

The dynamics of warped disks

Cornelis Dullemond with Carolin ("Lina") Kimmig and John J. Zanazzi

"Tutorial" for the MIAPP Disk Workshop

Non-planar protoplanetary disks

Warp versus twist

Image credit: Carolin ("Lina") Kimmig

Warped disks: Two modeling methods

Full 3D Hydro Models

Usually done with SPH

1D Multi-Ring Models

5 a

Here: Facchini, Juhasz & Lodato 2018

Here: Masterthesis Carolin ("Lina") Kimmig

Detailed, but costly

Fast, but simplified

General principle

break up the disk into rings

Image credit: C. Kimmig 2021

General principle

G is the internal torque vector in the disk, which for flat disks is simply the turbulent viscosity times the unit vector **I**.

So far nothing new: the usual viscous disk evolution equations

General principle

General principle

$$\mathbf{L}(r,t) \equiv \Sigma(r,t) \,\Omega(r) \, r^2 \mathbf{l}$$

Local angular momentum vector

$$\frac{\partial \mathbf{L}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mathbf{L} v_r + r \mathbf{G} \right) = \mathbf{T}$$

Angular momentum conservation is now a vectorial equation

General principle

General principle

$$\mathbf{L}(r,t) \equiv \Sigma(r,t) \,\Omega(r) \, r^2 \mathbf{l}$$

Local angular momentum vector

$$\frac{\partial \mathbf{L}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mathbf{L} v_r + r \mathbf{G} \right) = \mathbf{T}$$

Internal torque

Angular momentum conservation is now a vectorial equation

History of 1D Multi-Ring Models for warped disks

- Papaloizou & Pringle 1983; Pringle 1992;
 Papaloizou & Lin 1995; Lubow & Pringle 1993
- Ogilvie 1999; Lubow & Ogilvie 2000; Ogilvie & Latter 2013; Ogilvie 2018
- Martin et al. 2019; Zanazzi & Lai 2018
- Many more...

The conservation equations are simple and always the same. But the big question is: What is the correct equation for the internal torque vector G(r,t)?

Two regimes, treated separately:

Viscous/diffusive regime (α>>h/r):

$$\mathbf{G}(r,t) = \dots$$

G is a direct function of the disk conditions

Pringle 1992; Lodato & Price 2010; Ogilvie & Latter 2013

• Wavelike regime ($\alpha < <h/r$):

$$\frac{\partial \mathbf{G}(r,t)}{\partial t} = \dots$$

G is a dynamic quantity

Ogilvie 1999; Lubow & Ogilvie 2000

Martin et al. 2019 proposed a unified equation:

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} = \frac{3 g_0}{2} \alpha^2 \mathbf{l} - \frac{g_0}{4} \frac{d \mathbf{l}}{d \ln r}$$

 g_0 contains stuff such as Σ and h

Martin, Lubow, Pringle et al. 2019

Note: Strongly simplified here

Martin et al. 2019 proposed a unified equation:

Viscous/diffusive regime (α >>h/r):

Note: Strongly simplified here

Viscous/diffusive regime (α >>h/r):

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} = \frac{3 g_0}{2} \alpha^2 \mathbf{l} - \frac{g_0}{4} \frac{d \mathbf{l}}{d \ln r}$$

 g_0 contains stuff such as Σ and h

Matches the equations of Pringle 1992; Lodato & Price 2010; Ogilvie & Latter 2013

Wavelike regime ($\alpha <<h/r$):

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} = \frac{3 g_0}{2} \alpha^2 \mathbf{l} - \frac{g_0}{4} \frac{d \mathbf{l}}{d \ln r}$$

 g_0 contains stuff such as Σ and h

Matches the equations of Ogilvie 1999 and Lubow & Ogilvie 2000

Note: Strongly simplified here

Wavelike regime ($\alpha < <h/r$):

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} = \frac{3 g_0}{2} \alpha^2 \mathbf{l} - \frac{g_0}{4} \frac{d \mathbf{l}}{d \ln r}$$

 g_0 contains stuff such as Σ and h

However, for long evolution times, we do not want to ignore the viscous evolution of $\Sigma(r,t)$

Note: Strongly simplified here

Strange behavior, including negative viscosity!

Martin's solution: add a damping coefficient β

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} = \frac{3 g_0}{2} \alpha^2 \mathbf{l} - \frac{g_0}{4} \frac{d \mathbf{l}}{d \ln r}$$

Martin's solution: add a damping coefficient β

$$\frac{\partial \mathbf{G}}{\partial t} + \alpha \Omega \mathbf{G} + \beta (\mathbf{G} \cdot \mathbf{l}) \mathbf{l} = \frac{3 g_0}{2} \alpha (\alpha + \beta) \mathbf{l} - \frac{g_0}{4} \frac{d\mathbf{l}}{d \ln r}$$
Band Aid
Band Aid

Works well, as long as β is large enough (e.g. β =100)

But what is the physical meaning of this?

We wanted to find out (Dullemond, Kimmig & Zanazzi 2021 MNRAS in press)

Warped disk geometry

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Warped disk geometry & shearing box Top view: Orbital rotation direction Warped shearing box formalism from Ogilvie & Latter 2013

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Warped disk geometry & shearing box Top view: Orbital rotation direction Warped shearing box formalism from Ogilvie & Latter 2013

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Orbital rotation direction

Top view:

Warped shearing box formalism from Ogilvie & Latter 2013

Sloshing motion

After an illustration in Ogilvie & Latter 2013 Principle was discovered by Papaloizou & Pringle 1983

Rocking -> Sloshing motion (Papaloizou & Pringle 1983)

Sloshing creates an <u>internal torque</u>.

(Papaloizou & Pringle 1983)

How this works is a bit complex. It will be the topic of the second part of the tutorial.

Simulation from: Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector **G**

Regard G as sum of a viscous part $G^{(v)}$ and a dynamic "sloshing" part $G^{(s)}$.

$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector **G**

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector **G**

$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$

The viscous torque drives the viscous evolution of $\Sigma(r,t)$. It stands <u>perpendicular</u> to the disk.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)
$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$

The sloshing torque drives the warp evolution I(r,t). It lies inside the disk plane.

$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$

For the usual small α the viscous torque is <u>tiny</u>, much smaller than the sloshing torque.

$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$

As a result of the torque, the disk may tilt, yielding a new disk plane (a new vector I(r,t)). If left untreated, this may lead to an <u>unphysical</u> "leakage" _ of sloshing torque into the viscous torque. Viscous

G

dynamic torque due to "sloshing"

torque

$$\frac{\partial \mathbf{G}^{(s)}}{\partial t} + \alpha \Omega \mathbf{G}^{(s)} = -\frac{g_0}{4} \frac{d\mathbf{l}}{d\ln r} + \left(\mathbf{l} \times \frac{d\mathbf{l}}{dt}\right) \times \mathbf{G}^{(s)}$$

In our new formalism we <u>rotate</u> the sloshing torque with the plane of the disk.

Summary: Our new equations

$$\mathbf{G} = \mathbf{G}^{(v)} + \mathbf{G}^{(s)}$$
$$\mathbf{G}^{(v)} = \frac{3 g_0}{2\alpha\Omega} \alpha^2 \mathbf{l}$$
Static viscous torque
$$\frac{\partial \mathbf{G}^{(s)}}{\partial t} + \alpha \Omega \mathbf{G}^{(s)} = -\frac{g_0}{4} \frac{d\mathbf{l}}{d\ln r} + \left(\mathbf{l} \times \frac{d\mathbf{l}}{dt}\right) \times \mathbf{G}^{(s)}$$

Dynamic sloshing torque

Numerical test of the equations

So... Why does the "sloshing motion" create a torque??

<u>Here:</u> Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text{epicycle}} = \Omega_{\text{Kepler}}$ and thus $\phi_0 = 0 \rightarrow \underline{\text{pure warp damping}}$, no warp twisting.

View from this perspective:

<u>Here:</u> Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text{epicycle}} = \Omega_{\text{Kepler}}$ and thus $\phi_0 = 0 \rightarrow \text{pure warp damping}$, no warp twisting.

<u>Here:</u> Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text{epicycle}} = \Omega_{\text{Kepler}}$ and thus $\phi_0 = 0 \rightarrow \text{pure warp damping}$, no warp twisting.

<u>Here:</u> Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text{epicycle}} = \Omega_{\text{Kepler}}$ and thus $\phi_0 = 0 \rightarrow \underline{\text{pure warp damping}}$, no warp twisting.

Conclusion Part 1

- The generalized warped disk equations of Martin et al. 2019 are correct
- But they require an ad-hoc β-damping to avoid unphysical "leakage" of sloshing torque into viscous torque.
- This β -damping makes the equations "stiff", and the value of β is ad-hoc.
- Our new generalized warped disk equations are:
 - Derived from first principles (using shearing box eqs)
 - Solve the "leaking" by rotation
 - Useful for cases where disks evolve over long times.

Part 2

The math of sloshing in a local shearing box

Ogilvie & Latter (2013a) Dullemond, Kimmig & Zanazzi (2021)

Shearing box analysis Local shearing box coordinates

Warp amplitude vector:

 $\boldsymbol{\psi}(r) = \frac{\mathrm{d}\boldsymbol{l}(r)}{\mathrm{d}\ln r},$

Warp amplitude:

 $\psi(r) = |\psi(r)|.$

Deviations from Kepler from pressure gradients:

$$v_{\phi,g} - v_K = \frac{1}{2} \frac{c_s^2}{v_K} \left(\frac{d\ln p}{d\ln r}\right)$$

Deviations from Kepler for our analysis:

$$q = -rac{\mathrm{d}\ln\Omega}{\mathrm{d}\ln r},$$
 Kepler: q=3/2

$$\Omega_e = \sqrt{2(2-q)} \Omega \quad \begin{array}{l} \text{Epicyclic frequency} \\ \text{Kepler:} \quad \Omega_e = \Omega \end{array}$$

Ζ

 ϕ = π

"Simple" Newtonian dynamics of a gas parcel

$$egin{aligned} {
m D}_t x &= u_x,\ {
m D}_t y &= u_y,\ {
m D}_t z &= u_z,\ {
m D}_t u_x - 2\Omega_0 u_y &= f_x + 2q\Omega_0^2 x,\ {
m D}_t u_y + 2\Omega_0 u_x &= f_y,\ {
m D}_t u_z &= f_z - \Omega_0^2 z, \end{aligned}$$

"Simple" Newtonian dynamics of a gas parcel

Comoving time $\mathbf{D}_t x = u_x,$ derivative $D_t y = u_y,$ $D_t z = u_z,$ $D_t u_x - 2\Omega_0 u_y = f_x + 2q\Omega_0^2 x,$ $D_t u_y + 2\Omega_0 u_x = f_y,$ $D_t u_z = f_z - \Omega_0^2 z,$
"Simple" Newtonian dynamics of a gas parcel

"Simple" Newtonian dynamics of a gas parcel

$$egin{aligned} {
m D}_t x &= u_x, \ {
m D}_t y &= u_y, \ {
m D}_t z &= u_z, \ \hline {
m D}_t u_x - 2\Omega_0 u_y &= f_x + 2q\Omega_0^2 x, \ {
m D}_t u_y + 2\Omega_0 u_x &= f_y, \ {
m D}_t u_z &= f_z - \Omega_0^2 z, \ \end{aligned}$$
 du/dt = 1

"Simple" Newtonian dynamics of a gas parcel

Coriolis force leads to epicyclic oscillations (circular motion in the x-y plane) This is what later will become the "sloshing motion"

"Simple" Newtonian dynamics of a gas parcel

$$\begin{array}{rcl} \mathrm{D}_t x &=& u_x,\\ \mathrm{D}_t y &=& u_y,\\ \mathrm{D}_t z &=& u_z, & \overset{\mathrm{Centrifugal}}{_{\mathrm{force}}}\\ \mathrm{D}_t u_x - 2\Omega_0 u_y &=& f_x + 2q\Omega_0^2 x,\\ \mathrm{D}_t u_y + 2\Omega_0 u_x &=& f_y,\\ \mathrm{D}_t u_z &=& f_z - \Omega_0^2 z, \end{array}$$

"Simple" Newtonian dynamics of a gas parcel

$$\begin{array}{rcl} \mathrm{D}_t x &=& u_x,\\ \mathrm{D}_t y &=& u_y,\\ \mathrm{D}_t z &=& u_z,\\ \mathrm{D}_t u_x - 2\Omega_0 u_y &=& f_x + 2q\Omega_0^2 x,\\ \mathrm{D}_t u_y + 2\Omega_0 u_x &=& f_y,\\ \mathrm{D}_t u_z &=& f_z - \Omega_0^2 z, \end{array}$$

"Simple" Newtonian dynamics of a gas parcel

$$\begin{array}{rcl} {\rm D}_{t}x & = & u_{x}, \\ {\rm D}_{t}y & = & u_{y}, \\ {\rm D}_{t}z & = & u_{z}, \\ {\rm D}_{t}u_{x}-2\Omega_{0}u_{y} & = & \overbrace{f_{x}+2q\Omega_{0}^{2}x,} \\ {\rm D}_{t}u_{y}+2\Omega_{0}u_{x} & = & \overbrace{f_{y},} \\ {\rm D}_{t}u_{z} & = & \overbrace{f_{z}-\Omega_{0}^{2}z,} \end{array}$$

Pressure forces + viscous forces

Warped (x',y',z') coordinates

Shearing box analysis Warped (x',y',z') coordinates and (v_x',v_y',v_z') velocities

"Simple" Newtonian dynamics of a gas parcel

Original (x,y,z) $D_t x = u_x,$ $D_t y = u_y,$ $D_t z = u_z,$ $D_t u_x - 2\Omega_0 u_y = f_x + 2q\Omega_0^2 x,$ $D_t u_y + 2\Omega_0 u_x = f_y,$ $D_t u_z = f_z - \Omega_0^2 z,$

"Simple" Newtonian dynamics of a gas parcel

New (x',y',z')
$$D_t x' = v'_x,$$

 $D_t y' = v'_y - q\Omega_0 x',$
 $D_t z' = v'_z + \psi v'_x \cos(\phi),$
 $D_t v'_x - 2\Omega_0 v'_y = f_x,$
 $D_t v'_y + (2 - q)\Omega_0 v'_x = f_y,$
 $D_t v'_z + \psi \Omega_0 \sin(\phi) v'_x = f_z - \Omega_0^2 z'.$

"Simple" Newtonian dynamics of a gas parcel

New (x',y',z') $D_t v'_x - 2\Omega_0 v'_y = f_x,$ $D_t v'_y + (2-q)\Omega_0 v'_x = f_y,$

Let's focus only on the horizontal motions

$$D_t v'_x - 2\Omega_0 v'_y = f_x,$$

$$D_t v'_y + (2 - q)\Omega_0 v'_x = f_y,$$

Forces are: Pressure gradient and viscous forces:

$$f_i = f_i^p + f_i^v$$

Driven damped harmonic oscillator!

Let's focus only on the horizontal motions

Let's put rhs to 0 for a moment

$$D_t v'_x - 2\Omega_0 v'_y = \begin{bmatrix} \mathbf{0} \\ \mathbf{D}_t v'_y + (2-q)\Omega_0 v'_x \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Homogeneous solution is:

$$v'_x(t) = v'_{x0} e^{i\Omega_{\rm hom}t}$$

with

$$\Omega_{\rm hom}^2 = 2(2-q)\Omega_0^2 \equiv \Omega_e^2$$

which is the epicyclic oscillation frequency

Shearing box analysis Driving force is horizontal pressure gradient

Ζ

with $au=\Omega_0 t$

Shearing box analysis Original

$$D_t v'_x - 2\Omega_0 v'_y = f_x,$$

$$D_t v'_y + (2 - q)\Omega_0 v'_x = f_y,$$

Shearing box analysis Dimensionless time τ

$$D_{\tau}v'_{x} - 2v'_{y} = \Omega_{0}^{-1}f_{x},$$
$$D_{\tau}v'_{y} + (2-q)v'_{x} = \Omega_{0}^{-1}f_{y},$$
$$\tau = \Omega_{0}t$$

Shearing box analysis Now in terms of V_x and V_y

$$\bar{\mathbf{D}}_{\tau}V_{x} - 2V_{y} = (\Omega_{0}^{2}z')^{-1}f_{x},$$

$$\bar{\mathbf{D}}_{\tau}V_{y} + (2-q)V_{x} = (\Omega_{0}^{2}z')^{-1}f_{y},$$

 $v'_x(z',\tau) = V_x(\tau)\Omega_0 z',$ $v'_y(z',\tau) = V_y(\tau)\Omega_0 z',$ $v'_z(z',\tau) = V_z(\tau)\Omega_0 z'.$

Shearing box analysis And define F to divide out z'

$$\bar{\mathbf{D}}_{\tau}V_x - 2V_y = F_x$$
$$\bar{\mathbf{D}}_{\tau}V_y + (2-q)V_x = F_y$$

$$F_i \equiv (\Omega_0^2 z')^{-1} f_i$$

Shearing box analysis Write F as pressure driving + viscous damping

$$\partial_{\tau} V_x - 2V_y = \psi \cos(\phi) + [F_x^{\mathbf{v}}],$$

$$\partial_{\tau} V_y + (2-q)V_x = [F_y^{\mathbf{v}}],$$

Shearing box analysis Write F as pressure driving + viscous damping

$$\partial_{\tau} V_x - 2V_y = \psi \cos(\phi) + F_x^{\mathbf{v}},$$

$$\partial_{\tau} V_y + (2-q)V_x = F_y^{\mathbf{v}},$$

Solution for q=3/2, ψ =0.1, α =0.1

This is the <u>sloshing</u> [≤] <u>motion</u>!

This will lead to the torque **G**.

All solutions are sum of particular (=steady state oscillation) solution plus the homogeneous (=transient) solution:

$$V_x(\tau) = V_{xp}(\tau) + V_{xh}(\tau),$$

Shearing box analysis Unification of diffusive and wavelike regime

In the **diffusive** regime, the sloshing is always near **steady state**. This is the regime studied by Ogilvie & Latter (2013a)

In the **wavelike** regime, the sloshing is always in the **transient regime**, never reaching the steady state oscillation. This is the regime studied by Lubow & Ogilvie (2000), though not in the shearing box picture.

The **unification** of the two regimes, in the shearing box picture, is to consider the full solution: Transient all the way to steady state, i.e. particular + homogeneous solution.

Shearing box analysis From transient to steady state oscillation

Ζ

Conclusion Part 2 (a)

- From the warped shearing box analysis we find:
 - Sloshing motions (Papaloizou & Pringle 1983)
 - ...with a transient amplification
 - ...ending (for static warp) in a steady-state oscillation
- The transient and steady-state oscillation solutions unify the wavelike (transient) with the diffusive (steady-state) regime.
- For low viscosity: The disk shape changes long before the steady-state oscillation is reached (wavelike regime)
- For high viscosity: The disk shape changes so slowly that the oscillation is always near steady state

Conclusion Part 2 (b)

- In viscous regime(α>>h/r): Increasing viscosity → <u>Weaker</u> damping of the warp! Because sloshing is suppressed by the viscosity
- Reducing viscosity → stronger damping, *until* you reach α=h/r
- Further reduction $\rightarrow \alpha < h/r \rightarrow$ wavelike regime.
- If you now "fix" the warp by e.g. a companion (in the α<h/r regime):
 - Sloshing will continue to amplify until reaching the steady state oscillation.
 - Strong vertical shear → turbulence → increases α?
 (see Kumar & Coleman 1993, Ogilvie & Latter 2013b, Paardekooper & Ogilvie 2019)

Outlook / Ideas

Outlook: effect on dust

Paardekooper & Ogilvie 2019

Outlook: effect on dust

Paardekooper & Ogilvie 2019

How will these oscillations and/or turbulent eddies affect the dust growth?
Sprinkle a couple of 1-100 km planetesimals in the disk

Sprinkle a couple of 1-100 km planetesimals in the disk

What if the warp precesses or changes?

(see also Hossam Aly et al. 2021)

(see also Hossam Aly et al. 2021)

Let's look at this in a time-series for a single annulus (see also Hossam Aly et al. 2021)

Planetesimals may acquire huge velocities relative to the disk and to other (smaller/bigger) planetesimals

Time

Let's look at this in a time-series for a single annulus

(see also Hossam Aly et al. 2021)

New RADMC-3D model setup template for warped disks

Broken disks in scattered light

Jec offset [arcsec]

Jec offset [arcsec

Facchini, Juhasz & Lodato (2018)

Additional Slides

Two adjacent rings

Two adjacent rings

