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Warp versus twist

Image credit: Carolin ("Lina") Kimmig

Simple warp

Twisted warp



Warped disks: Two modeling methods

Full 3D Hydro Models

Here: Facchini, Juhasz & Lodato 2018

Usually done with SPH

1D Multi-Ring Models

Detailed, but costly

Here: Masterthesis Carolin ("Lina") Kimmig

Fast, but simplified



1D Multi-Ring Models
General principle

Image credit: C. Kimmig 2021



1D Multi-Ring Models

r

!

So far nothing new: the usual viscous disk evolution equations

G is the internal torque vector in the disk, which for flat disks 

is simply the turbulent viscosity times the unit vector l.

General principle



1D Multi-Ring Models

r

l(r,t)

General principle

From: Kimmig Master Thesis 2021
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Angular momentum conservation is now a vectorial equation

Local angular 

momentum vector
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1D Multi-Ring Models

r

l

Local angular 

momentum vector

General principle

Internal torque

Angular momentum conservation is now a vectorial equation



History of 1D Multi-Ring Models

• Papaloizou & Pringle 1983; Pringle 1992; 

Papaloizou & Lin 1995; Lubow & Pringle 1993

• Ogilvie 1999; Lubow & Ogilvie 2000; Ogilvie & 

Latter 2013; Ogilvie 2018

• Martin et al. 2019; Zanazzi & Lai 2018

• Many more...

The conservation equations are simple and 

always the same. But the big question is: What is 

the correct equation for the internal torque vector 

G(r,t)?

for warped disks



Equation for G (internal torque vector)

• Viscous/diffusive regime (!>>h/r):

Pringle 1992; Lodato & Price 2010; Ogilvie & Latter 2013

• Wavelike regime (!<<h/r):

Ogilvie 1999; Lubow & Ogilvie 2000

Two regimes, treated separately:

G is a direct function 
of the disk conditions

G is a dynamic 
quantity



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Martin et al. 2019 proposed a unified equation:

g0 contains stuff 
such as ! and h

Note: Strongly 

simplified here



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Martin et al. 2019 proposed a unified equation:

g0 contains stuff 
such as ! and h

Responsible for the

viscous evolution of !

(Shakura & Sunyaev style)

Responsible for the

dynamic evolution of

the warp

Note: Strongly 

simplified here
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Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

g0 contains stuff 
such as ! and h

Note: Strongly 

simplified here

Viscous/diffusive regime (">>h/r):

Matches the equations of Pringle 1992; Lodato & Price 

2010; Ogilvie & Latter 2013

✓



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Wavelike regime (!<<h/r):

g0 contains stuff 
such as " and h

Note: Strongly 

simplified here

Matches the equations of Ogilvie 1999 and Lubow & 

Ogilvie 2000

✓



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Wavelike regime (!<<h/r):

g0 contains stuff 
such as " and h

Note: Strongly 

simplified here

However, for long evolution times, we do not 
want to ignore the viscous evolution of "(r,t)



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Strange behavior, including negative viscosity! 

!

i



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Martin's solution: add a damping coefficient !



Equation for G (internal torque vector)

Martin, Lubow, Pringle et al. 2019

Martin's solution: add a damping coefficient !

Works well, as long as ! is large enough (e.g. !=100)

But what is the physical meaning of this?

We wanted to find out 

(Dullemond, Kimmig & Zanazzi 2021 MNRAS in press)

Band Aid Band Aid

https://www.onlygfx.com/band-aid-png-transparent/



Warped disk geometry

Vertical-radial cut

Top view:

Orbital plane 

unit vector l(r,t)



Warped disk geometry & shearing box

Vertical-radial cut

Top view:

Warped shearing box formalism

from Ogilvie & Latter 2013
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Warped disk geometry & shearing box

Vertical-radial cut

Top view:

Orbital rotation direction

Warped shearing box formalism

from Ogilvie & Latter 2013



Sloshing motion

After an illustration in Ogilvie & Latter 2013

Principle was discovered by Papaloizou & Pringle 1983



Rocking à Sloshing motion

Simulation from: Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

Sloshing creates 

an internal torque.

How this works is a 

bit complex. It will 

be the topic of the 

second part of the 

tutorial.

(Papaloizou & Pringle 1983)

(Papaloizou & Pringle 1983)



The internal torque vector G

Regard G as sum of a viscous part G(v) and a 

dynamic "sloshing" part G(s).

viscous 

torque

dynamic torque 

due to "sloshing"

G

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)
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The internal torque vector G

viscous 

torque

dynamic torque 

due to "sloshing"

G

The viscous torque drives the viscous evolution of !(r,t).

It stands perpendicular to the disk.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)



The internal torque vector G

viscous 

torque

dynamic torque 

due to "sloshing"

G

The sloshing torque drives the warp evolution l(r,t).

It lies inside the disk plane.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)



The internal torque vector G

viscous 

torque

dynamic torque 

due to "sloshing"

G

For the usual small ! the viscous torque is tiny, much 

smaller than the sloshing torque.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)



The internal torque vector G

G

As a result of the torque, the disk may tilt, yielding a new 

disk plane (a new vector l(r,t)). If left untreated, this may 

lead to an unphysical "leakage"       of sloshing torque into 

the viscous torque. viscous torque

dynamic torque 
due to "sloshing"

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)
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disk plane (a new vector l(r,t)). If left untreated, this may 

lead to an unphysical "leakage"       of sloshing torque into 

the viscous torque. viscous torque
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Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)



The internal torque vector G

G

In our new formalism we rotate the sloshing torque with the 

plane of the disk.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

viscous torque

dynamic torque 
due to "sloshing"

rotation



Summary: Our new equations

Static viscous torque

Dynamic sloshing torque



Numerical test of the equations

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)



So... Why does the 

"sloshing motion" create a 

torque??



Two perspectives: Lab vs. Lagrange

Here: Case of perfectly Keplerian disk, i.e. no apsidal 

precession. That implies: !epicycle = !Kepler and thus 

"0=0 à pure warp damping, no warp twisting.

See Ogilvie (2018)
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Here: Case of perfectly Keplerian disk, i.e. no apsidal 

precession. That implies: !epicycle = !Kepler and thus 

"0=0 à pure warp damping, no warp twisting.
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View from this perspective:
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Conclusion Part 1

• The generalized warped disk equations of Martin 

et al. 2019 are correct

• But they require an ad-hoc !-damping to avoid 

unphysical "leakage" of sloshing torque into 

viscous torque.

• This !-damping makes the equations "stiff", and 

the value of ! is ad-hoc.

• Our new generalized warped disk equations are:

– Derived from first principles (using shearing box eqs)

– Solve the "leaking" by rotation

– Useful for cases where disks evolve over long times.



The math of sloshing

in a local shearing box

Ogilvie & Latter (2013a)

Dullemond, Kimmig & Zanazzi (2021)

Part 2



Shearing box analysis



Shearing box analysis



Shearing box analysis

Warp amplitude vector:

Warp amplitude:

r

l(r,t)



Shearing box analysis

Deviations from Kepler from pressure gradients:

Kepler:   q=3/2

Deviations from Kepler for our analysis:

Epicyclic frequency

Kepler:         =



Shearing box analysis

Global (X,Y,Z)
(capital letters)



Shearing box analysis

!=0



Shearing box analysis

!="/2



Shearing box analysis

!="



Shearing box analysis

!=3"/2



Shearing box analysis

!=2"≙0



Shearing box analysis

y

z

Unwarped local (x,y,z) coordinates
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Shearing box analysis
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Shearing box analysis

x

z

Unwarped local (x,y,z) coordinates



Shearing box analysis

x

z

!=0

Unwarped local (x,y,z) coordinates

Local (x,y,z)
(small letters)



Shearing box analysis

x
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!=0

Unwarped local (x,y,z) coordinates



Shearing box analysis
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Unwarped local (x,y,z) coordinates



Shearing box analysis
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Shearing box analysis

x

z

!=3"/2

Unwarped local (x,y,z) coordinates



Shearing box analysis

x

z

!=2"≙0

Unwarped local (x,y,z) coordinates



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Comoving time 

derivative



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

dx/dt = u



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

du/dt = f



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Coriolis 

force

Coriolis force leads to epicyclic oscillations (circular motion in the x-y plane)

This is what later will become the "sloshing motion"



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Centrifugal 

force



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Vertical 

gravity force



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Pressure forces + 

viscous forces



Shearing box analysis
Warped (x',y',z') coordinates

x'

z'

!=0

See Ogilvie & Latter (2013a)
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Shearing box analysis
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Shearing box analysis
Warped (x',y',z') coordinates

x'

z'

!=0

See Ogilvie & Latter (2013a)



Shearing box analysis
Warped (x',y',z') coordinates and (vx',vy',vz') velocities

green = new variables



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

Original (x,y,z)



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

New (x',y',z')



Shearing box analysis
"Simple" Newtonian dynamics of a gas parcel

New (x',y',z')

Let's focus only on the horizontal motions



Shearing box analysis

Forces are: Pressure gradient and viscous forces:

Let's focus only on the horizontal motions

Driven damped harmonic oscillator!



Shearing box analysis

Homogeneous solution is:

0

0

with

which is the epicyclic oscillation frequency

Let's put rhs to 0 for a moment



Shearing box analysis
Driving force is horizontal pressure gradient

x'

z'

high p

low p

low p high p

low p

low p

= fx
p

∝ z'



Shearing box analysis
Driving force is horizontal pressure gradient

x

z



Shearing box analysis

fx
p

∝ z'

Forcing ∝ z'

Everything ∝ z' :

with

Now find solution for these



Shearing box analysis
Original



Shearing box analysis
Dimensionless time !



Shearing box analysis
Now in terms of Vx and Vy



Shearing box analysis
And define F to divide out z'



Shearing box analysis
Write F as pressure driving + viscous damping



Shearing box analysis
Write F as pressure driving + viscous damping

Solution for q=3/2, 

!=0.1, "=0.1

Transient phase Steady state oscillation

This is the sloshing 

motion!

This will lead to the 

torque G.



Shearing box analysis

Solution for q=3/2, 

!=0.1, "=0.1

All solutions are sum of particular (=steady state oscillation)

solution plus the homogeneous (=transient) solution:



Shearing box analysis
Unification of diffusive and wavelike regime

Solution for q=3/2, 

!=0.1, "=0.1

In the diffusive regime, the 

sloshing is always near steady 

state. This is the regime studied 

by Ogilvie & Latter (2013a)



Shearing box analysis
Unification of diffusive and wavelike regime

Solution for q=3/2, 

!=0.1, "=0.1

In the wavelike regime, the sloshing is always in the 

transient regime, never reaching the steady state 

oscillation. This is the regime studied by Lubow & Ogilvie 

(2000), though not in the shearing box picture.



Shearing box analysis
Unification of diffusive and wavelike regime

Solution for q=3/2, 

!=0.1, "=0.1

The unification of the two regimes, in the shearing box 

picture, is to consider the full solution: Transient all the way 

to steady state, i.e. particular + homogeneous solution.



Shearing box analysis
From transient to steady state oscillation

x

z



Conclusion Part 2 (a)

• From the warped shearing box analysis we find:

– Sloshing motions (Papaloizou & Pringle 1983)

– ...with a transient amplification

– ...ending (for static warp) in a steady-state oscillation

• The transient and steady-state oscillation solutions 

unify the wavelike (transient) with the diffusive 

(steady-state) regime.

• For low viscosity: The disk shape changes long 

before the steady-state oscillation is reached 

(wavelike regime)

• For high viscosity: The disk shape changes so 

slowly that the oscillation is always near steady 

state



Conclusion Part 2 (b)

• In viscous regime(!>>h/r): Increasing viscosity à

Weaker damping of the warp! Because sloshing is 

suppressed by the viscosity

• Reducing viscosity à stronger damping, until you 
reach !=h/r

• Further reduction à !<h/r à wavelike regime.

• If you now "fix" the warp by e.g. a companion (in 

the !<h/r regime):

– Sloshing will continue to amplify until reaching the 

steady state oscillation.

– Strong vertical shear à turbulence à increases  ! ? 

(see Kumar & Coleman 1993, Ogilvie & Latter 2013b, 

Paardekooper & Ogilvie 2019)



Outlook / Ideas



Outlook: effect on dust

! = 0.89 "

Paardekooper & Ogilvie 2019



Outlook: effect on dust

Paardekooper & Ogilvie 2019

! = 1.00 "

How will these oscillations and/or turbulent eddies affect the dust growth?



Outlook: Planetesimals in warped disks

Sprinkle a couple of 1-100 km planetesimals in the disk



Outlook: Planetesimals in warped disks

What if the warp precesses or changes?

Sprinkle a couple of 1-100 km planetesimals in the disk

(see also Hossam Aly et al. 2021)



Outlook: Planetesimals in warped disks

These planetesimals will pass through the disk at supersonic speeds

(see also Hossam Aly et al. 2021)



Outlook: Planetesimals in warped disks

Let's look at this in a time-series for a single annulus

(see also Hossam Aly et al. 2021)



Outlook: Planetesimals in warped disks

Let's look at this in a time-series for a single annulus

Z

Time

Planetesimals may acquire huge velocities

relative to the disk and to other (smaller/bigger) planetesimals

(see also Hossam Aly et al. 2021)



Topic 3

New RADMC-3D model setup template 

for warped disks



Broken disks in scattered light

Facchini, Juhasz & Lodato (2018)



Additional Slides



Two adjacent rings



Two adjacent rings


