Paola Caselli

Center for Astrochemical Studies, Max-Planck-Institute for extraterrestrial Physics

Zooming into a pre-stellar core ($\mathrm{t}=0$)

Dark Cloud

as seen in dust continuum emission $500 \mu \mathrm{~m}$

Credit: ESA/Herschel/SPIRE

In pre-stellar cores, the gas temperature drops to ~6 K
\rightarrow molecular freezeout (>90\% CO in ice; Caselli+ 1999) and Dfractionation ($\mathrm{D} / \mathrm{H} \geq$ 20\%; Caselli+2002; Redaelli+2019).

Karssemejer et al. 2012, PCCP

Crapsi, Caselli, Walmsley, Tafalla 2007
99.99\% of all species heavier than He are frozen onto dust grains in the PSC central 2000 au

LI 544 ALMA-Band 3 observations + comparison with gas-grain chemical/RT model: $\mathrm{NH}_{2} \mathrm{D}$ abundance sharply drops in the central 2000 au .

Caselli, Pineda, Sipilä+202 I, sub.

Almost compete freeze-out before stellar birth

- pNH2D($\left.I_{11}-I_{10}\right)$ with ALMA

Artistic view of a typical dust grain in the centre of a prestellar core (ice thickness ~ 150
The sharpest view of a prestellar core centre dust grain)

Gas-phase COMs surround pre-stellar cores and move on grain surfaces within PSCs

Harju+2020

See also:
Marcelino+2007
Öberg+2010
Bacmann+2013 Bizzocchi+2014
Vastel+2014
Bacmann\&Faure 2016 Jiménez-Serra+2016 Spezzano+2016, 2017, 2020 Scibelli \& Shirley 2020
Ambrose+202I

Similar COM abundances in comets and star forming regions

The dawn of protoplanetary disks

Protostellar disk formation enabled by removal of very small dust grains (VSGs)

VSGs ($10-100 \AA$) are well coupled with the magnetic field \mathbf{B}; they "drag" B-flux, causing rotation to slow down during contraction.

Removal ofVSGs (via adsorption onto larger dust particles; Silsbee+ 2020) reduces magnetic flux in the inner region, enabling disk to form.

Zhao+20I6, 20I8, 2020

Simulated disks resemble observations

Simulated disk with spirals

Simulated fragmented disk
$\log \rho \int_{-17.0} \begin{array}{lllllllll} \\ & -15.9 & -14.8 & -13.8 & -12.7 & -11.8 & -10.5\end{array}$

Observations

Zhao+2018, 2019, 2020

Zooming into a proto-binary system with ALMA: intricate feeding lanes connecting to the circumbinary disk

Alves+20/9, Science
The Cosmic Pretzel!

Disk size depends on the ionisation fraction

Large ionisation rate could explain disk observations in Orion

<<While photoevaporation from nearby massive Trapezium stars may account for the smaller disks in the ONC, the embedded sources in OMCI are hidden from this radiation>>

Otter, Ginsburg+202 I

Protostellar disks can be hot and gravitationally unstable

$16^{\mathrm{h}} 32^{\mathrm{m}} 22.65^{\mathrm{s}} 22.64^{\mathrm{s}} \quad 22.63^{\mathrm{s}} \quad 22.62^{\mathrm{s}} \quad 22.61^{\mathrm{s}}$
Right Ascension (J2000)

$16^{\mathrm{h}} 32^{\mathrm{m}} 22.65^{\mathrm{s}} 22.64^{\mathrm{s}} \quad 22.63^{\mathrm{s}} \quad 22.62^{\mathrm{s}} \quad 22.61^{\mathrm{s}}$
Right Ascension (J2000)

Joaquin

IRASI6293B ALMA observations: high brightness temperatures with $\mathrm{T}_{\mathrm{b}}(3 \mathrm{~mm})>\mathrm{T}_{\mathrm{b}}(\mathrm{Imm})$, indicative of hot mid-plane.

RHD simulations of a gravitationally unstable disk reproducing ALMA observations: all icy mantles should evaporate here and create a "hot corino".

Zamponi+202I

Protostars accrete chemically young material directly from the surrounding cloud

NOEMA Large Survey

 Envelope-Disk Connection

Finding more streamers
Follow material from envelope to disk scales

- Survey covers 32 Class 0/I and 8 Class II
- 520 hours over 4 years
- Resolution ~ 250 au, rms $\sim 0.2 \mathrm{~K}$
- Preliminary results, publications coming later this year

Segura-Cox, Pineda et al. in prep

Streamers Feed Older Embedded Disks

Per-emb-50 (Class I)

red \& blue arrows: ${ }^{12} \mathrm{CO}$ outflow directions

NOEMA's wide bandwidth identifies $\mathrm{H}_{2} \mathrm{CO}$ as a chemical tracer of streamers.

Kinematic modelling confirmed the streamer's infall onto the Class I disk.

The streamer infall rate is measured and compared with the protostellar accretion rate.

The streamer can sustain the protostellar accretion rate.

Streamer infall rate vs. Distance

blue band: observed protostellar accretion rate (birthline age) green band: observed protostellar accretion rate (1 Myr age)

Valdiva-Mena, Pineda et al. in prep (Ph.D. Project)

The least-evolved disk with multiple dust rings: planet-formation starts early

Also more evolved planet-forming disks are still fed by outer cloud

Felipe
CO gas filaments

100 au

Alves+2020 (see also Ginski+202I;Küffmeier+202I)

SO WHAT ??

If you want to understand the physical/chemical structure of planet-forming disks, you need:
I. to take into account initial conditions and the environment during the formation/evolution;
2. high-spectral/angular resolution and highsensitivity telescopes to unveil the dynamical, chemical and dust evolution from PSCs to PFDs;

3. laboratory work to measure (i) refractive indexes and opacities of ices and solids, (ii) ice spectroscopy and kinetics, (iii) accurate line frequencies;
4. theory work on chemical/dynamical evolution (ऽ!) of early phases + detailed radiative transfer.

