on oxidation state can decompose organics and devolatilize C and N

Hashizume & Sugiura 1998

Parent Body Processing: Lichtenberg & Krijt 2021

 \rightarrow Combined chemistry (CO processing) and planetesimal evolution. Potential for significant volatile loss due to ²⁶Al heating. → When a planetismal forms matters....

Parent Body Processing: Hirschmann et al. 2021

- ► Looked at relative C/S concentrations in iron meteorites.
- Given the expectation that carbon is in the Earth's core it is likely if carbon was in the parent bodies it should have been carried to their cores.
- Are these bodies truly carbon-poor (i.e. primordial gradient) or is there loss?
- Demonstrated tha parents bodies must have had higher C content, but were still "carbon-poor".

Parent Body Processing: Hirschmann et al. 2021

- Looked at relative C/S concentrations in iron meteorites.
- Modeled closed systems and ones where outgassing occurred.
- Key facet is solubility. S is more soluble than C in silicate melts (i.e. will have less loss).
- C/S ratios require significant C loss in parent bodies of iron meteorites.

TERRESTRIAL PLANET FORMATION: Magma

Oceans

Light Elements in Earth's Core

McDonough 1999

	Crust
r Mantle	
r Mantle	
er Core	
er Core	

 can measure the density of Earth's interior via
propagation of seismic waves

Light Elements in Earth's Core

Pure Fe (room temp.)

Poirier 1994; Birsch 1952

→ lower than expected density (than Fe) based on seismic wave propagation

potential elements: H, C, O, Si, S, N

Key Factors: C/N & Core Formation

Solubility in silicate melt
C more soluble than N - oxidizing conditions
N more soluble than C - reducing conditions

- Standard definition loss (oxidized) or gain (reduced) of an electron.
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
 - ➡ Planetary embryos potentially existed as early as 2 Myr after CAI's (Dauphas and Pourmand 2011).
 - ➡ Gas-rich nebula was present.
 - \Rightarrow Early H₂ atmosphere in equilibrium with magma ocean would be highly reducing.

Oxidized vs Reduced

- Standard definition loss (oxidized) or gain (reduced) of an electron.
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
 - Earth's core formed at least 30 Myr after CAI's (e.g. Nimmo & Kleine 2015).
 - H_2 nebula dissipated; initial H_2 rich atmosphere ablated.
 - Oxidation state driven by presence/absence of water or • previous presence of water forming FeO
 - Earth form's from material primary interior to the snowline presents a moderately reducing proto-Earth

Oxidized vs Reduced

- Standard definition loss (oxidized) or gain (reduced) of an electron.
- H is a reducing agent, O is a oxidizing agent
- Scenarios:
 - Earth's core formed at least 30 Myr after CAI's (e.g. Nimmo & Kleine 2015).
 - H_2 nebula dissipated; initial H_2 rich atmosphere ablated.
 - Oxidation state driven by presence/absence of water. •
 - Earth forms from material with contributions beyond nebular • snowline (during magma ocean phase).
 - Current consensus model and is much more oxidizing.

Oxidized vs Reduced

Key Factors: C/N & Core Formation

- Solubility in silicate melt
 - C more soluble than N oxidizing conditions
 - N more soluble than C reducing conditions
- Affinity for Fe-rich metal
 - C partitions more strongly than N (factors of 100) - 104)
- Timing (before, during, after core formation)
1. C/N(initial) = 252. Chemical equilibrium with variable fraction of Fe/ Silicate mixture

Forms metal/volatile rich silicate mixture

overlying atmosphere

Mode

Model: M. Hirchmann published in Bergin+ 2015

3. Segregation and isolation of core

mantle with C and N that do not go to core

overlying atmosphere based on initial equilibrium

We consider two cases: A - atmosphere returns to mantle to form BSE B - atmosphere lost to space, mantle is BSE

Model

Making a Habitable Planet

primordial atm. retained C segregates to core • most N in atm. \rightarrow C/N < (C/N)_{BSE}

Making a Habitable Planet

C in CO N in N_2 (reduced) 0.5 0.4

primordial atm. retained • Similar to last case

primordial atm. lost to space • C less soluble • C is lost along with N in atm. for low metal/Si

Making a Habitable Planet

IMPACT OF CORE FORMATION

- <u>Based on this model.</u>
- Earth's C and N likely supplied by materials that were a mixture of our cases - so at least reduced, if not oxidized
- magma-ocean related core formation (under most likely conditions) provides
 - Iow C in mantle, high N in atmosphere need loss of primordial atmosphere to account for high C/N ratio.
 - see work with Schlicting and also Stewart regarding atmospheric OSS.

MAKING A HABITABLE WORLD

- What does this mean?
 - \rightarrow Clearly it is complicated but key processes are now isolated. \rightarrow Loss terms in disk - depend on thermal history.

 - \rightarrow Loss terms in planetesimals depends on availability of ²⁶Al.
 - Loss terms in planets depends on accretion history and chemical conditions.

MAKING A HABITABLE WORLD

- What does this mean?
 - Clearly it is complicated but key processes are now isolated.
 - \Rightarrow It is time to take it to the next step and explore what matters and when.
 - Astronomical data will be key ALMA/JWST/NOEMA/SMA and exoplanetary atmospheric composition.
 - Young disk may be crucial needs to be characterized.
 - Did not talk about is isotopes which are potential "fingerprints" of source terms in gas-free disk. More information there - and don't forget about O and N isotopes along with D/H.

images: Hacar+ 2015; Pinte+ 2016; Louvet+ 2018 Andrews+ 2018; NOAA

THANK YOU!

WHAT ABOUT <u>VOLATILE</u> ISOTOPES

- Isotopic ratios enable exploration of potential planetesimal mixing in gas-free nebula.
- Did dry Earth get water/carbon from beyond snowline in the form of meteorites • or comets?
- Solar system water has enhanced D/H originated in cold reservoir (< 20 K; Cleeves et al. 2014).
- Earth has D/H ratio commensurate with meteorites, but one comet (Hartley 2; Hartogh et al. 2011) has a comparable ratio.
 - \rightarrow Hartley 2 has factor of ~2 higher ¹⁵N/¹⁴N ratio (Shinnake et al. 2016).
 - Dynamical models (Morbidelli et al. 2000) show that cometary contribution is difficult. But pebbles.....

THE FUTURE

- ALMA still in operation great for C and N (less so for water) • JWST (2021) 2-28 μ m (R = $\Delta\lambda/\lambda \sim 3000$)
- - \rightarrow Provides access to emission from volatiles (CO₂, H₂O) arising from terrestrial planet formation zone
- Origins Space Telescope (mission proposed to decadal survey, 2030?) 25-588 $\mu m (R \sim 300000)$
 - capable of surveying water vapor/ice, HD in 1000 disks to provide needed statistics to link to exoplanet inventory.

"The Chemistry of Planet Formation" (PI: Öberg, Aikawa, Guzman, Walsh, Bergin)

images: Hacar+ 2015; Pinte+ 2016; Louvet+ 2018 Andrews+ 2018; NOAA

THANK YOU!

SNOWLINES AND CHEMICAL GRADIENTS • To date clear focus on connective tissue has been the C/O ratio and snowlines (Öberg, Murray-Clay, &

Bergin 2011).

JWST

- column into 10 AU.
- Exoplanets Spectra from JWST and large telescopes

Going Forward

More observations with ALMA will improve statistics on CO

HD observations with SOFIA/HIRMES to unlock C/H and O/H

Frequency (GHz)

What about Terrestrial Worlds?

Bergin +2015

Talking about time...

1 M_{Earth} (6000 km)

Embryos (Mars mass)

Planetesimals (~100 km)

Dust (1 µm

or ~10⁻⁹ km) ~0.1-0.3 Myr 1 Myr

adapted from Meech & Raymond 2019; see also Johansen & Lambrechts 2017 and Morbidelli 2018

10 Myr

100 Myr

Radiometric Dating: Absolute Age

Different atoms have different half-lives → Uranium-238 to Lead-206 4.47 billion years ➡ Potassium-40 to Argon-40 ➡ Carbon-14 to Nitrogen-14

- 1.25 billion years
- 5730 years

Circuitous Routes: U-Th-Pb decay

Element	U-238 series								Th-232 series					U-235 series				
Neptunium																		
Uranium	U-238 4.47 x 10 ⁹ y		U-234 2.48 x 10	5									U-235 7.04 x 10 ⁸ y					
Protactinium		Pa-234 1.18												Pa-231 3.25 x 10 ⁴			·	
Thorium	Th-234 24.1 d		Th-230 7.52 x 10 y	4				Th-232 1.40 x 10 ¹⁰ y		Th-228 1.91			Th-231 25.5 hrs		Th-227 18.7			
Actinium									Ac-228 6.13 hrs					Ac-227 21.8 y				
Radium			Ra-226 1.62 x 10 y	3				Ra-228 5.75 y		Ra-224 3.66 d					Ra-223			
Francium																		
Radon			Rn-222 3.82 d							Rn-220 55.6 s					Rn-219 3.96 s			
Astatine																		
Polonium			Po-218 3.05 min		Po-214 1.64 x 10	·	Po-210			Po-216 0.15 s	64%	Po-212 3.0 x 10 ⁻⁷			Po-215 1.78 x 10 ⁻³ s			
Bismuth				Bi-214 19.7		Bi-210 5.01					Bi-212 60.6 min					Bi-211 2.15 min		
Lead			Pb-214 26.8 min		Pb-210 22.3 y		Pb-206 Stable lead isotope			Pb-212 10.6 hrs	36%	Pb-208 Stable lead			Pb-211 36.1 min		Pb-207 Stable lead isotope	
Thallium											TI-208 3.05 min					TI-207 4.77 min		

modern methods: earliest known solids Calcium Aluminum rich inclusions - first solids to form
Over 70 meteorites have ages of 4.53-4.57 Billion Years

- 20 рс

- 5 pc
- 0.1pc

100 au

- 100 au

1 au

