

(CAS-) Perspective Talk: The importance of the initial conditions

Paola Caselli Center for Astrochemical Studies, Max-Planck-Institute for extraterrestrial Physics

Zooming into a pre-stellar core (t = 0)

Dark Cloud as seen in dust continuum emission 500 μm

Credit: ESA/Herschel/SPIRE

Pre-stellar core

In pre-stellar cores, the gas temperature drops to ~6 K \rightarrow molecular freezeout (>90% CO in ice; Caselli+1999) and Dfractionation (D/H \geq 20%; Caselli+2002; Redaelli+2019).

Crapsi, Caselli, Walmsley, Tafalla 2007

99.99% of all species heavier than He are frozen onto dust grains in the PSC central 2000 au

L1544 **ALMA**-Band 3 observations + comparison with gas-grain chemical/RT model: NH₂D abundance sharply drops in the central 2000 au.

Caselli, Pineda, Sipilä+2021, sub.

Almost compete freeze-out before stellar birth

The sharpest view of a prestellar core centre Artistic view of a typical dust grain in the centre of a prestellar core (ice thickness ~ 150 monolayers of ice on a $0.1 \,\mu$ m dust grain)

Gas-phase COMs surround pre-stellar cores and move on grain surfaces within **PSCs** ALMA Harju+2020 See also: Marcelino+2007 Öberg+2010 Bacmann+2013 Bizzocchi+2014 Vastel+2014 H₃C⁻⁰. CH₃ Bacmann&Faure 2016 Jiménez-Serra+2016 Spezzano+2016, 2017, 2020 Scibelli & Shirley 2020 Ambrose+2021

Similar COM abundances in comets and star forming regions

llee et al. 2011, Evans et al. 2015

Protostellar disk formation enabled by removal of very small dust grains (VSGs)

VSGs (10-100 Å) are well coupled with the magnetic field **B**; they "drag" B-flux, causing rotation to slow down during contraction.

Removal of VSGs (via adsorption onto larger dust particles; *Silsbee*+ 2020) reduces magnetic flux in the inner region, enabling disk to form.

Zhao+2016, 2018, 2020

Simulated disks resemble observations

Zhao+2018, 2019, 2020

Zooming into a proto-binary system with ALMA: intricate feeding lanes connecting to the circumbinary disk

 \bigcirc

Alves+2017, 2018

 \bigcirc

10 au

Felipe

Disk size depends on the ionisation fraction

Large ionisation rate could explain disk observations in Orion

<<While photoevaporation from nearby massive Trapezium stars may account for the smaller disks in the ONC, the embedded sources in OMCI are hidden from this radiation>>

Otter, Ginsburg+2021

Protostellar disks can be hot and gravitationally unstable

Joaquin

IRASI6293B ALMA observations: high brightness temperatures with $T_b(3mm) > T_b(1mm)$, indicative of hot mid-plane.

RHD simulations of a gravitationally unstable disk reproducing ALMA observations: all icy mantles should evaporate here and create a "hot corino".

Zamponi+2021

Protostars accrete chemically young material directly from the surrounding cloud

NOEMA Large Survey Envelope-Disk Connection

Finding more streamers Follow material from envelope to disk scales

- Survey covers 32 Class 0/I and 8 Class II
- 520 hours over 4 years
- Resolution ~250 au, rms ~0.2 K
- Preliminary results, publications coming later this year

Segura-Cox, Pineda et al. in prep

Streamers Feed Older Embedded Disks

Per-emb-50 (Class I)

red & blue arrows: ¹²CO outflow directions

green band: observed protostellar accretion rate (1 Myr age)

Valdiva-Mena, Pineda et al. in prep (Ph.D. Project)

The least-evolved disk with multiple dust rings: planet-formation starts early

Also more evolved planet-forming disks are still fed by outer cloud

Alves+2020 (see also Ginski+2021; Küffmeier+2021)

SO WHAT ??

If you want to understand the physical/chemical structure of planet-forming disks, you need:

- I. to take into account **initial conditions and the environment** during the formation/evolution;
- 2. **high-spectral/angular resolution and highsensitivity** telescopes to unveil the dynamical, chemical and dust evolution from PSCs to PFDs;
- 3. **laboratory work** to measure (i) refractive indexes and opacities of ices and solids, (ii) ice spectroscopy and kinetics, (iii) accurate line frequencies;
- 4. **theory work** on chemical/dynamical evolution $(\zeta!)$ of early phases + detailed radiative transfer.

