Mapping the organic chemistry of protoplanetary disks

MÅ PS

The MAPS map

39 people, 19 institutions, 8 countries, lots of telecons...

Co PIs: Karin Öberg, Viviana Guzmán, Catherine Walsh, Yuri Aikawa, Edwin Bergin
 Co Is: Felipe Alarcón, Sean Andrews, Jaehan Bae, Jennifer Bergner, Yann Boehler, Alice Booth, Jenny Calahan, Gianni Cataldi, Ilse Cleeves, Ian Czekala, Kenji Furuya, Jane Huang, John Ilee, Nicolas Kurtovic, Charles Law, Romane Le Gal, Yao Liu, Ryan Loomis, Feng Long, François
 Ménard, Hideko Nomura, Laura Pérez, Charlie Qi, Kamber Schwarz, Anibal Sierra, Daniela Soto, Richard Teague, Takashi Tsukagoshi, Yoshihide Yamato, Merel van't Hoff, Abygail Waggoner, David Wilner, Ke Zhang

Molecules with ALMA at Planet-forming Scales

- ALMA Large Program to survey chemistry of five discs with signatures of on-going planet formation...

230 GHz continuum

- Four spectral settings across B3 & B6 20 species, 40 lines, 130 hrs
- Targets include simple species up to complex organics
- Goal: understand the chemistry of planet formation

How do the MAPS data compare?

HD 163296

How do the MAPS data compare?

HD 163296

Organic molecules in protoplanetary disks - why?

- Small organics are some of the *main carriers* of C, N, O
 - Important to understand the elemental budget in disks
 - Key to linking disk and planet compositions (e.g. C/O)

(Öberg et al. 2011, + many more)

Organic molecules in protoplanetary disks - why?

- Small organics are some of the *main carriers* of C, N, O
 - Important to understand the elemental budget in disks
 - Key to linking disk and planet compositions (e.g. C/O)

(Öberg et al. 2011, + many more)

- Some organics are *useful probes* of physical and/or radiative conditions
 - CH₃CN ladder is thermometer (E_{up} ~ 50–150K within ~55 km/s) (e.g. Loomis et al. 2018)
 - Molecular ratios can probe local and global UV field variations (e.g. Dutrey et al. 1997)

Organic molecules in protoplanetary disks - why?

- Small organics are some of the *main carriers* of C, N, O
 - Important to understand the elemental budget in disks
 - Key to linking disk and planet compositions (e.g. C/O)

(Öberg et al. 2011, + many more)

- Some organics are *useful probes* of physical and/or radiative conditions
 - CH₃CN ladder is thermometer (E_{up} ~ 50–150K within ~55 km/s)
 - Molecular ratios can probe local and global UV field variations (e.g. Dutrey et al. 1997)
- Larger organics are **stepping stones** to important prebiotic chemistry
 - Nitrile pathways to, e.g., RNA bases, amino acids and proteins

The small organics HCN, C₂H & H₂CO

MAPS VI: Guzmán et al. (2021)

The small organics HCN, C₂H & H₂CO

The small organics HCN, C₂H & H₂CO

All show diverse morphologies:

- Compact
- Extended
- Diffuse
- Single rings
- Double rings
- Peak & shelf

MAPS VI: Guzmán et al. (2021)

• Probes of gas substructures

- Probes of gas substructures
 - HCN column peaks in inner disk
 → active warm cyanide chemistry

MAPS VI: Guzmán et al. (2021)

- Probes of gas substructures
 - HCN column peaks in inner disk
 active warm cyanide chemistry
- High mass of organics within 50au $(1-2\% \text{ of total H}_2\text{O})$

Gas+ice mass w.r.t. H_2O ice [†]		
HCN	C_2H	H_2CO
$(\% H_2O)$	$(\% H_2O)$	$(\% H_2O)$
< 0.001	< 0.001	0.001
0.56	0.06	0.02
1.09	1.80	0.08
0.68	0.09	0.004
0.45	0.02	0.01
	Gas+ice : HCN $(\% H_2O)$ < 0.001 0.56 1.09 0.68 0.45	$\begin{array}{llllllllllllllllllllllllllllllllllll$

^{\intercal} Assuming an ice-to-gas ratio of 1000

- Probes of gas substructures
 - HCN column peaks in inner disk
 active warm cyanide chemistry
- High mass of organics within 50au $(1-2\% \text{ of total } H_2O)$
 - CN/HCN probes UV penetration (radially and in/out of gaps)

- Probes of gas substructures
 - HCN column peaks in inner disk
 active warm cyanide chemistry
- High mass of organics within 50au $(1-2\% \text{ of total H}_2\text{O})$
 - CN/HCN probes UV penetration (radially and in/out of gaps)
- C₂H implies elevated C/O ratios

MAPS VII: Bosman et al. (2021)

Complex organic molecules in star and planet formation

Complex* organics detected in many different stages of star formation

(* ≥ 6 atoms)

- Q: Can this complexity be built up (or retained) in the vicinity of forming planets?
- A: Need to search for (and characterise) emission from large molecules in protoplanetary disks...

see also Öberg+ 2015, Walsh+ 2016, Favre+ 2018, van der Marel+ 2021, Booth+ 2021, +++

MAPS IX: Distribution & properties of large organics

- Detailed analysis of emission from HC₃N, CH₃CN & c-C₃H₂
- Potentially weak, obtain robust detections from *matched filtering:* (VISIBLE, Loomis et al. 2018)

MAPS IX: Distribution & properties of large organics

- Detailed analysis of emission from HC₃N, CH₃CN & c-C₃H₂
- Potentially weak, obtain robust detections from *matched filtering:* (VISIBLE, Loomis et al. 2018)

Imaging of the large organics

- Analysis on lines with
 "strong" detections
 (filter σ ≥ 5)
- Imaging at 0.3" resolution

Imaging of the large organics

- Analysis on lines with
 "strong" detections
 (filter σ ≥ 5)
- Imaging at 0.3" resolution
- Morphologies:
 - Central peaks
 - Single/double rings

Imaging of the large organics

- Analysis on lines with
 "strong" detections
 (filter σ ≥ 5)
- Imaging at 0.3" resolution
- Morphologies:
 - Central peaks
 - Single/double rings

→ All compact, on scales of mm dust

- Many of these transitions were previously spatially unresolved
- Can perform a radially resolved excitation analysis for the first time:

Rotation diagram analysis

- Many of these transitions were previously spatially unresolved
- Can perform a radially resolved excitation analysis for the first time:

- Many of these transitions were previously spatially unresolved
- Can perform a radially resolved excitation analysis for the first time:

- Many of these transitions were previously spatially unresolved
- Can perform a radially resolved excitation analysis for the first time:

- Many of these transitions were previously spatially unresolved
- Can perform a radially resolved excitation analysis for the first time:

- Example: CH₃CN in GM Aur
- Three immediate takeaways...

- Example: CH₃CN in GM Aur
- Three immediate takeaways...
 - → Origin in gas cannot be thermal desorption:
 T_{rot} (~40K) < T_{desorb} (~100K)

- Example: CH₃CN in GM Aur
- Three immediate takeaways...
 - → Origin in gas cannot be thermal desorption:
 T_{rot} (~40K) < T_{desorb} (~100K)
 - → Significant N at small r (x10 increase)

- Example: CH₃CN in GM Aur
- Three immediate takeaways...
 - → Origin in gas cannot be thermal desorption:
 T_{rot} (~40K) < T_{desorb} (~100K)
 - → Significant N at small r (x10 increase)
 - → Many lines optically thick
 (∴ N could be a lower limit)

- Example: CH₃CN in GM Aur
- Three immediate takeaways...

→ Origin in gas cannot be thermal desorption:
T_{rot} (~40K) < T_{desorb} (~100K)

→ Significant N at small r (x10 increase)

→ Many lines optically thick
 (∴ N could be a lower limit)

True for both HC₃N and CH₃CN in each of the four disks

Peak columns are between 10—100 times higher than previous chemical models predict (Walsh et al. 2014)

- We can combine data across MAPS studies for further understanding
- Disk 2D temperature structures have been empirically determined

- We can combine data across MAPS studies for further understanding
- Disk 2D temperature structures have been empirically determined

- We can combine data across MAPS studies for further understanding
- Disk 2D temperature structures have been empirically determined
- Can map $T_{rot} \rightarrow z/r^*$ and use radial emission profile to probe origin...

- We can combine data across MAPS studies for further understanding
- Disk 2D temperature structures have been empirically determined
- Can map $T_{rot} \rightarrow z/r^*$ and use radial emission profile to probe origin...

→ Large organics emit from, or very close to, the midplane

Compositional comparison with the Solar System

- We can combine data across MAPS studies for further understanding (II)
- Comparison of the ratio of large to small organics across each disk

(with Guzmán & MAPS 2021)

Compositional comparison with the Solar System

- We can combine data across MAPS studies for further understanding (II)
- Comparison of the ratio of large to small organics across each disk

(with Guzmán & MAPS 2021)

Compositional comparison with the Solar System

- We can combine data across MAPS studies for further understanding (II)
- Comparison of the ratio of large to small organics across each disk

(with Guzmán & MAPS 2021)

→ Disk organic composition is consistent with Solar comets

(beyond ~50 au where $\tau < 1$)

Open questions / what next?

- Significant optical depths at small radii, will need lower frequencies...
 - ALMA Band 1 (2023?)
 - ngVLA / SKA (late 2020s?)

- Large columns incompatible with previous chemical model predictions
 - Missing chemistry? Further grain surface processes needed?

e.g. Garrod et al. 2021

Missing physics? Drift & processing of icy grains from outer disk?

e.g. R. Booth & llee 2019

Summary

- The MAPS disks host significant reservoirs of small and large organic molecules
- Small organics approach 1–2% of total H₂O mass within 50 au
- Large organics similarly enhanced in inner disk (10—100x model predictions)
- Emission originates at low z/r (or midplane)
- Ratios consistent with Solar System comets

Take home message...

The building blocks of prebiotic chemistry are *plentiful* in the planet-forming regions of (these) protoplanetary disks

This material has a *similar composition* to that in our own Solar System

 \checkmark

- All final (& intermediate) data products are publicly available
 - Self calibrated measurement sets \checkmark
 - Imaging scripts & toolsets
 - Image cubes

- Moment maps 🗸
- Radial profiles \checkmark
- Emission surfaces \checkmark
- User-friendly interface to grab specific data products
 - e.g. "everything for AS 209", "all radial profiles for CO"
 - BibTeX automatically generated for simple referencing

http://alma-maps.info

Data