Three short stories: youngest protostars, disk accretion, debris disks

Joan Najita (NSF's NOIRLab)

Outline

Studying the youngest protostars IR spectroscopy of Class 0 sources How do disks accrete?

Supersonic surface accretion in a Class I disk Protoplanetary disks --> debris disks Insights from disk rings

Studying the Youngest Protostars

IR Spectroscopy of Class 0 Sources

How do protostars accrete?

- Do disks exist?
- How do disks accrete?
- How do stars solve their angular momentum problem?

ordinary wind Accretion onto Star tical Via a boundary layer? extraordinary wind protostar rotating Boundary layer at break-up thin accretion disk R* Star Disc Or a magnetosphere? Low-velocity disk wind? Disk wind/jet Accretion flows Accretion shock 6 < H < R* Credit: B. Ryden ←−−? Double-peaked profile from a thin Inner hot Dusty disk dust wall annulus Inner Hot continuum Broad emission lines emission ($T \approx 8,000$ K); gas disk $(T \approx 10^4 \,\mathrm{K})$ some narrow lines; X-rays?

Hartmann et al. 2016

Spun to break up, equatorial accretion

Stellar Accretion via Magnetospheres

Also Calvet & Hartmann 1992; Hartmann+1994; Muzerolle+1998

NIR Spectroscopy of Class O Sources

Stefan Laos + T. Greene, K. Stassun, JN arXiv:2108.10169

- Keck/MOSFIRE (R=2400)
- Outflow/jets (H₂)
- Disk accretion (CO overtone)
- Stellar accretion (Bry)

NIR Spectroscopy of Class O Sources

Takeaways:

Can observe Class 0 sources in NIR!

Br γ profiles like Class I/II

- Organized stellar B forms early
- Star rotates below breakup
- Accretion through magnetosphere

Protostars "grow up" quickly – feeding behavior established early

Spun to break up, equatorial accretion ordinary wind Accretion onto Star tical Via a boundary layer? extraordinary wind protostar rotating Boundary layer at break-up Are magnetospheres always the answer? thin accretion disk R* Star Disc Or a magnetosphere? Low-velocity disk wind? Disk wind/jet Accretion flows Accretion shock 6 < H < R* Credit: B. Ryden Inner hot Dusty disk dust wall Inner Hot continuum Broad emission lines emission ($T \approx 8,000$ K); gas disk $(T \approx 10^4 \,\mathrm{K})$ some narrow lines; Hartmann et al. 2016 X-rays?

How do disks accrete?

Supersonic surface accretion in a Class I Disk (Najita et al. 2021)

Stars accrete through disks

They all do it. How do they do it?

How does matter reach the magnetosphere?

Stars accrete via magnetospheres and transport angular momentum to the inner disk, which is removed in a wind/jet from inner disk.

But how does accreting matter reach the magnetosphere?

How de disks accrete: via MRI in inner disk

How do disks accrete: planet formation region

Open questions

- How do disks accrete? •
- Where, how much of disk accretes? ٠

Can we look in the disk for clues?

Gas disks grow larger as they age

Some Class II gas disks are bigger than Class I disks.

"in-disk" angular momentum transport is significant enough for this to happen

GV Tau N & TEXES

GV Tau: Class I source in Taurus a.k.a. Haro 6-10, IRAS 04263+2426

Weak gas and dust emission from envelope, more evolved Class I source (Hogerheijde et al. 1998).

GV Tau N: IR companion of optically visible TTS

GV Tau N: Spitzer/IRS molecular absorption

Inner Disk Molecules in Emission

GV Tau N: TEXES/Gemini 2006

R = 100,000 MIR spectrograph on IR-optimized Gemini-North telescope

First NH₃ detection from disks

GV Tau N: TEXES/Gemini 2007

GV Tau N: high resolution line profiles

Redshifted line profiles

- 4-20 km/s
- C2H2, HCN, NH3, H2O
- TEXES/Gemini R=100,000

Measure component equivalent widths and infer

- Temperature T
- Absorption column density N
- Intrinsic line width Δv
- Filling factor f

Heliocentric velocity (km/s)

- Molecular abundances, temperature of inner disks at ~ 1 au
- High column density → disk atmosphere viewed edge on
- Supersonic inflow velocities

Inner disk atmosphere seen edge on

Disk accretion in action through disk atmosphere?

Accretion rate ~ TTS: $10^{-8} - 10^{-7} M_{sun}/yr$ i.e., Mdot = $2\pi r_a m_H v_r N_{perp}$ $N_{perp} \sim 0.1 N_{abs} / x_{mol}$

Familiar But Different

Thick and slow: $\Sigma_{\rm H} \simeq 100 \,{\rm g}\,{\rm cm}^{-2}$ $v_{\rm r} < 1 \,{\rm m/s}$

For an alpha-disk: $v_r = -3/2 \alpha (c_s^2/v_{\phi})$

Unobservable

Why disk inflow?

- **Rapid accretion** at disk surface drags **B** in.
- Surface connects to midplane at larger r, spins down surface to
- Sub-Keplerian rotation (60%)
- Supersonic inflow $v_r = 2-4 c_s$.
- Inward pinched B launches wind, but removes little angular momentum.

For GV Tau N:

• $v_r = 2-4 c_s = ~4 \text{ km/s}$ (observed velocity shift)

Global Evolution of an Accretion Disk with Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds Zhu & Stone 2018

Wow! are we observing accretion in action?!

Gas disks grow larger as they age

Some Class II gas disks are bigger than Class I disks.

"in-disk" angular momentum transport is significant enough for this to happen

Magnetocentrifugal Wind-driven Accretion

Net vertical magnetic field **anti-aligned** with disk rotation

- Asymmetric, supersonic accretion
- Asymmetric wind

How do disks accrete: planet formation region

Open questions

- How do disks accrete?
- Where, how much of disk accretes?

Fortuitous line of sight: Supersonic surface accretion flows?

Inner Disk Atmospheres in Emission

...may be major accretion zones

Protoplanetary disks --> Debris disks

Insights from disk rings (Najita, Kenyon, & Bromley, submitted)

Protoplanetary disks have rings of solids

Rings > 30 au

Debris disks also have rings

Rings > 30 au

Ring Sizes: evolutionary connection?

- Rings similar in size
- DD ring sizes don't increase with age

Disk sizes \rightarrow Planetesimal disks not continuous, extended

Predicted to grow with age in extended disks of planetesimals

No size-age trend observed

Protoplanetary disks are diverse in size

About 20% have large rings > 30 au

evolve

Debris disks

and how does the Solar System fit in?

evolve into

Debris disks

and how does the Solar System fit in?

• Sizes

- Debris luminosities
- Incidence rates

Incidence rates	Age	Frequency (> 30 au)	
	few Myr (PPDs)	~ 20%	Taurus
	10-100 Myr	~ 20%	
	0.1 – 1 Gyr	~ 20%	Hersche
	1 – 10 Gyr	~ 20%	

Debris disk luminosity vs. age

Can evolutionary models connect known PPDs to DDs?

Evolutionary models of rings of solids

Building on work by Kenyon & Bromley...

- Pebbles (1 cm) + planetesimals (100 km)
- Ring radius: 45 au, 75 au
- f = planetesimal mass fraction
- M₀ = initial solid mass (M_{Earth})

Massive PPD rings match debris demographics

Most DDs evolve from PPD rings with

- High mass $M_0 \simeq 10 M_E$,
- Planetesimal formation efficiency f = 0.1 - 0.5

Evolutionary Pathways for Pebble/Planetesimal Rings

Evolution of Solids in Disks

Summary

Youngest protostars

Early magnetospheric accretion (strong B_{*}, slow rotation)? How do disks accrete?

Via supersonic surface accretion flows in disk atmosphere? Protoplanetary disks --> debris disks PPDs with large, massive rings → known debris disks Compact PPDs have little/no planetesimal rings → Solar System