The impact of multiplicity on disks and planets

Based on recent PPVII Chapter: Offner, Moe, Kratter, Sadavoy, Jensen and Tobin

and
Moe \& Kratter 2021
Dupuy, Kraus, Kratter et al, subm.

Kratter, Sadavoy, Jensen and Tobin

Kion

Outline

- Review of binary formation mechanisms
- Review of stellar multiplicity data
- Model and data comparison
- Impact on disk statistics and structure
- Impact on planet formation / occurrence rates
please jump in and interrupt me!

Binary Formation

Offner+ PPVII

Turbulent Fragmentation and "Capture"

- Conditions for wide binary formation remain uncertain, but multiples tend to arise in cores that form from intersecting filamentary structures (Smullen,KMK+2020)
- Partner swapping is common early, and orbits evolve very quickly, but not traditional "capture" (Lee, Offner, KMK+2019)

How do disks become unstable? Typically by rapid accretion

$$
Q=\frac{c_{s} \Omega}{\pi G \Sigma}=f \frac{M_{*}}{M_{D}} \frac{H}{r}
$$

COOL THE DISK DOWN

- The outer regions of p. .ar disks are mostly heated by stellar irradiation (not internal dissipation like many AGN), which fixes the temperature.
- Optical depth, cooling, set by dust and overall metallicity (keep this in mind)

Accretion-driven instability makes binaries NOT planets!

1.42 normalized accretion rate

$$
\xi=\frac{\dot{M} G}{c_{s}^{3}}
$$

 Multiplicity Stats mannesm, M, M, Courtesy of Maxwell Moe

Comprehensive multiplicity stats

- Increasing MF (fraction of systems that are multis) with system mass
- Increasing TF (fraction that are triples)
- Increasing CF (average number of companions per system)

What's new?
Smaller error bars, compiled stats for M-dwarfs absent from other reviews

Offner+ PPVII

Separation distributions: protostars, PMS, and field as a function of mass

Offiner+ PPVII

1. Peak separation moves out, then back in. Abundance of close massive binaries masked by triples

Offner+ PPVII

1. Peak separation moves out, then back in. Abundance of close massive binaries masked by triples

Wยq!su ટєbsısf!ou s (sn)

1. Peak separation moves out, then back in. Abundance of close massive binaries masked by triples

2. Metal poor solar type stars have enhanced close binary fraction like more massive stars

Ofinert PPVII

3. Field stars and PMS look very similar, especially close-in

4. Something is "wonky" with AO samples of PMS binaries. Stay tuned, I trust the SB APOGEE sample.

The youngest embedded binaries are much wider. Dearth below ~ 50 au is resolution dependent

Offner+ PPVII

Once upon a time...

$\begin{array}{llll}\text { (a) Filament Fragmentation } & \text { (b) Core Fragmentation } & \text { (c) Disk Fragmentation } & \text { (d) Capture }\end{array}$

Once upon a time...

$\begin{array}{llll}\text { (a) Filament Fragmentation } & \text { (b) Core Fragmentation } & \text { (c) Disk Fragmentation } & \text { (d) Capture }\end{array}$

Once upon a time...

$\begin{array}{llll}\text { (a) Filament Fragmentation } & \text { (b) Core Fragmentation } & \text { (c) Disk Fragmentation } & \text { (d) Capture }\end{array}$

disk fragmentation more effective at high mass, low metallicity
-core fragmentation operates in mass independent fashion

mass ratio distribution may reflect this division

Once upon a time...

- gas driven migration (disks included) -n-body dynamics

Wide binaries Migrate due to

 dynamical friction with the gas They start their lives bound (typically), but can lose $>90 \%$ of their energy and angular momentum to the dense gas

Lee, Offner, KMK, +2019

Disk migration is more

complex: it can go both ways

Dempsey+2021

How well do cluster simulations do?

- Multiphysics simulations often get the "bulk" answer right (e.g. total fraction), but wrong on the details:
- mass ratios
- separation distributions

Offner+ PPVII

Morphology is not enough...

Offiner+ PPVII

Data from Tobin+2020, division at 300 au chosen in part due to resolution. wide systems more consistent with semi-independent core/filament fragmentation.
"standard" flux-dust conversions apply (tau <1, T=20K)

Offner+ PPVII

Yes, wide binaries have bigger and more massive disks at the Class 0/ I phase. No, I don't know why

Offner+ PPVII

The trend disappears for T-Tauri sources, where single star disks are bigger. A stellar mass effect could be lurking, but we don't know the masses of Class 0 sources

Offner+ PPVII

results for PMS stars in mm/submm Akeson+2019 mirror IR data that suggest all binaries, especially close ones, show dearth of disks compared to single star counterpart.

Offiner+ PPVII

Disk (mis)alignment

Disk Alignment

- At intermediate - wide separations, binaries with two resolved disks do not show preferential alignment
- Circumbinary disk DO show preferential alignment
- What about close separation
 binaries?

Czekala+2019

Planet Occurrence Rates

- The T Tauri disk result aligns well with planet occurrence rates: binaries <50 au strongly supress planet formation
- Recall that the truncation radius for the disk is $\sim 1 / 3$ the separation (modulo eccentricity).

Moe \& Kratter 2021

Measuring Planet-Binary Alignment

Dupuy+subm

Quantify degree

Planets are all transiting

to which astrometric binaries are aligned based on orbital motion in orbital motion in
 Qua

Alignment is statistical

star
Probability that we observe two edgeon orbits that are misaligned is low, but...

Planet Alignment

- Strong evidence for preferential alignment (<30 deg) for Kepler planets and binary companions with a~<100 au.
- Note that 30 !=0. Fits with two components are also possible

Dupuy+, sub

Open Questions

- What is the fractional contribution of core vs disk fragmentation? Do these lead to different disk and planet formation outcomes?
- What drives observed differences in disks in singles vs multis: age, mass, detection biases are hard to address!!
- At what stage are planetary system properties "frozen in" especially e.g. inclination

