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Structures are common
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Discs are accreting
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[IMendigutia+2013] [Beck+ 2010] [Herczeg+ 2005]

... and M is measured at the stellar surface...
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The United Kingdom was a

member of the European Union |
George Bush was the

US president
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Discs were fully described
using Shakura & Sunyaev’s alpha disc )

One didn’t have to wear
masks at all time



A\as thlngs have Changed

© Protoplanetary discs are too weakly ionised for MHD to work as initially
expected [Gammie (1996) and Perez&Chiang (2011)]

© & due to MHD turbulence is too smalll incompatible with olbservead
accretion rates [Bai & Stone (2013), Lesur et al. (2014)]
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« [f a weakly ionised disc is plunged in ambiant magnetic field,

one can still have accretion thanks to magnetised outflows »
[Wardle & Konigl 1993, Bai & Stone 2013]

» new fashion: outflows/winds/jets...



A little experiment

— —




b

//////// i.(()).OE)G 6
7
77 |

oo \\\\\
oty Notothat
li denot

i ——

Fieldlines & gas
density

R\

Z—= N\

[Lesur 2021]

) of the sonic Mach
he colour scales are

B 9 7.
6 // | ),
4 / 7
2
ol q
\ N
-4
—6
-8
0
_ g c
Alfv’enic (plain) and fast magnetosonic (dot-dashed). The green dashed line represents the disc "surface" where the flow becomes ideal,
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Re\atlng to the ﬂe\d strength N a vv|no| drlven dISC

Accretion rate surface density
B 10~ e fiducial g\;—' g\r'
g — 1'5ﬁ70.78 _
§ EaCh « dOJF » |S d Mce = x 107 10 g.cm™2 1 A.U. ) V@
e S\f' simulation & \-07 156
%b # X (0_1) ( ) M@/yr’
g1
Y1) Disc aspect ratio (H/R)
10 106 10° 1012

8
Scaling laws in self-similar
simulations [Lesur 2021]

. . 3 0.09 B —0.18
Mwin = 1.07 Macc -
d (10 g.cm—2) (11’11(})

Mass accretion is mostly controlled by the magnetic field intensity and
depends only weakly on ¥

Mass loss rate is approximately equal to mass accretion rate.



Pressure bumps and rings

How winds can spontaneously create pressure bumps

Antoine Riols
Former postdoc @ IPAG
now ONERA



How to make a steady pressure bump”?
Case |: viscosity

== viscosity and pressure are anti-correlated
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- Pressure bumps are expected in association
with low viscosity regions
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How to make a steady pressure bump?

Case I winds
Viscous theory+wind: K/—-—_ wind mass-loss rate parameter
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3 possible cases (ignoring M,,..for the moment)
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ex: MHD-driven winds

(assuming constant B) ex: photo-evaporative winds

. Pressure bumps are expected in association
with low mass-loss rate regions
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Viscosity or wind-driven’?

@ Viscosity maxima in gaps
(more turbulence?)

© Accretion flow diverges from
gaps

ring

(

© Faster wind velocity in gaps

© Accretion flow converges
towards the gaps (it tries to
« fill » the gaps)
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Example: ring formation
N wind-emiting Aiscs
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[Riols+2020] [Riols & Lesur 2019]

MHD wind
« plume »
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~— | Rings and gaps regularly spaced

Density contrast < 2

Radially convergent flow in rings
(tries to fill the gap)

Larger mass loss rate in gaps
(albsolute value)
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Wind-driven structure formation
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s this general?
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[Suriano+2018] [Riols+2020]

Common ingredients are
® Ambipolar diffusion (valid for R>~5AU)

@ Large scale magnetic field (fossil field?)
B>afew mG @ 10 AU (8 < 10%)

[Cui & Bai 2021]
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ws WA The « gas rings » produced by
R winds are steady-state
B e " r r m X 't
S \ pressure bumps (as expected)
« dusty » ring
100um dust * They act as dust traps
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as a function of radius measured between 4 = 1 mm (ALMA band 7)
and A = 3 mm (ALMA band 3).

MHD wind spontenaously create visible dust ring structures
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Transition discs

MHD disc winds as a planet-free model of transition discs

Etienhe Martel
PhD student @ IPAG
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Accretion In transition discs

B Transition

discs
| | _— Primordial T
_ discs 1

Cumulative fraction
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[Ercolano & Pascucci 2017]

@ Transition discs exhibit accretion rates distribution similar to primordial discs

© Photoevaporation alone cannot explain high Macctransition discs

® In a viscous disc Myce X aX —}Iow M., .. 1S expected in a cavity!

Accretion in TDs calls for a non-viscous accretion mechanism
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« cavity » +  «standard disc »

@ Cavity only in surface density
© Bz follows a power law distribution

©® Cavity and standard disc both weakly ionised == non-ideal MHD
(mostly ambipolar diffusion, see Wang & Goodman 2017)

19



[I\/Iartel & Lesur IN prep]
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MHD winds successfully produce steady TD-like cavities

with accretion rates that match « standard » discs
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© MHD disc winds transport
mass according to the local
magnetic field strength

© They can spontaneously carve
gaps in the disc structure

© Could explain high accretion
rates in transition discs (similar
to MADs around black holes?)

Conclusions
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