

DISCMINER: Hunting planets and substructures in gas discs

Andrés F. Izquierdo

Leonardo Testi, Stefano Facchini, Giovanni Rosotti, Ewine van Dishoeck Teresa Paneque-Carreño, Lisa Wölfer, Elena Viscardi

OUTLINE

 \checkmark Intro to Discminer \leftarrow

 $\checkmark \mathsf{Observables}$

√HD 163296

• Gas structure and Planets

 \checkmark Other applications

Izquierdo et al. 2021b Izquierdo et al. subm.

MOTIVATION

0 0

0.00 0.06 0.11 0.17 Peak residual [km/s]

0

Detection using observables

Izquierdo et al. 2021b

1,00 au

Model channel maps

 \checkmark this scheme implies fitting intensity and rotation velocity simultaneously

Example best-fit model channels for HD 163296 in ¹³CO

-400

-400

-200

200

0

40(

400

200

Ō

-400

-400

-200

Using MAPS data (Öberg et al. 2021)

OUTLINE

✓ Intro to Discminer
✓ Observables
✓ HD 163296
Gas structure and Planets

 \checkmark Other applications

Izquierdo et al. 2021b Izquierdo et al. subm.

OBSERVABLES

OBSERVABLES

VELOCITY RESIDUALS 2.0

Adapted from Teague et al. 2018 (Bettermoments) See also R. Teague's talk

OUTLINE

 \checkmark Intro to Discminer

 \checkmark Observables

√HD 163296

• Gas structure and Planets

 \checkmark Other applications

Izquierdo et al. 2021b Izquierdo et al. subm.

Adapted from Isella et al. 2018 Andrews et al. 2018

Beam size ~10 au Channel width 0.32 km/s

Law et al. 2021a

Adapted from Isella et al. 2018 Andrews et al. 2018

Pinte et al. 2018a —> Kink at R=260 au, planet? Dullemond et al. 2020 —> Lower surface temperature Teague et al. 2018, 2019, 2021 —> Kinematical substructures, planets?

Law et al. 2021a

- → Tb (Upper and lower surfaces)
- → Height (Upper surface)
- ➡ Is the kink detected?
- * Height (Lower surface)
- * Line widths?
- * Other localised perturbations?

----- D86, D141 dust gaps

Kink radial location (260 au)

ATTRIBUTES

ATTRIBUTES

 Upper surface elevation extracted with DiskSurf —> R. Teague implementation of C. Pinte's method (Pinte et al. 2018b)

ATTRIBUTES

 Lower surface elevation extracted with DiskSurf using channels from lower surface alone...

LOWER SURFACE?

Double-bell fit to the line profile

LOWER & UPPER VELOCITIES

See also R. Teague's talk & Casassus et al. 2021

RESIDUALS

Filamentary structures found with **FilFinder** (Koch & Rosolowsky 2015)

K260 KINK

K260 kink is the result of a long filamentary structure

GAS SUBSTRUCTURE

- Kinematical and Line width gaps coexist
- Line widths are azimuthally asymmetric, planet-related?

GAS SUBSTRUCTURE

Adapted from Dong et al. 2019

LOCALISED PERTURBATIONS

Fold centroid residuals

LOCALISED PERTURBATIONS

SIGNIFICANCE

Izquierdo et al. 2021b

LOCALISED PERTURBATIONS (HD163296)

LOCALISED PERTURBATIONS (HD163296)

SUMMARY (HD163296)

SUMMARY + 13CO

Izquierdo et al. in prep.

ACTUAL SUMMARY

✓ Robust kinematical detection of planets. Discminer paper 1 (method), application to HD 163296 (subm.)

✓ Line width, temperature and velocity residuals (substructures - spirals, gaps).

✓ Vertical structure of discs, including lower surface analysis.

- Discrimer paper 2, application to larger sample of discs (MAPS?), release code to public.
- ➡ Planet perturbations at different scale-heights, constrain planet mass? local viscosity?
- Line width and temperature gradients to measure turbulence.
- Use self-gravity prescription to estimate gas disc masses. (Paneque-Carreño, Lodato's group)
- ➡ Waoph6, Elias 2-27 (Paneque-Carreño); CQ Tau, V4046 Sgr (Wölfer)