The physico-chemical connection between nascent planets and their birth environment An observational perspective in PDS 70

Stefano Facchini

Collaborators: Jaehan Bae, Myriam Benisty, Andrea Isella, Miriam Keppler, Richard Teague and many others

Structure Ionisation Dynamics Accretion

Structure

Ionisation

Dynamics

Accretion

Mass Orbital radius Chemical composition Multiplicity

Mass Orbital radius **Chemical composition** Multiplicity

PDS 70

References: Keppler+2018, Haffert+2019, Christiaens+2019, Mesa+2019, Aoyama+2019, Thanathibodee+2019, Hashimoto+2020, Stolker+2020, Toci+2020

Hydrodynamical simulations of PDS 70

Bae,...,Facchini+2019

2D simulations (FARGO) with 0.1 μ m -1 mm dust included (Baruteau+2019). Mass of b: **5** M_{Jup}; Mass of c: **2.5** M_{Jup} Simulations show that planet c is less massive than b, otherwise disk would be too eccentric. Planets enter 2:1 resonance, with outward migration: Jupiter-Saturn analogue

Dust segregation and filtration

Trajectories of dust particles

Dust segregation and filtration

Trajectories of dust particles

Orbits constrained by VLTI/GRAVITY

Planet b has eccentricity of 0.17, c is nearly circular, and they are close to 2:1 MMR, as predicted by Bae,...,Facchini+2019 (see also Toci+2020)

Wang,...,Facchini+2021

Accretion signatures

Accretion detected in both planets from H α (Haffert+2019) PDS 70b detected in UV (Zhou+2021)

Zhou+2021

Spectroscopic constraints

Uyama+2021

Emission spectrum not constraining on C/O ratio

K-band emission spectrum lacks atmospheric features. The elemental abundances are unconstrained

PDS 70 c

Absorption spectrum not constraining on C/O ratio

No molecular features detected in SINFONI spectrum

Cugno+2021

Vertical structure of dust close to the planet

Hydrogen series:

 $A_V \sim 0.9 - 2$ magnitudes

SED modelling $A_V \sim 4$ magnitudes

Lack of molecular features $A_V \sim 16-17$ magnitudes

Different tracers probe different heights in the accretion - planetary atmosphere column

Wang+2021

Accretion mediated by circumplanetary disks

Accretion occurs from the poles e.g. Kley+2001

Most of the infalling material is radially expelled e.g. Szulagyi+2017

First evidence of circumplanetary disk from ALMA

ALMA 870 µm continuum

Astrometry

See also Christiaens+2019 for IR detection in PDS 70b

CPD-c mass/radius

Circumplanetary material

Compact emission co-located with PDS70c

DEC [arcsec]

0.4 0.2 0.0 -0.2 -0.4

Faint optically thin inner disk

Faint extended emission near PDS70b

New ~20 mas (2.3 au) resolution observations at 855 µm

0.4 0.2 0.0 -0.2-0.4 ∆RA [arcsec]

Circumplanetary material

Emission around PDS70c recovered independently in all images from 2017 and 2019 Emission around PDS70b only recovered with beam > 50 mas; morphology unclear

2019

2017

A circumplanetary disk around PDS70c

A circumplanetary disk around PDS70c

CPD extent

- submm < 1.2 au

ExoGravity program

Wang,...,Facchini+2021

• Hill radius of PDS70c ~ 3.1 au • Truncation expected at 1/3 RH~ 1 au consistent with CPD extent in the • CPD in the IR < 0.1 au from GRAVITY

Displacemement of photo-center of CPD-c in agreement with expected astrometry (work in progress)

Dust entrainment in CPDs

Batygin & Morbidelli 2020

Dust entrainment in CPDs

Batygin & Morbidelli 2020

Planet b is not in proximity of outer pressure maximum: accretion disk, rather than decretion disk?

-100

-5050 0 100 distance [au] Bae+2019

Inner disk

- Inner disk models have dust size distribution with $a_{min} = 0.05 \mu m$ and a_{max} given in plot
- Inner disk is optically thin with $M_d \sim 10^{-7} M_{sun}$
- PDS70b and the inner disk are starved due to the filtering of material by PDS70c

A yet-undetected third planet?

- Outer ring resolves in a ring + inner shoulder
- Could trace an undetected low mass planet embedded in the outer disk (e.g. Perez+2019, Facchini+2020)

CO and kinematics

-11 0 Keppler+in prep.

CO and kinematics

Vertical structure well determined, cavity wall particularly pronounced

Chemistry of PDS 70

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Δα (arcsec)

1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 $\Delta \alpha$ (arcsec)

Facchini+2021

Radial profiles

Density/chemistry tracer

Inner disk detected only in ¹²CO and HCO⁺

Observed in high angular resolution images

¹³CO not showing velocities associated to inner disk in low resolution images

¹²**CO**: density increase, at the edge of cavity wall (e.g. Facchini+2018a)

¹²**CO**: density increase, at the edge of cavity wall (e.g. Facchini+2018a)

¹³CO, C¹⁸O: high column densities, pressure maximum outside orbits of planets (e.g. Facchini+2018a)

¹²**CO**: density increase, at the edge of cavity wall (e.g. Facchini+2018a)

¹³CO, C¹⁸O: high column densities, pressure maximum outside orbits of planets (e.g. Facchini+2018a)

HCN isotopologues: high UV irradiation, formed via H₂* (e.g. Cazzoletti,...,Facchini+2018)

¹²**CO**: density increase, at the edge of cavity wall (e.g. Facchini+2018a)

¹³CO, C¹⁸O: high column densities, pressure maximum outside orbits of planets (e.g. Facchini+2018a)

HCN isotopologues: high UV irradiation, formed via H₂* (e.g. Cazzoletti,...,Facchini+2018)

HCO+ isotopologues: high X-rays irradiation (e.g. Cleeves+2015)

Column densities

Three hyperfine transitions agree well, showing that the method is robust

Column densities Other molecules C_2H 10^{16} C¹⁸O $\begin{pmatrix} 10^{1} \\ - \\ \\ \\ \\ \\ \\ \\ 10^{12} \\ 10^{12} \end{pmatrix}$ $\ge 10^{10}$ J=5/2-3/2, F=3-2 10^{1} J=7/2-5/2, F=3-2 H¹³CO + $\sum_{i=1}^{n} \frac{10^{15}}{10^{14}}$ =7/2-5/2, F=4-3 ≥ 10¹ 10^{1} H¹³CN $\underbrace{\sum_{z=1}^{2} 10^{15}}_{10^{14}} \underbrace{10^{14}}_{10^{13}}$ ≥ 10¹ 10^{1} $\sum_{\substack{n=1\\ n \in \mathbb{Z}}}^{n} \frac{10^{12}}{10^{12}}$ DCN

≥ 10¹⁷

 $\sum_{\substack{n=1\\ n \in \mathbb{Z}}}^{n} \frac{10^{1}}{10^{12}}$

≥ 10¹

 $\sum_{\substack{10^{12}\\ 10^{12}\\ 10^{13}}}^{10^{12}}$

≥ 10¹²

0.5

1.0

Radius (arcsec)

10¹

2.0

 10^{1}

Three hyperfine transitions agree well, showing that the method is robust

Radius (arcsec)

1.5

1.0

10¹⁵

N(C₂H) (cm⁻²) (C¹⁴) (C¹³)

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-1}

0.5

Ч

Deuteration: chemistry and temperature

Nitrogen fractionation from H¹³CN/HC¹⁵N also shows reprocessed material (solar ¹⁴N/¹⁵N ~ 440), trend is anti-correlated with temperature

Deuteration from H¹³CN/DCN shows significantly reprocessed material

Column density ratio of CS/SO indicates C/O>1

C/O = 1.2

Semenov+2018

Column density ratio of CS/SO indicates C/O>1

In PDS 70, N(CS)/N(SO) > 100First evidence of planet hosting disk harbouring high C/O molecular gas

C/O = 1.2

$N(CS)/N(SO) \sim 120$

High C₂H/¹³CO flux ratio indicates same result

High C₂H/¹³CO flux ratio indicates same result

In PDS 70, $C_2H/^{13}CO \sim 0.8$, indicating C/O > 1. First evidence of planet hosting disk harbouring high C/O molecular gas

Gas is accreted from surface layers: with giant planet formation, are we tracing the atmosphere building material?

Image credit: Teague+2019

Conclusions

CPD detected around PDS 70c **Diffuse material detected** in proximity of PDS 70b, origin not clear

Image credit: Saxton, NASA/JPL

Conclusions

CPD detected around PDS 70c **Diffuse material detected** in proximity of PDS 70b, origin not clear

Inner disk presents low surface brightness emission in both ALMA continuum and gas tracers

Image credit: Saxton, NASA/JPL

Conclusions

CPD detected around PDS 70c Diffuse material detected in proximity of PDS 70b, origin not clear

present complex interplay

Inner disk presents low surface brightness emission in both ALMA continuum and gas tracers

Surface layer gas possesses C/O > 1 Chemical abundances and dust substructure

Image credit: Saxton, NASA/JPL