The dynamics of warped disks

Cornelis Dullemond with Carolin ("Lina") Kimmig and John J. Zanazzi
"Tutorial" for the MIAPP Disk Workshop

Non-planar protoplanetary disks

HD 142527
Avenhaus et al. (2014)

Muro-Arena et al. (2020)

Warp versus twist

Simple warp

Twisted warp

Image credit: Carolin ("Lina") Kimmig

Warped disks: Two modeling methods

Full 3D Hydro Models
Usually done with SPH
$\mathrm{t}=675$

5 a

0

Here: Facchini, Juhasz \& Lodato 2018

Detailed, but costly

1D Multi-Ring Models

Here: Masterthesis Carolin ("Lina") Kimmig

1D Multi-Ring Models

General principle

break up the disk into rings

1D Multi-Ring Models

General principle

$$
\frac{\partial \Sigma}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \Sigma v_{r}\right)=0
$$

$$
v_{r}=-\frac{\partial(r \mathbf{G}) / \partial r \cdot \mathbf{l}}{r \Sigma \partial\left(\Omega r^{2}\right) / \partial r}
$$

G is the internal torque vector in the disk, which for flat disks is simply the turbulent viscosity times the unit vector I.

So far nothing new: the usual viscous disk evolution equations

1D Multi-Ring Models

General principle

From: Kimmig Master Thesis 2021

1D Multi-Ring Models

General principle

$$
\left.\square(r, t)=\sum(r, t) S(r) r^{2}\right]
$$

Local angular momentum vector

$$
\frac{\partial \mathbf{L}}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mathbf{L} v_{r}+r \mathbf{G}\right)=\mathbf{T}
$$

Angular momentum conservation is now a vectorial equation

1D Multi-Ring Models

General principle

$$
\left.\square(r, t)=\sum(r, t) S(r) r^{2}\right]
$$

Local angular momentum vector

$$
\frac{\partial \mathbf{L}}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mathbf{L} v_{r}+r \mathbf{G}\right)=\mathbf{T}
$$

External torque
Angular momentum conservation is now a vectorial equation

1D Multi-Ring Models

General principle

$$
\left.\square(r, t)=\sum(r, t) S(r) r^{2}\right]
$$

Local angular momentum vector

$$
\frac{\partial \mathbf{L}}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \mathbf{L} v_{r}+r \mathbf{G}\right)=\mathbf{T}
$$

Angular momentum conservation is now a vectorial equation

History of 1D Multi-Ring Models

 for warped disks- Papaloizou \& Pringle 1983; Pringle 1992; Papaloizou \& Lin 1995; Lubow \& Pringle 1993
- Ogilvie 1999; Lubow \& Ogilvie 2000; Ogilvie \& Latter 2013; Ogilvie 2018
- Martin et al. 2019; Zanazzi \& Lai 2018
- Many more...

The conservation equations are simple and always the same. But the big question is: What is the correct equation for the internal torque vector $\mathbf{G}(r, t)$?

Equation for \mathbf{G} (internal torque vector)

Two regimes, treated separately:

- Viscous/diffusive regime ($\alpha \gg \mathrm{h} / \mathrm{r}$):

$$
\mathbf{G}(r, t)=\ldots
$$

G is a direct function of the disk conditions

Pringle 1992; Lodato \& Price 2010; Ogilvie \& Latter 2013

- Wavelike regime $(\alpha \ll h / r)$:

G is a dynamic quantity

Ogilvie 1999; Lubow \& Ogilvie 2000

Equation for \mathbf{G} (internal torque vector)

Martin et al. 2019 proposed a unified equation:

$$
\frac{\partial \mathbf{G}}{\partial t}+\alpha \Omega \mathbf{G}=\frac{3 g_{0}}{2} \alpha^{2} \mathbf{l}-\frac{g_{0}}{4} \frac{d \mathbf{l}}{d \ln r}
$$

g_{0} contains stuff such as Σ and h

Equation for \mathbf{G} (internal torque vector)

Martin et al. 2019 proposed a unified equation:

Equation for \mathbf{G} (internal torque vector)

Viscous/diffusive regime ($\alpha \gg \mathrm{h} / \mathrm{r}$):

$$
\mathbf{G}=\frac{3 g_{0}}{2 \alpha \Omega} \alpha^{2} \mathbf{l}-\frac{g_{0}}{4 \alpha \Omega} \frac{d \mathbf{l}}{d \ln r}
$$

g_{0} contains stuff such as Σ and h

Equation for \mathbf{G} (internal torque vector)

Viscous/diffusive regime ($\alpha \gg \mathrm{h} / \mathrm{r}$):

g_{0} contains stuff such as Σ and h

Matches the equations of Pringle 1992; Lodato \& Price 2010; Ogilvie \& Latter 2013

Equation for \mathbf{G} (internal torque vector)

Wavelike regime ($\alpha \ll h / r$):

g_{0} contains stuff such as Σ and h

Matches the equations of Ogilvie 1999 and Lubow \& Ogilvie 2000

Equation for \mathbf{G} (internal torque vector)

Wavelike regime ($\alpha \ll h / r$):

$$
\frac{\partial \mathbf{G}}{\partial t}+\alpha \Omega \mathbf{G}=\frac{3 g_{0}}{2} \alpha^{2} \mathbf{l}-\frac{g_{0}}{4} \frac{d \mathbf{l}}{d \ln r}
$$

g_{0} contains stuff such as Σ and h

However, for long evolution times, we do not want to ignore the viscous evolution of $\Sigma(\mathrm{r}, \mathrm{t})$

Equation for \mathbf{G} (internal torque vector)

Strange behavior, including negative viscosity!

Martin, Lubow, Pringle et al. 2019

Equation for \mathbf{G} (internal torque vector)

Martin's solution: add a damping coefficient β

$$
\frac{\partial \mathbf{G}}{\partial t}+\alpha \Omega \mathbf{G}=\frac{3 g_{0}}{2} \alpha^{2} \mathbf{l}-\frac{g_{0}}{4} \frac{d \mathbf{l}}{d \ln r}
$$

Equation for \mathbf{G} (internal torque vector)

Martin's solution: add a damping coefficient β

Works well, as long as β is large enough (e.g. $\beta=100$)
But what is the physical meaning of this?
We wanted to find out
(Dullemond, Kimmig \& Zanazzi 2021 MNRAS in press)

Warped disk geometry

Top view:

Warped disk geometry \& shearing box

Top view:

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Warped disk geometry \& shearing box

Vertical-radial cut

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Warped disk geometry \& shearing box

Vertical-radial cut

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Warped disk geometry \& shearing box

Warped shearing box formalism
from Ogilvie \& Latter 2013

Vertical-radial cut

Sloshing motion

After an illustration in Ogilvie \& Latter 2013
Principle was discovered by Papaloizou \& Pringle 1983

Rocking \rightarrow Sloshing motion

(Papaloizou \& Pringle 1983)

Sloshing creates an internal torque.

(Papaloizou \& Pringle 1983)

How this works is a bit complex. It will be the topic of the second part of the tutorial.

Simulation from: Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector G

Regard G as sum of a viscous part $\mathrm{G}^{(v)}$ and a dynamic "sloshing" part G(s).

$$
\mathbf{G}=\mathbf{G}^{(v)}+\mathbf{G}^{(s)}
$$

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector G

$\mathbf{G}=\mathbf{G}^{(v)}+\mathbf{G}^{(s)}$

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector G

The viscous torque drives the viscous evolution of $\Sigma(r, t)$. It stands perpendicular to the disk.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector G

$$
\mathbf{G}=\mathbf{G}^{(v)}+\mathbf{G}^{(s)}
$$

The sloshing torque drives the warp evolution I(r,t). It lies inside the disk plane.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector \mathbf{G}

$$
\mathbf{G}=\mathbf{G}^{(v)}+\mathbf{G}^{(s)}
$$

For the usual small α the viscous torque is tiny, much smaller than the sloshing torque.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector \mathbf{G}

$\mathbf{G}=\mathbf{G}^{(v)}+\mathbf{G}^{(s)}$

As a result of the torque, the disk may tilt, yielding a new disk plane (a new vector I(r,t)). If left untreated, this may lead to an unphysical "leakage" \uparrow of sloshing torque into the viscous torque.

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

The internal torque vector G

The internal torque vector G

$$
\frac{\partial \mathbf{G}^{(s)}}{\partial t}+\alpha \Omega \mathbf{G}^{(s)}=-\frac{g_{0}}{4} \frac{d \mathbf{l}}{d \ln r}+\left(\mathbf{1} \times \frac{d \mathbf{l}}{d t}\right) \times \mathbf{G}^{(s)}
$$

In our new formalism we rotate the sloshing torque with the plane of the disk.

Summary: Our new equations

$$
\frac{\partial \mathbf{G}^{(s)}}{\partial t}+\alpha \Omega \mathbf{G}^{(s)}=-\frac{g_{0}}{4} \frac{d \mathbf{l}}{d \ln r}+\left(\mathbf{l} \times \frac{d \mathbf{l}}{d t}\right) \times \mathbf{G}^{(s)}
$$

Dynamic sloshing torque

Numerical test of the equations

Dullemond, Kimmig, Zanazzi (2021 MNRAS in press)

So... Why does the "sloshing motion" create a torque??

Two perspectives: Lab vs. Lagrange

Here: Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text {epicycle }}=\Omega_{\text {kepler }}$ and thus $\phi_{0}=0 \rightarrow$ pure warp damping, no warp twisting.

Two perspectives: Lab vs. Lagrange

View from this perspective:

Here: Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text {epicycle }}=\Omega_{\text {kepler }}$ and thus $\phi_{0}=0 \rightarrow$ pure warp damping, no warp twisting.

Two perspectives: Lab vs. Lagrange

Here: Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text {epicycle }}=\Omega_{\text {kepler }}$ and thus $\phi_{0}=0 \rightarrow$ pure warp damping, no warp twisting.

Two perspectives: Lab vs. Lagrange

Here: Case of perfectly Keplerian disk, i.e. no apsidal precession. That implies: $\Omega_{\text {epicycle }}=\Omega_{\text {Kepler }}$ and thus $\phi_{0}=0 \rightarrow$ pure warp damping, no warp twisting.

Conclusion Part 1

- The generalized warped disk equations of Martin et al. 2019 are correct
- But they require an ad-hoc β-damping to avoid unphysical "leakage" of sloshing torque into viscous torque.
- This β-damping makes the equations "stiff", and the value of β is ad-hoc.
- Our new generalized warped disk equations are:
- Derived from first principles (using shearing box eqs)
- Solve the "leaking" by rotation
- Useful for cases where disks evolve over long times.

Part 2

The math of sloshing in a local shearing box

Ogilvie \& Latter (2013a)
Dullemond, Kimmig \& Zanazzi (2021)

Shearing box analysis

Shearing box analysis

Local shearing box coordinates

Shearing box analysis

Warp amplitude vector:

$$
\boldsymbol{\psi}(r)=\frac{\mathrm{d} \boldsymbol{l}(r)}{\mathrm{d} \ln r}
$$

Warp amplitude:

$$
\psi(r)=|\boldsymbol{\psi}(r)|
$$

Shearing box analysis

Deviations from Kepler from pressure gradients:

$$
v_{\phi, g}-v_{K}=\frac{1}{2} \frac{c_{s}^{2}}{v_{K}}\left(\frac{d \ln p}{d \ln r}\right)
$$

Deviations from Kepler for our analysis:

$$
\begin{aligned}
q & =-\frac{\mathrm{d} \ln \Omega}{\mathrm{~d} \ln r} \\
\Omega_{e} & =\sqrt{2(2-q)} \Omega
\end{aligned}
$$

$$
\text { Kepler: } q=3 / 2
$$

Epicyclic frequency Kepler: $\Omega_{e}=\Omega$

Shearing box analysis

Shearing box analysis

Unwarped local (x, y, z) coordinates

Shearing box analysis

Unwarped local (x, y, z) coordinates

Shearing box analysis

Unwarped local (x, y, z) coordinates

Shearing box analysis

Unwarped local (x, y, z) coordinates

Shearing box analysis

Unwarped local (x, y, z) coordinates
$\phi=0$

Shearing box analysis

 Unwarped local (x, y, z) coordinates$\phi=0$

Shearing box analysis

 Unwarped local (x, y, z) coordinates$\phi=\pi / 2$

Shearing box analysis

 Unwarped local (x, y, z) coordinates$\phi=\pi$

Shearing box analysis

 Unwarped local (x, y, z) coordinates$\phi=3 \pi / 2$

Shearing box analysis

 Unwarped local (x, y, z) coordinates$\phi=2 \pi \hat{=} 0$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\mathrm{D}_{t} z & =u_{z}, \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} x, \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y}, \\
\mathrm{D}_{t} u_{z} & =f_{z}-\Omega_{0}^{2} z,
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel
Comoving time derivative

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\mathrm{D}_{t} z & =u_{z},
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} x, \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y}
\end{aligned}
$$

$$
\mathrm{D}_{t} u_{z}=f_{z}-\Omega_{0}^{2} z
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{D}_{t} x & = & u_{x} \\
\mathrm{D}_{t} y & = & u_{y} \\
\mathrm{D}_{t} z & = & u_{z},
\end{array} \\
& \mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y}=f_{x}+2 q \Omega_{0}^{2} x, \\
& \mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x}=f_{y}, \\
& \mathrm{D}_{t} u_{z}=f_{z}-\Omega_{0}^{2} z,
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\mathrm{D}_{t} z & =u_{z}, \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} x, \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y}, \\
\mathrm{D}_{t} u_{z} & =f_{z}-\Omega_{0}^{2} z, \quad \mathrm{du} / \mathrm{dt}=\mathrm{f}
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\begin{array}{c}
\text { Coriolis } \\
\text { force }
\end{array} \mathrm{D}_{t} z & =u_{z}, \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y}, \\
\mathrm{D}_{t} u_{z} & =f_{z}-\Omega_{0}^{2} z,
\end{aligned}
$$

Coriolis force leads to epicyclic oscillations (circular motion in the $x-y$ plane)
This is what later will become the "sloshing motion"

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\mathrm{D}_{t} z & =u_{z}, \quad \text { Centrifugal } \quad \text { force } \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} x, \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y}, \\
\mathrm{D}_{t} u_{z} & =f_{z}-\Omega_{0}^{2} z,
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x} \\
\mathrm{D}_{t} y & =u_{y} \\
\mathrm{D}_{t} z & =u_{z} \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =f_{x}+2 q \Omega_{0}^{2} x \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} & =f_{y} \\
\mathrm{D}_{t} u_{z} & =f_{z}-\Omega_{0}^{2} z, \begin{array}{l}
\text { Vertical } \\
\text { gravity force }
\end{array}
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x} \\
\mathrm{D}_{t} y & =u_{y} \\
\mathrm{D}_{t} z & =u_{z} \\
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y} & =\left\{\begin{array}{l}
f_{x}+2 q \Omega_{0}^{2} x \\
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x} \\
f_{y} \\
\mathrm{D}_{t} u_{z} \\
\end{array}=\begin{array}{l}
f_{z}-\Omega_{0}^{2} z, \\
\end{array}\right. \\
& \begin{array}{l}
\text { Pressure forces + } \\
\text { viscous forces }
\end{array}
\end{aligned}
$$

Shearing box analysis

$\phi=0$
Warped ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates

See Ogilvie \& Latter (2013a)

Shearing box analysis

Warped (x',y',z') coordinates
$\phi=\pi / 2$

Shearing box analysis

Warped (x', y',z') coordinates
$\phi=\pi$

See Ogilvie \& Latter (2013a)

Shearing box analysis

Warped (x',y',z') coordinates
$\phi=3 \pi / 2$

Shearing box analysis

$\phi=0$
Warped ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates

See Ogilvie \& Latter (2013a)

Shearing box analysis

Warped ($x^{\prime}, y^{\prime}, z^{\prime}$) coordinates and ($\mathrm{v}_{\mathrm{x}}{ }^{\prime}, \mathrm{v}_{\mathrm{y}}{ }^{\prime}, \mathrm{v}_{\mathrm{z}}{ }^{\prime}$) velocities

$$
\begin{aligned}
& x=x^{\prime}, \quad \text { green = new variables } \\
& y=\begin{array}{c}
y^{\prime}, \\
z^{\prime}
\end{array}-\psi x^{\prime} \cos (\phi) \\
& z=\begin{array}{c}
v_{x}^{\prime} \\
v_{y}^{\prime}-q \Omega_{0} x^{\prime} \\
v_{z}^{\prime}+\psi \Omega_{0} x^{\prime} \sin (\phi)
\end{array} \\
& u_{x}= \\
& u_{y}= \\
& u_{z}=
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

Original (x, y, z)

$$
\begin{aligned}
\mathrm{D}_{t} x & =u_{x}, \\
\mathrm{D}_{t} y & =u_{y}, \\
\mathrm{D}_{t} z & =u_{z},
\end{aligned}
$$

$$
\mathrm{D}_{t} u_{x}-2 \Omega_{0} u_{y}=f_{x}+2 q \Omega_{0}^{2} x
$$

$$
\mathrm{D}_{t} u_{y}+2 \Omega_{0} u_{x}=f_{y}
$$

$$
\mathrm{D}_{t} u_{z}=f_{z}-\Omega_{0}^{2} z
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel

$$
\begin{aligned}
\text { New }\left(\mathrm{x}^{\prime}, y^{\prime}, z^{\prime}\right) & \mathrm{D}_{t} x^{\prime} \\
\mathrm{D}_{t} y^{\prime} & =v_{x}^{\prime}, \\
\mathrm{D}_{t} z^{\prime} & =v_{y}^{\prime}-q \Omega_{0} x^{\prime}, \\
\mathrm{D}_{t} v_{x}^{\prime}-2 \Omega_{0} v_{y}^{\prime} & =v_{x}^{\prime} \cos (\phi), \\
\mathrm{D}_{t} v_{y}^{\prime}+(2-q) \Omega_{0} v_{x}^{\prime} & =f_{y}, \\
\mathrm{D}_{t} v_{z}^{\prime}+\psi \Omega_{0} \sin (\phi) v_{x}^{\prime} & =f_{z}-\Omega_{0}^{2} z^{\prime} .
\end{aligned}
$$

Shearing box analysis

"Simple" Newtonian dynamics of a gas parcel
New (x',y',z')

$$
\begin{aligned}
\mathrm{D}_{t} v_{x}^{\prime}-2 \Omega_{0} v_{y}^{\prime} & =f_{x} \\
\mathrm{D}_{t} v_{y}^{\prime}+(2-q) \Omega_{0} v_{x}^{\prime} & =f_{y}
\end{aligned}
$$

Let's focus only on the horizontal motions

Shearing box analysis

$$
\begin{aligned}
\mathrm{D}_{t} v_{x}^{\prime}-2 \Omega_{0} v_{y}^{\prime} & =f_{x} \\
\mathrm{D}_{t} v_{y}^{\prime}+(2-q) \Omega_{0} v_{x}^{\prime} & =f_{y}
\end{aligned}
$$

Forces are: Pressure gradient and viscous forces:

$$
\begin{aligned}
& \qquad f_{i}=f_{i}^{p}+f_{i}^{v} \\
& \text { Driven damped harmonic oscillator! }
\end{aligned}
$$

Let's focus only on the horizontal motions

Shearing box analysis

Let's put rhs to 0 for a moment

$$
\begin{aligned}
& \mathrm{D}_{t} v_{x}^{\prime}-2 \Omega_{0} v_{y}^{\prime}=0 \\
& \mathrm{D}_{t} v_{y}^{\prime}+(2-q) \Omega_{0} v_{x}^{\prime}=0
\end{aligned}
$$

Homogeneous solution is:

$$
v_{x}^{\prime}(t)=v_{x 0}^{\prime} e^{i \Omega_{\mathrm{hom}} t}
$$

with

$$
\Omega_{\mathrm{hom}}^{2}=2(2-q) \Omega_{0}^{2} \equiv \Omega_{e}^{2}
$$

which is the epicyclic oscillation frequency

Shearing box analysis

Driving force is horizontal pressure gradient

$$
z^{\prime}
$$

Shearing box analysis

Driving force is horizontal pressure gradient

Shearing box analysis

Forcing $\propto z^{\prime}$

$$
f_{x}^{p} \propto z^{\prime}
$$

Everything $\propto z^{\prime}$

$$
\begin{aligned}
& v_{x}^{\prime}\left(z^{\prime}, \tau\right)= \\
& v_{y}^{\prime}\left(z^{\prime}, \tau\right)= \\
& v_{z}^{\prime}\left(z^{\prime}, \tau\right)=V_{z}(\tau) \Omega_{0} z^{\prime} .
\end{aligned}
$$

Now find solution for these
with $\tau=\Omega_{0} t$

Shearing box analysis

 Original$$
\begin{aligned}
\mathrm{D}_{t} v_{x}^{\prime}-2 \Omega_{0} v_{y}^{\prime} & =f_{x}, \\
\mathrm{D}_{t} v_{y}^{\prime}+(2-q) \Omega_{0} v_{x}^{\prime} & =f_{y},
\end{aligned}
$$

Shearing box analysis

Dimensionless time τ

$$
\begin{aligned}
\mathrm{D}_{\tau} v_{x}^{\prime}-2 v_{y}^{\prime} & =\Omega_{0}^{-1} f_{x} \\
\mathrm{D}_{\tau} v_{y}^{\prime}+(2-q) v_{x}^{\prime} & =\Omega_{0}^{-1} f_{y} \\
\tau & =\Omega_{0} t
\end{aligned}
$$

Shearing box analysis

Now in terms of V_{x} and V_{y}

$$
\begin{aligned}
& \overline{\mathrm{D}}_{\tau} V_{x}-2 V_{y}=\left(\Omega_{0}^{2} z^{\prime}\right)^{-1} f_{x}, \\
& \overline{\mathrm{D}}_{\tau} V_{y}+(2-q) V_{x}=\left(\Omega_{0}^{2} z^{\prime}\right)^{-1} f_{y}, \\
& v_{x}^{\prime}\left(z^{\prime}, \tau\right)=V_{x}(\tau) \Omega_{0} z^{\prime}, \\
& v_{y}^{\prime}\left(z^{\prime}, \tau\right)=V_{y}(\tau) \Omega_{0} z^{\prime}, \\
& v_{z}^{\prime}\left(z^{\prime}, \tau\right)=V_{z}(\tau) \Omega_{0} z^{\prime} .
\end{aligned}
$$

Shearing box analysis

And define F to divide out z^{\prime}

$$
\begin{aligned}
\overline{\mathrm{D}}_{\tau} V_{x}-2 V_{y} & =F_{x} \\
\overline{\mathrm{D}}_{\tau} V_{y}+(2-q) V_{x} & =F_{y} \\
F_{i} & \equiv\left(\Omega_{0}^{2} z^{\prime}\right)^{-1} f_{i}
\end{aligned}
$$

Shearing box analysis

Write F as pressure driving + viscous damping

$$
\begin{aligned}
\partial_{\tau} V_{x}-2 V_{y} & =\psi \cos (\phi)+F_{x}^{\mathrm{v}}, \\
\partial_{\tau} V_{y}+(2-q) V_{x} & =F_{y}^{\mathrm{v}},
\end{aligned}
$$

Shearing box analysis

Write F as pressure driving + viscous damping

$$
\partial_{\tau} V_{x}-2 V_{y}=\psi \cos (\phi)+F_{x}^{\mathrm{v}}
$$

$$
\partial_{\tau} V_{y}+(2-q) V_{x}=F_{y}^{\mathrm{v}}
$$

Solution for $\mathrm{q}=3 / 2$, $\psi=0.1, \alpha=0.1$

This is the sloshing ** motion!

This will lead to the torque \boldsymbol{G}.

Shearing box analysis

Solution for $\mathrm{q}=3 / 2$, $\psi=0.1, \alpha=0.1$

All solutions are sum of particular (=steady state oscillation) solution plus the homogeneous (=transient) solution:

$$
V_{x}(\tau)=V_{x p}(\tau)+V_{x h}(\tau),
$$

Shearing box analysis

Unification of diffusive and wavelike regime

Solution for $\mathrm{q}=3 / 2$, $\psi=0.1, \alpha=0.1$

In the diffusive regime, the sloshing is always near steady state. This is the regime studied by Ogilvie \& Latter (2013a)

Shearing box analysis

 Unification of diffusive and wavelike regime

 Unification of diffusive and wavelike regime}

Solution for $\mathrm{q}=3 / 2$, $\psi=0.1, \alpha=0.1$

In the wavelike regime, the sloshing is always in the transient regime, never reaching the steady state oscillation. This is the regime studied by Lubow \& Ogilvie (2000), though not in the shearing box picture.

Shearing box analysis

Unification of diffusive and wavelike regime

Solution for $\mathrm{q}=3 / 2$, $\psi=0.1, \alpha=0.1$

The unification of the two regimes, in the shearing box picture, is to consider the full solution: Transient all the way to steady state, i.e. particular + homogeneous solution.

Shearing box analysis

From transient to steady state oscillation

Conclusion Part 2 (a)

- From the warped shearing box analysis we find: - Sloshing motions (Papaloizou \& Pringle 1983)
- ...with a transient amplification
- ...ending (for static warp) in a steady-state oscillation
- The transient and steady-state oscillation solutions unify the wavelike (transient) with the diffusive (steady-state) regime.
- For low viscosity: The disk shape changes long before the steady-state oscillation is reached (wavelike regime)
- For high viscosity: The disk shape changes so slowly that the oscillation is always near steady state

Conclusion Part 2 (b)

- In viscous regime ($\alpha \gg \mathrm{h} / \mathrm{r}$): Increasing viscosity \rightarrow Weaker damping of the warp! Because sloshing is suppressed by the viscosity
- Reducing viscosity \rightarrow stronger damping, until you reach $\alpha=\mathrm{h} / \mathrm{r}$
- Further reduction $\rightarrow \alpha<\mathrm{h} / \mathrm{r} \rightarrow$ wavelike regime.
- If you now "fix" the warp by e.g. a companion (in the $\alpha<h / r$ regime):
- Sloshing will continue to amplify until reaching the steady state oscillation.
- Strong vertical shear \rightarrow turbulence \rightarrow increases α ? (see Kumar \& Coleman 1993, Ogilvie \& Latter 2013b, Paardekooper \& Ogilvie 2019)

Outlook / Ideas

Outlook: effect on dust

Paardekooper \& Ogilvie 2019

Outlook: effect on dust

Paardekooper \& Ogilvie 2019
How will these oscillations and/or turbulent eddies affect the dust growth?

Outlook: Planetesimals in warped disks

Sprinkle a couple of 1-100 km planetesimals in the disk

Outlook: Planetesimals in warped disks

Sprinkle a couple of 1-100 km planetesimals in the disk

What if the warp precesses or changes?
(see also Hossam Aly et al. 2021)

Outlook: Planetesimals in warped disks

These planetesimals will pass through the disk at supersonic speeds

Outlook: Planetesimals in warped disks

Let's look at this in a time-series for a single annulus
(see also Hossam Aly et al. 2021)

Outlook: Planetesimals in warped disks

Planetesimals may acquire huge velocities

Let's look at this in a time-series for a single annulus (see also Hossam Aly et al. 2021)

Topic 3

New RADMC-3D model setup template for warped disks

Broken disks in scattered light

Facchini, Juhasz \& Lodato (2018)

Additional Slides

Two adjacent rings

Two adjacent rings

