Structure formation in PPDs surprises from wind dynamics

Geoffroy Lesur

with thanks to

Antoine Riols (ONERA) Étienne Martel (IPAG) Jonathan Ferreira (IPAG) François Ménard (IPAG)

MIAPP, Oct. 13 2021

European Research Council Established by the European Commission

Structures are common

[Huang+ 2018]

Discs are accreting

 \dots and \dot{M} is measured at the stellar surface...

15 years ago, life was easy

The United Kingdom was a member of the European Union

George Bush was the US president

C

Discs were fully described using Shakura & Sunyaev's alpha disc

One didn't have to wear masks at all time

Alas, things have changed...

Protoplanetary discs are too weakly ionised for MHD to work as initially expected [Gammie (1996) and Perez&Chiang (2011)]

accretion rates [Bai & Stone (2013), Lesur et al. (2014)]

Mark Wardle

Arieh Konigl

« If a weakly ionised disc is plunged in ambiant magnetic field, one can still have accretion thanks to *magnetised outflows* » [Wardle & Konigl 1993, Bai & Stone 2013]

new fashion: outflows/winds/jets...

A little experiment

A sample of MHD disc winds

Relating to the field strength in a wind-driven disc

- Mass accretion is mostly controlled by the magnetic field intensity and depends only weakly on Σ
- Mass loss rate is approximately equal to mass accretion rate.

Pressure bumps and rings

How winds can spontaneously create pressure bumps

Antoine Riols Former postdoc @ IPAG now ONERA

How to make a steady pressure bump? Case I: viscosity

Pressure bumps are expected in association with low viscosity regions

How to make a steady pressure bump? Case II: winds

Pressure bumps are expected in association with low mass-loss rate regions

Viscosity or wind-driven?

- Viscosity maxima in gaps (more turbulence?)
- Accretion flow diverges from gaps

- Faster wind velocity in gaps
- Accretion flow converges towards the gaps (it tries to « fill » the gaps)

Example: ring formation In wind-emitting discs

[Riols+2020]

[Riols & Lesur 2019]

Viscous or wind-driven?

Rings and gaps regularly spaced Density contrast $\lesssim 2$

Radially *convergent* flow in rings (tries to fill the gap)

Larger mass loss rate in gaps (absolute value)

Wind-driven structure formation

Is this general?

Common ingredients are

- Ambipolar diffusion (valid for R>~5AU)
- Large scale magnetic field (fossil field?) B \geq a few mG @ 10 AU ($\beta \leq 10^4$)

Dust traps and observables

Gas pressure The « gas rings » produced by 0.0002 gas winds are steady-state 0.0000 50 10 20 30 40 60 pressure bumps (as expected) a = 3 mm 10^{-3} 3mm dust 10^{-5} « dusty » ring 10^{-} 30 40 10 20 50 60 10^{-3} $a = 100 \mu m$ They act as dust traps 100μ m dust 10^{-4} 10^{-} 20 30 40 50 60 10 R in AU $\times 10^{-20}$ 150 Flux density and spectral index Flux density ($W.m^{-2}$) $W.m^{-2}$ 10^{-20} $W.m^{-2}$ 10^{-21} 100-4 50 y in AU 3 0. 2 Ò -150-100-5050 100150 -50Spectral index 3.0 -100^{-1} -150-100100 0 -150-100-50Ó 50 100 150 x in AU Radius in AU - 20 **Fig. 14.** Top panel: convolved flux density vF_v in W m⁻² pixel⁻¹ as a Synthetic ALMA image @1mm function of radius. *Bottom panel*: spectral index $\alpha_s = d \log F(v)/d \log v$ as a function of radius measured between $\lambda = 1 \text{ mm}$ (ALMA band 7)

MHD wind spontenaously create visible dust ring structures

and $\lambda = 3 \text{ mm}$ (ALMA band 3).

[Riols+2020]

Transition discs

MHD disc winds as a planet-free model of transition discs

Etienne Martel PhD student @ IPAG

Accretion in transition discs

Transition discs exhibit accretion rates distribution similar to primordial discs

Photoevaporation alone cannot explain high $M_{\rm acc}$ transition discs

• In a viscous disc $\dot{M}_{\rm acc} \propto \alpha \Sigma$ — low $\dot{M}_{\rm acc}$ is expected in a cavity!

Accretion in TDs calls for a non-viscous accretion mechanism

The model

Largely inspired from Combet & Ferreira 2008

- Cavity only in surface density
- Bz follows a power law distribution
- Cavity and standard disc both weakly ionised —> non-ideal MHD (mostly ambipolar diffusion, see Wang & Goodman 2017)

Some results

[Martel & Lesur in prep]

MHD winds successfully produce steady TD-like cavities

with accretion rates that match « standard » discs

Conclusions

- MHD disc winds transport mass according to the local magnetic field strength
- They can spontaneously carve gaps in the disc structure
- Could explain high accretion rates in transition discs (similar to MADs around black holes?)

Magnetised transition disc in action