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(CAS-) Perspective Talk: 
The importance of the initial conditions 
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Credit: ESA/Herschel/SPIRE

outer
edge

Caselli 2011

Dark Cloud 
as seen in dust continuum emission 500 µm

Pre-stellar core

Central densities: 
≥ 106  H2 per cc 

Zooming into a pre-stellar core (t = 0)



Crapsi, Caselli, Walmsley, Tafalla 2007 

In pre-stellar cores, 
the gas temperature 
drops to ~6 K
→ molecular freeze-
out (>90% CO in ice; 
Caselli+1999) and D-
fractionation (D/H ≥ 
20%; Caselli+2002; 
Redaelli+2019). 

Karssemejer et al. 2012, PCCP



99.99% of all species heavier than He are frozen  
onto dust grains in the PSC central 2000 au 

Caselli, Pineda, Sipilä+2021, sub. 

L1544 ALMA-Band 3 observations + 
comparison with gas-grain chemical/RT 
model: NH2D abundance sharply drops in 
the central 2000 au.  

Center 2.5"
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Almost compete freeze-out before stellar birth

Artistic view of a typical dust 
grain in the centre of a pre-

stellar core (ice thickness ~ 150 
monolayers of ice on a 0.1𝜇m 

dust grain) 

The sharpest view of a pre-
stellar core centre

pNH2D(111-110) with ALMA



Harju+2020

oNH2D

CH3OH & oNH2D

Gas-phase COMs 
surround pre-stellar 
cores and move on 
grain surfaces within 
PSCs

H-MM1 

ALMA

Marcelino+2007
Öberg+2010 
Bacmann+2013 
Bizzocchi+2014
Vastel+2014 
Bacmann&Faure 2016 
Jiménez-Serra+2016 
Spezzano+2016, 2017, 2020  
Scibelli & Shirley 2020
Ambrose+2021

See also:



Drozdovskaya+2019
67P/Rosetta - ESA

Jørgensen+2016

Similar COM abundances in comets 
and star forming regions

“The volatile composition of 
cometesimals and 
planetesimals is partially 
inherited from the pre- and 
protostellar phases of 
evolution.”

See also Biver+2015, Rivilla+2020



The	dawn	of	protoplanetary	disks	
Caselli	&	Ceccarelli	2012	

Boley	2009	

Ilee	et	al.	2011,	Evans	et	al.	2015	

B field
Rotating and 
contracting 
magnetised cloud



Protostellar disk formation enabled by 
removal of very small dust grains (VSGs) 
VSGs (10-100 Å) are 
well coupled with the 
magnetic field B; they 
“drag” B-flux, causing 
rotation to slow down 
during contraction.  

Removal of VSGs (via 
adsorption onto larger 
dust particles; Silsbee+ 
2020) reduces 
magnetic flux in the 
inner region, enabling 
disk to form.

without VSGs

with VSGs

Zhao+2016, 2018, 2020

Bo
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Simulated disk with spirals Simulated fragmented disk

Alves+2018

Observations

Zhao+2018, 2019, 2020

Simulated disks resemble observations 

Tobin	et	al.	2016,	Nature	(see	also	Pérez	et	al.	2016,	Science)	

A	TRIPLE	PROTOSTAR	SYSTEM	FORMED	VIA	FRAGMENTATION	
OF	A	GRAVITATIONALLY	UNSTABLE	DISK	

Tobin+2016



145 au 145 au

10 au
Alves+2017, 2018

Alves+2019, Science 

Zooming into a proto-binary system 
with ALMA: intricate feeding lanes 

connecting to the circumbinary disk 

The Cosmic Pretzel !

https://www.eso.org/public/news/eso1916/

Felipe

[BHB2007]11



Disk size depends on 
the ionisation fraction 

Küffmeier+2020



Large ionisation rate could explain 
disk observations in Orion

<<While photoevaporation from 
nearby massive Trapezium stars may 
account for the smaller disks in
the ONC, the embedded sources in 
OMC1 are hidden from this 
radiation>> 

Otter, Ginsburg+2021



Protostellar disks can be hot and 
gravitationally unstable 

Zamponi+2021 

Joaquin

IRAS16293B ALMA observations: 
high brightness temperatures with  
Tb(3mm) > Tb(1mm), indicative of 
hot mid-plane.  

RHD simulations of a  
gravitationally unstable disk 
reproducing ALMA observations: 
all icy mantles should evaporate 
here and create a “hot corino”.    



Stephens et al. (2018) 1500 au

1500 au

contours: SMA C18O (2-1)
color: NOEMA HC3N (10-9)

black: SMA 1.3 mm continuum
red/blue: SMA CO (2-1)

Protostars accrete chemically young 
material directly from the surrounding cloud

Pineda+2020, Nature Astronomy
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NOEMA Large Survey
Envelope-Disk Connection

• Survey covers 32 Class 0/I and 
8 Class II


• 520 hours over 4 years

• Resolution ~250 au, rms ~0.2 K

• Preliminary results, publications 

coming later this year

NOEMA

PIs: Caselli & Henning

Segura-Cox, Pineda et al. in prep

Finding more streamers 
Follow material from envelope 

to disk scales

DCO+


N2D+

SO

Class 0            



Valdiva-Mena, Pineda et al. in prep (Ph.D. Project)

The streamer infall rate is 
measured and compared 

with the protostellar 
accretion rate. 


The streamer can sustain 
the protostellar accretion 

rate.
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red & blue arrows: 12CO outflow directions

gray curve: C18O infalling 
streamer model

H2CO integrated intensity map

Streamer infall rate vs. Distance

blue band: observed protostellar accretion rate (birthline age)
green band: observed protostellar accretion rate (1 Myr age)

Streamers Feed Older Embedded Disks

NOEMA's wide bandwidth 
identifies H2CO as a chemical 

tracer of streamers.  

Kinematic modelling 

confirmed the streamer's infall 
onto the Class I disk.

Maria Teresa



The least-evolved disk with multiple dust 
rings: planet-formation starts early

http://www.spacetelescope.org/images/opo9545c/

Protoplanetary disks

http://www.eso.org/public/news/eso1436/

ALMA

Dominique

Segura-Cox+2020, Nature



Also more evolved planet-forming 
disks are still fed by outer cloud

Alves+2020 (see also Ginski+2021; Küffmeier+2021)

Felipe

ALMA



SO WHAT ??

1. to take into account  initial conditions and the 
environment during the formation/evolution;

2. high-spectral/angular resolution and high- 
sensitivity telescopes to unveil the dynamical,          
chemical and dust evolution from PSCs to PFDs;  

3. laboratory work to measure (i) refractive indexes          
and opacities of ices and solids, (ii) ice spectroscopy            
and kinetics, (iii) accurate line frequencies;

4. theory work on chemical/dynamical evolution                    
(𝜻!) of early phases + detailed radiative transfer. 

If you want to understand the physical/chemical structure 
of planet-forming disks, you need: 


