Disks as chemical conveyor belts

Arthur Bosman University of Michigan Disk wind

Turbulent mixing and accretion

arbos@umich.edu

Dust settling and drift

Meridional flow

Interactions between transport and chemistry

Transport species to places they do not form

Transport changes elemental composition

Viscous mixing - Chemistry

Bringing up ices from the midplane

Viscous mixing - Chemistry

Radial cold finger effect

Stevenson & Lunine 1988

- Trapping surface species near the mid-plane
 - "vertical cold finger effect" Meijerink et al. 2009

Dust settling

Adapted from Bosman & Bergin 2021

Dust settling

Adapted from Bosman & Bergin 2021

Dust settling - observed impact

"Cold" water is missing

Dust settling - observed impact

Cold gas dominated

Warm gas dominated

Dust settling - observed impact

- "Cold" water is missing
- No large reservoir of water outside of the mid-plane snowline Meijerink+ 2009, Blevins+2017, Bosman+2021
- No large reservoir of water in the outer disk

Hogerheijde+ 2011, Du+ 2017

Dust settling - observational constraints

C/O related to disk (sub)-structure

van der Marel et al. 2021

Sufficient cold dust necessary for high C₂H emission

High C/O related to low CO locking in the mid-plane

Trapping in action

Water diffuses down the gradient

Settled large grains create a ice sink

Krijt et al. 2016

Chemistry further lowers CO abundance

Trapping and simple chemistry ³

Same, slower diffusion processes

Chemistry further lowers CO abundance

C/O ratios change significantly

Expanding the chemistry

Including a full gas-phase ⁵ network and UV reaction ₄

Faster CO depletion

C/O ratios ≤ 1

Open questions

- C/O ratios
 - Models find it hard to predict values > 1
 - Observations require C/O > 1.5

- Are there limits to concentration?
 - Can you deplete gas stronger than the dust?
 - Can we deplete enough small dust to remove the CO gas?
- What is N₂ doing?
 - Nothing? Cleeves et al 2018

- Radial drift sets up a flow of solids inward
- Enrichment of regions within ice-lines
- (Sub-)structures matter

Observational evidence of radial drift

Heavy disks: low water content?

2.5 Relative line strengths of Najita et al 2013 HCN and H₂O correlated 2.0 with disk dust mass 01.5 H L Locking of ice in HCN / 1.0 planetesimals or... 0.5 Light disks: 0.0 high water content? -3.0-1.5-2.5 -2.0-1.0log (Mdisk/Msun)

Observational evidence of radial drift

... radial drift?

Dust traps hold dust in outer regions: Large disks have less drift Lower water abundance

Banzatti et al. 2020

Observational evidence of radial drift

Peak created at ice line for low viscous α

Abundance increase modest for high α

Drift affecting the inner disk

 CO_2 $- 1 \times 10^5$ yr ⁻ Gaseous 10^{-3} --- Solid $----3 \times 10^5 \text{ yr}^-$ Initial --- 1 × 10⁶ yr Abundance peak only at Abundance 01 early times Abundance proportional 10^{-5} to drift rate 10^{-6} 10⁰ 10¹ 10² Radius (AU)

Bosman et al. 2018, see also Ciesla+2006, Booth et al 2017, 2019

Absence of drift: ice locking

Traps hold back dust significantly

Dust trap stops dust

Inflowing gas is volatile poor

McClure et al. 2020

Ice locking

Evidence of locking seen in gas accreting unto TW Hya

Carbon locking also seen in 5 other disks

McClure et al. 2019, see also Bosman et al. 2019

Ice locking or drift

H2O/HCN Banzatti et al 2020, C-depletion: McClure 2019

Ice locking or drift

H2O/HCN Banzatti et al 2020, C-depletion: McClure 2019

Contradictory evidence?

Open question

• How fast is drift?

• How effective are gaps at stopping drift?

Meridional flows

Meridional flow

Alarcon et al. 2020

van der Marel et al. 2021, Booth et al 2021a, 2021b

Conclusions

- Settling and diffusion impact the abundance structure
 - Effects seen, but not quantitatively predictable
 - High C/O ratios not explained yet
- Links between (sub)-structures and inner disk abundances
 - Strongly reduced solid transport?