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Paleomagnetism: overview

Inference of ancient magnetic fields recorded by planetary materials.

In the form of natural remnant magnetization (NRM), several sub-categories.

Basic principle: record ambient field when they cool, crystalize, or accrete,
with a certain proportionality:

MNRM = XBpaleo

Proportionality coefficient obtained/calibrated by subsequent experiments.

See Weiss, Bai & Fu (2021, Sci. Adv.) for a review on its application to solar nebula.



Meteorite paleomagnetism: pros & cons

Advantages:

= Directly meausrement of total field strength
= Have age information

= Instantaneous to time-averaged field strength (depending on how
magnetization is acquired)

Disadvantages:

= Field orientation is unknown

= Location is unknown (expected to be near midplane, distance
based on educated guesses)

= Small number statistics (can be improved over time)



' Theoretical model of B field strength

Angular momentum flux carried by accretion flow: M woc] (R)
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Balancing with radial transport: M . ] = 21T R2 LZ( B R Bq) I 4n)
Balancing with vertical transport: M acc ] = 87 R3 IBz Bq,/ 4m |base

Wardle 2007, Bai & Goodman 2009



' Theoretical model of B field strength
Assuming steady state accretion, and depending on the driving mechanism:

B o ﬂ 1/4 Macc 1/2 fH 1/2 i —11/8
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(For radial transport, with f = (By/BR)mid)
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(For vertical transport, with m = By base/ Bp mid, f' = (Bg/B:)base )
[Weiss, Bai & Fu (2021), generalized version]

Wind-transport is more efficient by (R/H), but geometric factors also matter!



' Calibrate the geometric factors

Current Disk is threaded by net B,.

understanding:  Accretion is primarily wind-driven.
Polarity of B, matters due to the Hall effect.

Aligned case:
log, (n)

We have f’~10, and for
aligned/anti-aligned
o cases, m~10 or 1.
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B field amplification due to

the “Hall-shear instability”
(Kunz 08, Lesur+14, Bai14)
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Constrains from paleomagnetism (as of 2021.1)
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Distance is assumed (2-3 AU for LL chondrite, 3-7AU for carbonacious chondrites).

Sparse data points, many upper/lower limits, but results so far consistent with
standard accretion rate in an aligned field geometry.




New samples: CO chondrules

Two CO chondrites, both among the least altered meteorites (i.e., pristine).
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Dusty olivine chondrules
Extracted 6 chondrules from the two samples. contain fine-grained iron

as magnetic carriers.
Age: 2.2+/-0.8 Ma after CAIl formation.



Measurements Borlina et al. 2021
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Magnetization is pre-accretional.

Inferred nebula field strength (calibrated and
averaging over samples): 1.01+/-0.48 G




‘ Results from CO chondrules
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In brief, we have:

0.5G at ~2 AU

1G at ~5 AU

Given that we expect:

Macc ~ B2R5/2

A mismatch in accretion rate
by a factor of ~40!



In the context of the isotopic dichotomy
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Time-variable accretion? Borling of al 2021
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Age overlap is against the
time-variability scenario.



‘ Magnetic substructure in a normal disk?

We have seen that evolution of poloidal B flux is highly inhomogeneous.
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However, B field is dominated by By: strength is smooth other than sign change.

We don’t know for sure
but seems unlikely.




‘ Spatially-varying accretion?

MHD winds in PPDs are magneto-thermal in nature, with significant mass loss
(Bai+2016, Bai 2017, Bethune+2017, Wang+2019, Lesur 2021, but see Gressel+2020).

Significant mass loss would imply increasing accretion rate with radius in
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If the mismatch in accretion rates is indeed so large, something should happen
in between.




‘ Spatially-varying accretion?

MHD winds in PPDs are magneto-thermal in nature, with significant mass loss
(Bai+2016, Bai 2017, Bethune+2017, Wang+2019, Lesur 2021, but see Gressel+2020).

Significant mass loss would imply increasing accretion rate with radius in

steady state.
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If the mismatch in accretion rates is indeed so large, something should happen
in between. The presence of Jupiter?




Summary

Meteorite paleomagnetism provides alternative means to constrain the
strength and evolution of magnetic field in disks.

Existing paleomagnetic record consistent with wind-driven accretion with
aligned B, for typical nebular accretion rate of 10-8 Msun/yr.

New measurements from the CO chondrules yield nebular field strength
even stronger than earlier record from LL chondrules.

Despite caveats, the results imply a mismatch in nebular accretion rates
between the NC and CC reservaoir.

This mismatch might be related to excessive disk mass loss, due to
MHD disk winds and/or presence of Jupiter.



